

Ground-temperatures

- Establish temperature envelope for sump top and perimeter
- Reevaluate ground-thermal conditions in the future

Winter temperature profiles in an open sump and adjacent terrain

Acknowledgements

- Aurora Research Institute, Aurora College
- Carleton University, Department of
- Geography and the NSERC Northern Chair
- Inuvialuit Joint Secretariat
- Natural Sciences and Engineering
- Research Council of Canada
- Water Resources Division,
- Department of Indian Affairs and Northern
- Development

Final Considerations

 A capacity for basic science in the North will greatly improve our ability to manage the development of oil and gas resources

Conclusions

- The Mackenzie Delta region is a complex and dynamic environment
- The design of infrastructure should consider both spatial and temporal variation in permafrost conditions

- Improved management of drilling waste disposal in permafrost requires the collection of data that can indicate:
 - Effective containment
 - Causes of success or failure
- This may be facilitated by the development of sump monitoring guidelines

Sump monitoring

- An effective monitoring program will:
 - Determine the integrity of sumps
 - Indicate if remediation is necessary
 - Provide data to guide future management of drilling wastes
 - Address community concerns

 Design and implementation requires input from regulators, locals, scientists and industry

Sump monitoring

- 1. Key monitoring/research questions must be identified to investigate:
 - sump integrity
 - if remediation is necessary
 - guide future design and abandonment practices
 - 2. Design of appropriate methodology will:
 - guide data collection
 - ensure consistency of data collection and comparability of data
 - 3. Data must be compiled and archived by the regulators
 - 4. Data require timely analysis
 - 5. Feedback mechanism should be formalized

Monitoring of contemporary sites

 Considerable monitoring efforts have been initiated to determine the performance of drilling-mud sumps

 To maximize the potential of resources directed towards sump monitoring, several items require attention

Management implications:

 These investigations can indicate the potential causes of long-term degradation of sumps

 The investigations may direct practices to maximize the performance of sumps in permafrost terrain

Sump perimeter Control Sump top Snow: 100-150 cm Snow: 50-80 cm Snow: 150-200 cm Active layer: +150 cm Active layer: +150 cm Active layer: +150 cm Permafrost temp: -3.0 Permafrost temp: -0.6 Permafrost temp: -0.8 Willows Sump

Field activities

 Shallow thermistors installed on sump top, perimeter and in adjacent undisturbed terrain

 Active-layer and snow transects were established across the top and adjacent to abandoned sumps

Ground-temperatures were determined at and around two sumps in the outer Delta

High willows

No willows

The effect of revegetation on groundthermal conditions at abandoned sumps

Project objectives:

- To determine soil chemical conditions around abandoned sumps
- To determine the long-term influence of disturbance on habitat conditions
- To determine the influence of ecological change on ground-thermal conditions

Environmental conditions at abandoned sumps in the Kendall Island Bird Sanctuary

- Canadian Wildlife Service
- Department of Indian and Northern Affairs
- Carleton University
- University of Alberta

ESRF objectives:

- Develop a protocol to guide the collection of information on the environmental conditions at abandoned sump sites
 - Sump inventory
 - Phase 1 site assessments (ESRF, Industry)
- Establish a public database to store information collected in assessment
- Assess the environmental risk associated with each site
- Provide information to determine factors that influence sump behaviour

1. 2004 Drilling-mud sump inventory study, Inuvialuit Settlement Region (ESRF/Industry)

ESRF Technical Advisory Group, ChevronTexaco, ConocoPhillips, Imperial Oil, and Shell

Previous work on sumps includes:

- Reports based on observations
 - Methods vary
 - Lack of field data to support observations
- Field investigations (EM surveys, soil sampling etc.)
 - Not many field data exist
 - Data vary for different sites
 - Not all data are accessible
- Workshop
 - Concerns of the Inuvialuit have been expressed
 - Requirement to monitor new sites
 - Need information on old sites

Observations suggest:

- The integrity of the sump cap is associated with:
 - a) abandonment practices
 - b) site conditions
 - c) patterns of snow accumulation and possibly revegetation

Sump studies

In permafrost terrain, sumps are constructed to encapsulate drilling muds in frozen ground

Management implications:

Understanding the distribution of ground ice is required to plan and design of infrastructure

Surface subsidence associated with active-layer deepening and thawing of ice-rich permafrost

Segregated ice lenses (Williams and Smith, 1989)

Ice-wedge in cross-section, western Arctic coast (French 1996)

Ice-wedge polygons, Yukon Coastal Plain

Thermal-contraction crack, drained lake bottom, Illisarvik, western Arctic Coast (Mackay, 1980).

Ground ice

Management implications

- This data may indicate change in permafrost temperatures over the last 30 years
- Establishing the relation between climate conditions and permafrost temperature is critical to planning the design and managing the long-term integrity of infrastructure in permafrost terrain

Climate change and permafrost

 Mean annual air temperatures in the western Arctic have increased 0.5 to 1 degree Celsius per decade since the 1970's

 Permafrost temperatures on Richards Island have increased about 1.5 deg C since the 1970's (Burn pers. comm.)

C.R. Burn

Permafrost-temperature profiles for two sites in the Mackenzie Delta (from Dyke; Smith, 1975).

Spruce community

- Infrequent flooding
- Development of surface organic horizon
- Interception of snow by canopy

Willow community

- Frequent flooding
- Thick snow accumulation

Schematic of permafrost configuration beneath a shifting point bar (Smith 1975)

Permafrost ground temperatures are a function of the surface energy balance and the geothermal gradient

Definitions:

Permafrost

Earth materials which remain below 0 degrees C for at least 2 consecutive years

Active layer

 Near-surface soils or rock that thaws and refreezes on an annual basis

Tundra uplands

Rising river levels and lake flooding

Mackenzie Delta region

Objectives

- To describe the Mackenzie Delta environment
- To provide an overview of the design and past performance of drilling-mud sumps in permafrost environments
- Summarize current sump research
 - Sump inventory and assessment (ESRF)
 - Environmental conditions at abandoned drilling sumps (CWS)
 - Ground-thermal evolution of abandoned drilling sumps (WRD)
 - D-20 reclamation (ConocoPhillips)
- Overview sump monitoring
- To emphasize the importance of integrating science and resource management in the NWT

Steven V. Kokelj

Resources Division, Indian and Northern Affairs/Department of Geography and Environmental Studies, Carleton University

In partnership with the Inuvialuit Joint Secretari and the Aurora Research Institute

