

ANNUAL REPORT 2018 FORMER AKLAVIK POWER PLANT 68° 13′ 6.24″ NORTH AND 135° 0′ 21.24″ WEST AKLAVIK, NORTHWEST TERRITORIES

Report Prepared for:

NORTHWEST TERRITORIES POWER CORPORATION

Prepared by:

MATRIX SOLUTIONS INC.

Version 2.0 March 2019 Calgary, Alberta

Suite 600, 214 - 11 Ave. SW Calgary, AB T2R 0K1 T 403.237.0606 F 403.263.2493 www.matrix-solutions.com

ANNUAL REPORT 2018

FORMER AKLAVIK POWER PLANT

68° 13' 6.24" NORTH AND 135° 0' 21.24" WEST

AKLAVIK, NORTHWEST TERRITORIES

Report prepared for Northwest Territories Power Corporation, March 2019

Scott McIntyre, B.Sc., E.I.T.

Remediation Engineer

reviewed by

Margaret Allan, M.Eng., P.Eng., P.Geo., EP(CEA)

Principal Engineer

March 15, 2019

LICENSEE

Northwest Territories Permit to Practice
Permit No. 378

DISCLAIMER

Matrix Solutions Inc. certifies that this report is accurate and complete and accords with the information available during the project. Information obtained during the project or provided by third parties is believed to be accurate but is not guaranteed. Matrix Solutions Inc. has exercised reasonable skill, care, and diligence in assessing the information obtained during the preparation of this report.

This report was prepared for Northwest Territories Power Corporation. The report may not be relied upon by any other person or entity without the written consent of Matrix Solutions Inc. and of Northwest Territories Power Corporation. Any uses of this report by a third party, or any reliance on decisions made based on it, are the responsibility of that party. Matrix Solutions Inc. is not responsible for damages or injuries incurred by any third party, as a result of decisions made or actions taken based on this report.

VERSION CONTROL

Version	Date	Issue Type	Filename	Description
V0.1	14-Dec-2018	Draft	21784-546 R 2018-12-14 draft V0.1.docx	Issued to client for review
V1.0	21-Jan-2019	Final	21784-546 R 2019-01-22 final V1.0.docx	Issued to client
V2.0	15-Mar-2019	Final revised 1	21784-546 R 2019-03-15 final V2.0.docx	Sections 3 to 7 edits. Issued to client

EXECUTIVE SUMMARY

The Northwest Territories Power Corporation retained Matrix Solutions Inc. to apply a biological method of soil remediation at its former electricity generation plant in Aklavik, Northwest Territories. The bioaugmentation program began with construction of a biotreatment cell in July 2017. A biotreatment cell was constructed to treat petroleum-impacted soils and to contain surface water runoff. The impacted soils were treated with Bio-Reclaim™ bioaugmentation solution in 2017.

Soil analysis from the biotreatment cell indicates a reduction in hydrocarbon concentrations and a discernable shift consistent with bacteria breaking down hydrocarbon molecules into smaller molecules. Trend analysis suggests concentrations in the top 0 to 2 m of the biotreatment cell will meet applicable guidelines within 2 to 4 years. The remaining 2 to 3 m of soils undergoing treatment have shown a shift from fraction 4 (F4; $C_{>34}$) to fraction 3 (F3; $C_{>16}$ - C_{34}), to fraction 2 (F2; $C_{>10}$ - C_{16}), concentrations, indicating degradation is occurring; however, the estimated time to meet the applicable guidelines is up to 54 years. It is anticipated the rate of degradation will increase in the bottom 2 to 3 m following the reduction in F4 concentrations.

Thermistor data indicated that soils within the biotreatment cell decreased below zero for the winter months, but were above zero during the summer months, suggesting permafrost did not infiltrate the bottom of the pile.

A water treatment system was recommissioned to treat surface water runoff from the biotreatment pile. Water was pumped through the treatment system from the collection sump in the biotreatment cell. Following treatment and approval from the Water Resources Officer, 59.8 m³ of treated water was discharged to the drainage ditch along the north edge of the site. The system was winterized in October 2018, with plans to resume operations in summer 2019.

TABLE OF CONTENTS

EXECU.	TIVE SUN	/IMARY	İν
1	INTROE	DUCTION	1
2	BACKG	ROUND	1
	2.1	Site Setting	1
	2.2	Operational History	1
	2.3	Previous Investigations	2
	2.4	Biotreatment Cell Construction	2
	2.5	Regulatory Framework	3
3	2018 A	CTIVITY SUMMARY	4
4	METHO	DDS	4
	4.1	Health, Safety, and Training	4
	4.2	Water Collection, Treatment, and Release	4
	4.3	Soil Sampling	5
5	RESULT	⁻ S	5
	5.1	Soil Quality	5
	5.2	Water Quality	8
6	DISCUS	SION AND CONCLUSIONS	9
7	PROPO	SED 2019 WORK	9
8	REFERE	NCES	9
		LIST OF TABLES	
TABLE	A	Average Petroleum Hydrocarbon Concentrations in Biocell Soil - All Depths	6
TABLE	В	Average Petroleum Hydrocarbon Concentrations in Biocell Soil - 0 to 1 m	7
TABLE	С	Average Petroleum Hydrocarbon Concentrations of in Biocell Soil - 1 to 2 m	7
TABLE	D	Average Petroleum Hydrocarbon Concentrations of in Biocell Soil - 2 to 3 m	7
TABLE	E	Estimated Time to Reach Applicable Guidelines by Depth in Biocell Soil	8
		FIGURES	
FIGURE	= 1	Site Location Map	
FIGURE	2	Site Plan Showing Historical Information	
FIGURE	- 3	North-South Cross-section A-A'	
FIGURE	= 4	Plan View of Biotreatment Cell and Water Treatment	
FIGURE	5	Plan View of Biotreatment Cell	
FIGURE	6	Cross-section Details	
FIGURE	- 7	Aerial View of Constructed Biocell - July 14, 2017	
FIGURE	8	Biotreatment Thermistor Data	

TABLES

TABLE 1	Soil Quality Results - Hydrocarbons
TABLE 2	Water Quality Results - Water Characterization

APPENDICES

APPENDIX A	Inuvialuit Water Board, Licence N3L8-1838
APPENDIX B	Quality Assurance/Quality Control Plan
APPENDIX C	Remediation and Reclamation Action Plan
APPENDIX D	Laboratory Reports

1 INTRODUCTION

The Northwest Territories Power Corporation (NTPC) retained Matrix Solutions Inc. to apply a biological method of soil remediation at its former electricity generation plant in Aklavik, Northwest Territories. Bioaugmentation success has been reported for sites in northern Alberta, but this program marked the first time that Bio-Reclaim™ has been used in the Northwest Territories. The program began with construction of a biotreatment cell in 2017, and will continue until petroleum hydrocarbon (PHC) concentrations in soils undergoing treatment are sufficiently reduced or stop declining.

The project is governed by a water licence issued by the Inuvialuit Water Board (IWB 2016; Appendix A) and this licence requires a final report by June 30, 2019. Matrix prepared the following interim report to document activities completed in 2018.

2 BACKGROUND

2.1 Site Setting

The site is a former power station situated in the hamlet of Aklavik, located on the Peel Channel of the west side of the Mackenzie River Delta (Figure 1), approximately 100 km south of the Beaufort Sea and 55 km west of Inuvik. The site legal description is Lots 58, 58A, and 58B, LTO 33, Plan CLSR 40355.

A site plan is provided on Figure 2. The current land use is industrial. Surrounding land uses are residential to the north and commercial to the west. There is an Anglican Church cemetery south of the site. Areas to the east are undeveloped.

The site topography is flat, sloping gently to the southeast. Peel Channel bends around the south side of Aklavik. The distance between the channel shores to the east and the south of the site is approximately 250 m. A layer of gravel and clay fill covers most of the site, underlain by the original topsoil and clayey silt (Figure 3); the depth to permafrost is approximately 1.2 to 2.1 m below ground surface (bgs).

2.2 Operational History

The site historically had a power plant that used Bunker C to generate electricity. In the mid-1970s, a new powerhouse was constructed to support a switch to fuel oil (diesel). In addition to the powerhouse, former infrastructure included an aboveground diesel storage tank (AST) and an office. Remaining infrastructure includes a concrete dock used to support the original generator, a smaller concrete pad, and a chain-link fence around the perimeter.

2.3 Previous Investigations

The site has been the subject of four environmental site assessments (ESAs; Figure 2):

- A July 1997 Phase II ESA (EBA 1998) included digging 16 test pits; analytical results suggested that most of the soil impacts were south of the former AST. This observation was based on the highest total petroleum hydrocarbon (TPH) concentrations at the south property line, including 96,000 mg/kg at a depth of 0.6 m bgs from a test pit south of the former AST, and 39,000 mg/kg at a depth of 0.3 m bgs from a test pit located between the former AST and the concrete dock.
- A groundwater assessment in 2002 (Golder 2002) included digging five test pits to a depth between 1.8 and 2.2 m bgs and installing five groundwater monitoring wells (Golder 2002). The well farthest to the north had no detectable PHCs, while other wells on the site had benzene, toluene, ethylbenzene, and PHC fraction 2 (F2; C_{>10}-C₁₆) concentrations higher than applicable Canadian Council of Ministers of the Environment guidelines.
- A Phase III ESA in June and July 2003 included soil sampling from an additional 22 test pits and 8 manual boreholes offsite in the cemetery, plus groundwater sampling of the 5 wells (Biogenie 2004). The assessment concluded that an estimated 2,720 m³ of hydrocarbon-impacted soils was present on NTPC's property at an average depth of 1.8 m bgs. Limited data suggested that site soils were also impacted with polycyclic aromatic hydrocarbons higher than the Environmental Guidelines for Contaminated Site Remediation (Northwest Territories 2003) for residential/parkland land use.
- In August 2015, Matrix used hand augers to collect soil samples to a depth of 1 m. Concentrations of hydrocarbons and metals exceeded *Environmental Guidelines for Contaminated Site Remediation* (Northwest Territories 2003). Impacts in the south portion of the site were consistent with the historical location of the Bunker C generator and included PHC fraction 3 (F3; C_{>16}-C₃₄; 280 to 42,300 mg/kg), fraction 4 (F4; C_{>34}; 7,710 to 25,800 mg/kg), and metals (copper, nickel, and zinc) consistent with historical fuel spillage and engine wear. Impacts in the north section of the site (where the 1970s powerhouse was built) were characterized by elevated levels of PHC F2 (1,660 to 22,700 mg/kg) indicative of diesel. Arsenic levels exceeded guidelines at multiple locations; this is attributable to imported gravel from a nearby quarry and is not considered a contaminant of concern.

2.4 Biotreatment Cell Construction

The biotreatment cell was constructed in July 2017 by K&D Contracting Ltd. under Matrix's supervision (Matrix 2017). Impacted soil was excavated from the northeast area of the site and stockpiled along the south area of the site to create the footprint of the biotreatment cell. The excavation was rectangular in shape, measuring approximately 17 m wide by 28 m long (Figures 4 and 5). The depth of excavation varied from 1.1 m on the north side to 1.6 m on the south. A water collection sump was created for surface water drainage along the west side of the biotreatment cell to allow pumping of surface water

runoff from the biotreatment soils and an earthen berm was constructed around the biotreatment cell for water containment. Following the excavation, approximately 280 m³ of clean clay fill was hauled in to build a smooth base followed by a 30 mil impermeable geomembrane, underlain and overlain with geotextile. A 30 cm gravel layer was placed over the geotextile for drainage under the biotreatment pile (Figure 6). Overtop of the gravel is another layer of geotextile, upon which the contaminated soils were placed. The total soil volume from the excavation is estimated to be 920 m³, which includes 180 m³ from the former bioventing treatment cell that was decommissioned in 2015. This soil volume was spread across soil-bearing footprint of the biotreatment cell and was approximately 3.4 m above ground surface. An aerial photograph of the biocell on July 14, 2017 is provided as Figure 7.

The impacted soil was inoculated with a one-time treatment of Bio-Reclaim™ bioaugmentation solution as it was placed in the biotreatment cell. The Bio-Reclaim™ was mixed onsite with potable water in plastic drums and left to develop for 24 hours before being sprayed onto the soil along with a surfactant. The application was completed as the impacted soil was placed in the biotreatment cell in layers to uniformly distribute the Bio-Reclaim™ throughout the pile. Due to dry atmospheric and soil conditions, a local water truck was used to hydrate the impacted soils as they were placed in the biotreatment cell.

An array of temperature sensors was installed to monitor whether the soils have sufficient warmth in the summer months to achieve biotreatment, to monitor how and when the pile freezes and thaws, and to assess whether soils at the base of the biotreatment cell stay cold, ideally near freezing. Three sensors were placed in three locations at 1 m depth intervals and a reflectometer was placed outside of the pile in a radiation shield to measure atmospheric moisture content and temperature. The nine sensors and the reflectometer are wired into a CR1000 data logger mounted inside a storage box connected to an onsite power supply and solar panel.

2.5 Regulatory Framework

Construction and operation of the biotreatment cell is subject to a licence issued by the IWB for depositing waste in accordance with territorial water legislation (Appendix A).

Annex 1, Part B, Item 5 of the water licence required submitting a quality assurance (QA)/quality control (QC) plan for the project. Matrix prepared and submitted a QA/QC plan in 2016 (Appendix B) and received notice on May 29, 2017 from Taiga Environmental Laboratory, on behalf of the Government of the Northwest Territories, that the plan was acceptable.

Matrix prepared a remediation and reclamation action plan (Appendix C) to comply with Part G, Item 1 of the water licence. On June 16, 2017, the IWB provided approval of this plan. Operation of the water treatment system and discharge of treated water is subject to conditions of the approval.

3 2018 ACTIVITY SUMMARY

The objective of the 2018 program was to monitor and operate a biotreatment cell for remediating soils impacted by PHCs. This work included the following activities:

- sampling soils within the biotreatment cell to assess remediation progress
- collecting, treating, testing, and releasing water from the biotreatment cell
- monitoring temperature within the biotreatment cell
- providing health and safety leadership
- continued regulatory liaison related to the above

The 2018 work did not include adding or removing soil volumes to/from the biotreatment cell. As well, there were no spills or unauthorized discharges in 2019.

4 METHODS

4.1 Health, Safety, and Training

Matrix personnel were required to comply with legislated, Matrix, and NTPC health and safety standards.

Throughout the 2018 field program, Matrix fulfilled Prime Contractor duties and provided supervision/guidance to K&D Contracting Ltd. personnel retained to work at the site. This included an initial contractor orientation, daily tailgate meetings, and hazard identification discussions, as well as hands-on training on the operation of the water treatment system through a review of system components and demonstration of controls and sampling procedures.

4.2 Water Collection, Treatment, and Release

The onsite water treatment system was used to treat the surface water captured within the biotreatment cell. The water treatment system includes submersible pumps, settling tank, water treatment unit, and a post-treatment 40 m³ Terra Tank™ to store the water until release (Figure 4). The water was treated in a three-stage process. First, the water was passed through a bag filter to remove entrained particulates and sediment. Second, the water was passed through two vessels containing a clay medium. Third, the water was filtered through two vessels containing an activated carbon medium, to remove any liquid- or dissolved-phase hydrocarbons.

Following a rain event or accumulation of water in the biotreatment cell, personnel from K&D Contacting Ltd. were onsite to operate the water treatment system. This included operating the submersible pumps, monitoring pressures, and collecting water samples of the treated water for laboratory analysis. Water samples were collected from the water treatment system discharge port and

from the post treatment holding tank. Samples were shipped to AGAT Laboratories in Edmonton, Alberta, for analysis of parameters specified in the water licence (Appendix A). Treated water was discharged to the drainage ditch to the north of the site following approval from the IWB. Water was gravity drained from the holding tank through a 50 mm hose and flow was monitored to ensure there was no erosion along the drainage ditch.

The water treatment system was recommissioned on June 19, 2018, following the spring thaw, and was operational through October 2, 2018, when it was winterized. Winterization of the system included draining water from the pumps, lines, treatment vessels, and tanks, and placing system components in the onsite sea-can for storage during the winter months.

4.3 Soil Sampling

During the spring site visit to recommission the water treatment system on June 19, 2018, a limited soil sampling program was conducted. Samples were collected at five locations at 1 to 2 and 2 to 3 m depth intervals.

Following the summer treatment season, 30 samples from within the biotreatment cell were collected on October 18, 2018, to compare to the base characterization samples. The samples were collected at ten locations at 0 to 1, 1 to 2, and 2 to 3 m depth intervals.

The samples were sent to AGAT Laboratories in Edmonton, for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX) and PHCs fraction 1 (F1; C_6 - C_{10} , excluding BTEX), F2, F3, and F4.

5 RESULTS

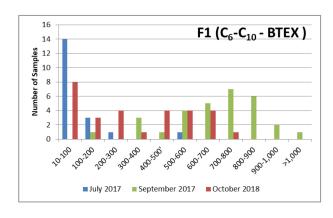
5.1 Soil Quality

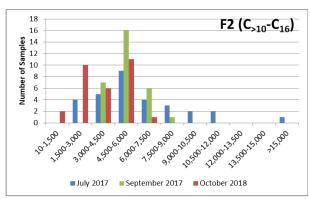
Concentrations in the soils before placement in the biotreatment cell exceeded the Northwest Territories guidelines for F2 and F3 concentrations in all samples collected. F1 and F4 concentrations were within guidelines for all samples collected. Laboratory analytical reports are provided in Appendix D.

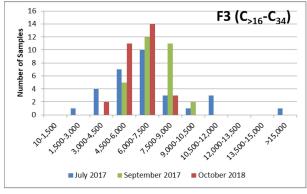
In 2018, soils within the biotreatment cell were sampled in June (10 samples) and October (30 samples) to evaluate the effectiveness of treatment with Bio-Reclaim™. Results are provided in Table 1.

• In June (after 11 months of treatment), samples continued to exceed Northwest Territories guidelines for F2 and F3 concentrations in all samples and exceeded F1 concentrations in five of ten samples.

• In October (following 15 months of treatment), samples continued to exceed Northwest Territories guidelines for F3 concentrations in all samples and exceeded for F2 concentrations in 28 of 30 samples. F1 concentrations in two of the 30 samples collected exceeded guidelines.


Average concentrations since placement in the biocell are tabulated below in Table A.


TABLE A Average Petroleum Hydrocarbon Concentrations in Biocell Soil - All Depths


Constituent	Concentration (mg/kg)									
Constituent	July 2017	September 2017	June 2018	October 2018						
F1 + BTEX (C ₆ -C ₁₀)	67	690	610	328						
F2 (C ₁₀ -C ₁₆)	6,638	5,281	7,154	3,812						
F3 (C ₁₆ -C ₃₄)	7,128	7,371	9,828	6,145						
F4 (C ₃₄ +)	296	510	541	406						
TPH (C ₆ -C ₃₄ +)	14,110	13,853	18,742	11,019						

In October 2018 (after 15 months of treatment), TPH concentrations showed a 22% decrease since placement in the biocell. The apparent increase in concentrations in June 2018 is attributed to collecting only 10 samples, compared to 30 samples in all other sampling events.

Over the time there have been discernable shifts in composition. Histograms showing concentrations of each fraction during each 30-sample event are presented on Figure A.

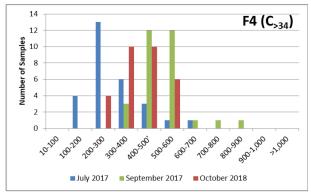


FIGURE A Histograms of Hydrocarbon Fraction Composition over Time

The increased concentrations of F1 and decreased concentrations of F2 between July and September 2017 suggest that some of the F2 degraded to F1, consistent with bacteria breaking down hydrocarbon molecules into smaller molecules. The October 2018 data show a reduction in all hydrocarbon concentrations, consistent with biodegradation.

The reduction of hydrocarbon concentrations varied by depth and is summarized in Tables B through D.

TABLE B Average Petroleum Hydrocarbon Concentrations in Biocell Soil - 0 to 1 m

Constituent	Concentra	Reduction			
Constituent	September 2017	October 2018	Reduction		
F1 + BTEX (C ₆ -C ₁₀)	591	118	80%		
F2 (C ₁₀ -C ₁₆)	5,191	2,751	47%		
F3 (C ₁₆ -C ₃₄)	7,575	5,322	30%		
F4 (C ₃₄ +)	461	400	13%		
TPH (C ₆ -C ₃₄ +)	14,409	8,710	40%		

TABLE C Average Petroleum Hydrocarbon Concentrations of in Biocell Soil - 1 to 2 m

Constituent	Concentr	Reduction		
Constituent	September 2017	Reduction		
F1 + BTEX (C ₆ -C ₁₀)	848	447	47%	
F2 (C ₁₀ -C ₁₆)	5,977	4,479	25%	
F3 (C ₁₆ -C ₃₄)	8,035	6,714	16%	
F4 (C ₃₄ +)	481	429	11%	
TPH (C ₆ -C ₃₄ +)	16,190	12,515	23%	

TABLE D Average Petroleum Hydrocarbon Concentrations of in Biocell Soil - 2 to 3 m

Constituent	Concentr	Reduction	
Constituent	September 2017	October 2018	Reduction
F1 + BTEX (C ₆ -C ₁₀)	630	419	33%
F2 (C ₁₀ -C ₁₆)	4,676	4,205	10%
F3 (C ₁₆ -C ₃₄)	6,504	6,398	2%
F4 (C ₃₄ +)	589	390	34%
TPH (C ₆ -C ₃₄ +)	13,029	11,832	9%

As the tables show, the greatest reduction in F1 to F3 and TPH concentrations was observed in the top 0 to 1 m depth interval. The greatest reduction in F4 concentrations was in the 2 to 3 m depth of the biotreatment cell. Remaining hydrocarbon concentrations in the 2 to 3 depth interval showed a smaller reduction in F1 to F3 constituents, suggesting degradation from F4 to F3 and F1.

Ambient air temperatures and average temperatures of the upper (0 to 1 m), middle (1 to 2 m), and bottom (2 to 3 m) are plotted on Figure 8. Thermistor data indicated that soils within the biotreatment cell trend with ambient temperature. As expected, the temperatures of the upper soils in the biotreatment pile were more variable, seeming to react to the ambient air temperatures. The middle and bottom soils were slower to react to changes in ambient temperature and were above freezing well after ambient temperatures dropped below freezing in late 2017 and were below freezing for approximately a month after the upper soils thawed in 2018. The bottom of the biotreatment cell was above freezing during the summer months of 2018, suggesting permafrost did not aggrade into the biotreatment pile.

Table E presents the estimated number of years remaining to reach the applicable soil guidelines, based on trend analysis.

TABLE E Estimated Time to Reach Applicable Guidelines by Depth in Biocell Soil

Comptituent	Time to Meet Applicable Guidelines (Years) by Depth							
Constituent	0 to 1 m	1 to 2 m	2 to 3 m					
F1 + BTEX (C ₆ -C ₁₀)	Not persistent; expected to reduce before heavier PHCs							
F2 (C ₁₀ -C ₁₆)	2	4	7					
F3 (C ₁₆ -C ₃₄)	4	2	54					
F4 (C ₃₄ +)	D	oes not exceed guidelines						

Trend analysis suggests F2 and F3 concentrations in the top 0 to 2 m of the biotreatment cell will meet applicable guidelines in 2 to 4 years; however, F3 concentrations in the bottom 2 to 3 m of the biotreatment cell are estimated to take up to 54 years. Concentrations of F3 in the bottom 2 to 3 m may be related to the degradation from F4 to F3 and it is expected the reduction rate of F3 will increase following the reduction in F4 concentrations. Based on the thermistor data, the hydrocarbon degradation in the bottom 2 to 3 m of the biotreatment cell was likely at a different stage than the rest of the pile during sample collection in October 2018, as temperatures were only above zero for two months before sampling. Based on previous thermistor data, it is assumed that degradation in the bottom 2 to 3 m of the pile was still ongoing after the upper soils froze, and subsequent sampling events will refine the estimated time to meet the applicable guidelines.

5.2 Water Quality

The analytical results of the water collected from the treatment system were compared to the site-specific water release criteria specified in the water licence (Table 2). As the table shows, all concentrations were within the site-specific release criteria except for the total suspended solids (TSS) from August 5, 2018. Subsequent samples show the TSS reduced to below release criteria. Results were discussed with the Water Resources Officer designated by the IWB and approval was granted for the release of the water. On July 5, 2018, 30.2 m³ of treated water was released, and on July 30, 2018,

29.6 m³ was released. Treated water was discharged using gravity drainage to the ditch along the north side of the site.

The post-treatment sample collected on August 5, 2018 exceeded the release criteria for TSS. After discussions with the Water Resources Officer, release of the water was not permitted. Water was drained back into the biotreatment cell, so that the water treatment system could be winterized.

There were no unauthorized discharges or spills in 2018.

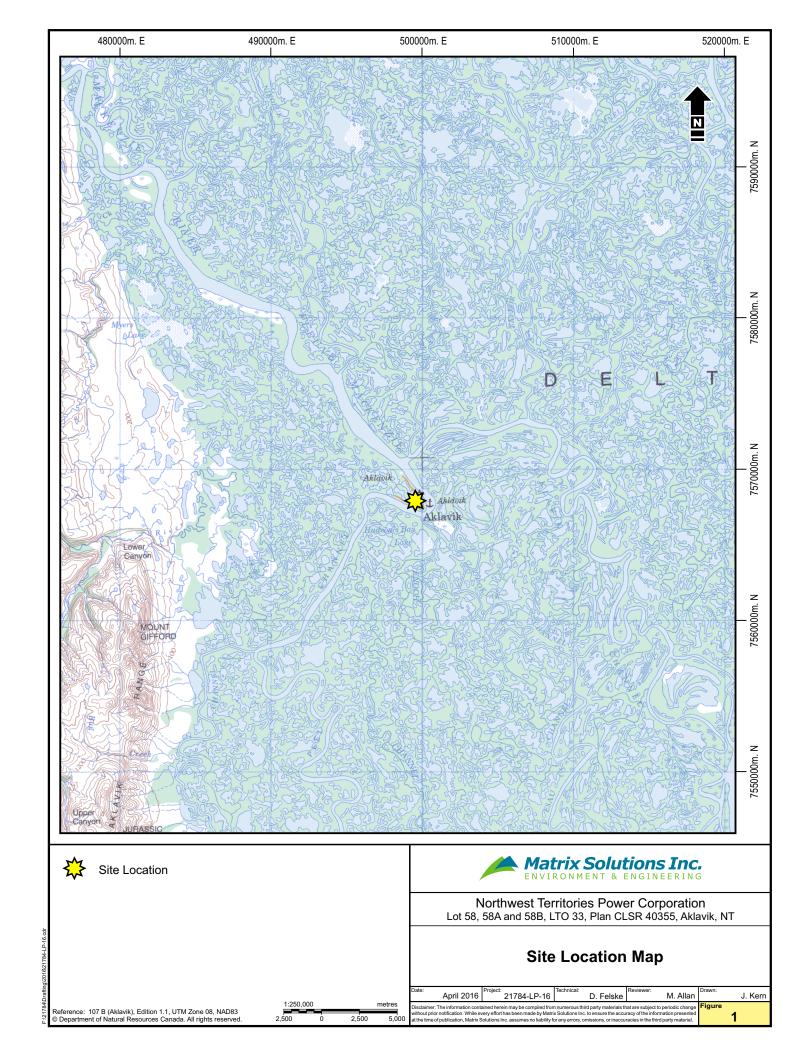
6 DISCUSSION AND CONCLUSIONS

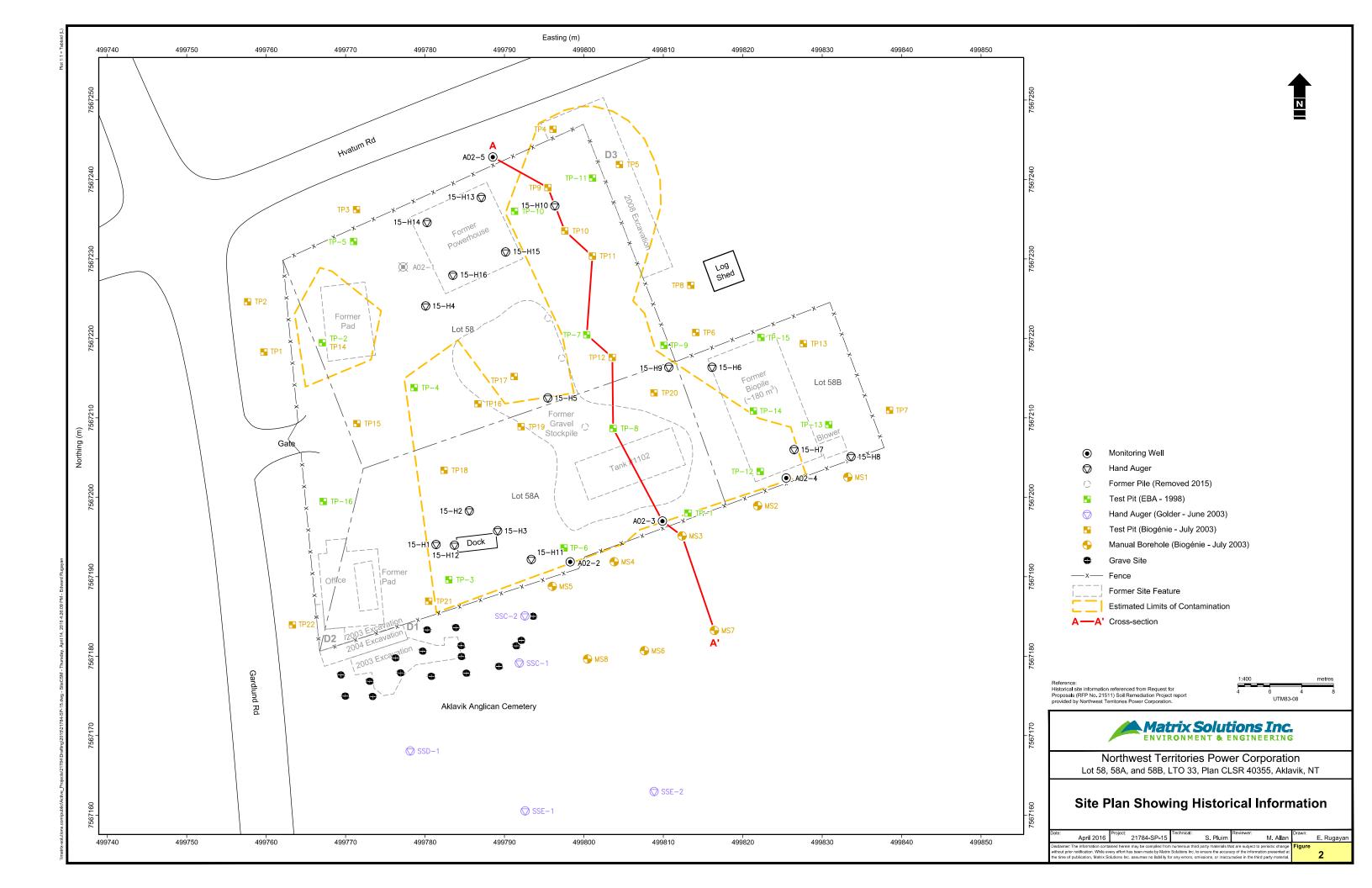
A total of 920 m³ of hydrocarbon-impacted soil was placed in the biotreatment cell in July 2017. After 15 months, soil testing indicated shifts and reductions in PHC composition consistent with bacteria breaking down hydrocarbon molecules into smaller molecules. It is expected that biodegradation will continue. Monitoring PHC concentrations over time will refine treatment rate and remediation timeline estimates. A total of 59.8 m³ of treated water was released into the municipal ditch system in 2018. Water released from site met release criteria specified in IWB Licence N3L8-1838.

There were no reclamation or other closure activities in 2018.

7 PROPOSED 2019 WORK

Following the remediation activities in 2018, Matrix has proposed the following actions in support of the remediation and reclamation action plan (Appendix C):


- Complete a soil sampling program on the biotreatment cell in the spring and fall of 2019 to refine treatment rates and efficacy.
- Operate the water treatment system as necessary in 2019.

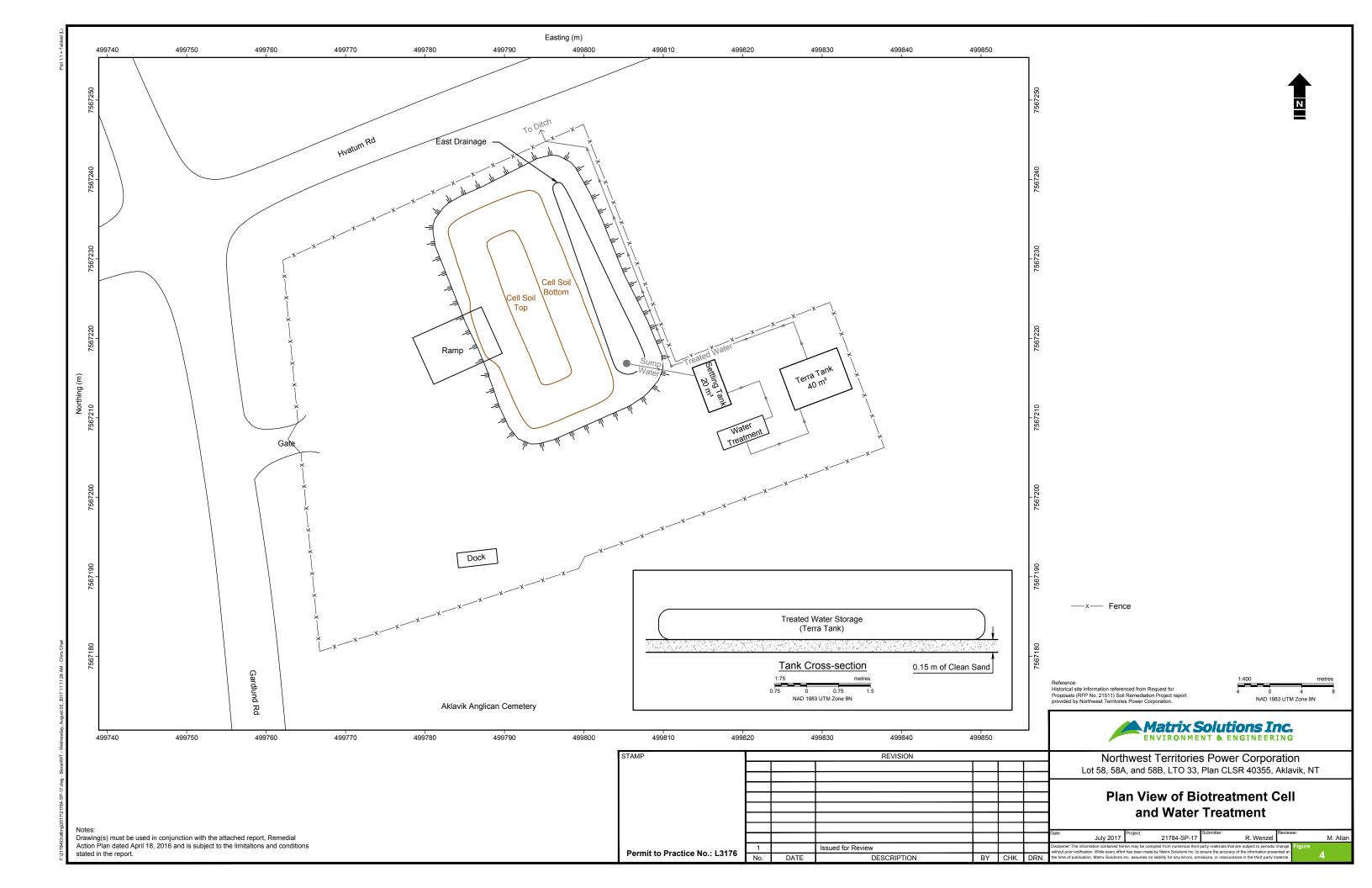

8 REFERENCES

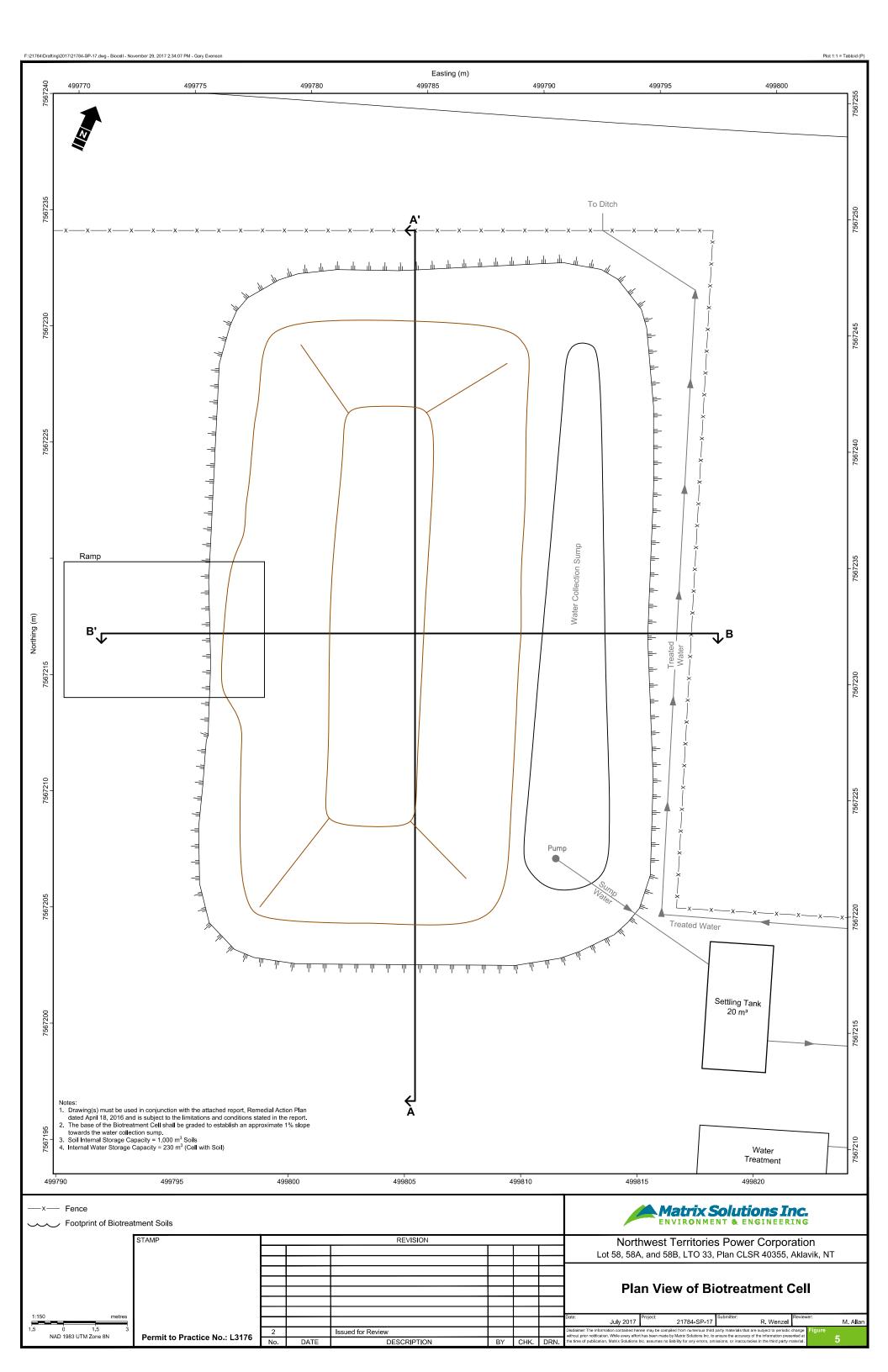
- Biogenie S.R.D.C. Inc. (Biogenie). 2004. *Phase III Environmental Site Assessment, NTPC Powerplant, Aklavik, Northwest Territories*. Prepared for Northwest Territories Power Corporation. Sainte Foy, Québec. February 2004. 2004.
- EBA Engineering Consultants Ltd. (EBA). 1998. *Phase II Environmental Site Assessment, Aklavik, N.W.T. Reference 0701-97-12813*. Prepared for Northwest Territories Power Corporation. Aklavik, Northwest Territories. April 1998.
- Golder Associates Ltd. (Golder). 2002. *Groundwater Monitoring Program Aklavik*. Prepared for Northwest Territories Power Corporation. Calgary, Alberta. October 23, 2002.
- Inuvialuit Water Board (IWB). 2016. *Licence N3L8-1838*. Issued to Northwest Territories Power Corporation. Inuvik, Northwest Territories. August 2016.

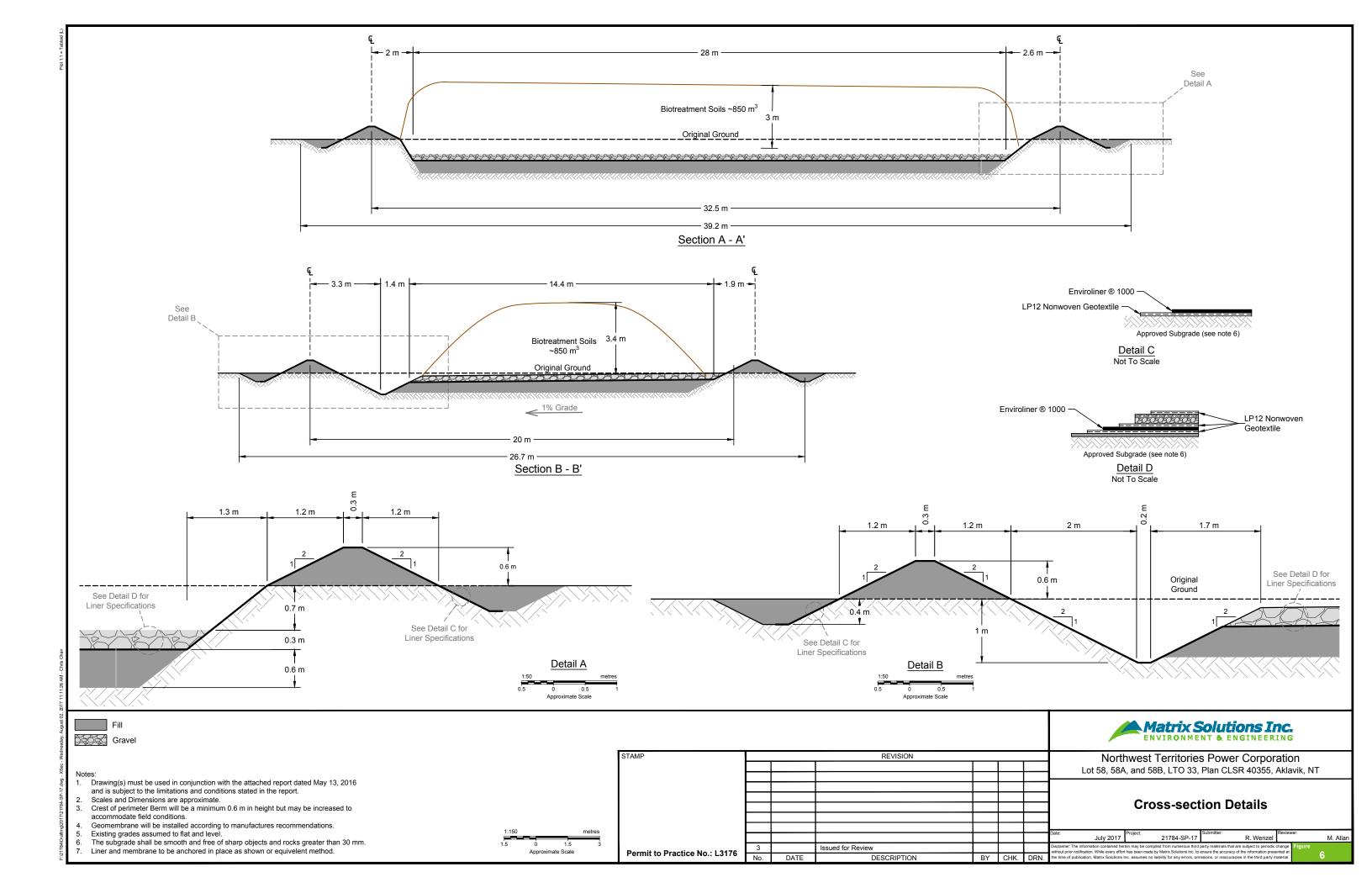
- Matrix Solutions Inc. (Matrix). 2017. *Remediation Summary Report, Former Aklavik Power Plant, Aklavik, Northwest Territories*. Prepared for Northwest Territories Power Corporation. Calgary, Alberta. December 2017.
- Northwest Territories Environment and Natural Resources (NWT ENR). 2003. *Environmental Guideline for Contaminated Site Remediation*. November 2003.

 http://mvlwb.com/sites/default/files/documents/Environmental-Guideline-for-Contaminated-Site-Remediation.pdf

21784-SP-15

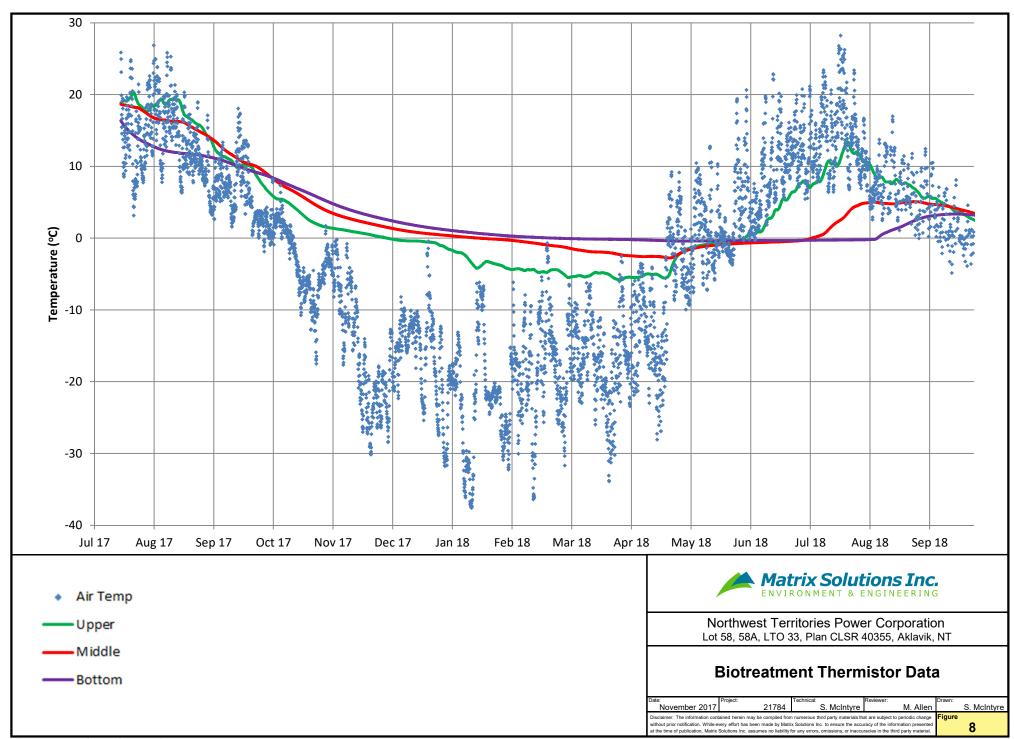

Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic changes without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented as the fine of publication. Matrix Solutions Inc. assumes no inability for any previse, omissions, or inaccuracies in the third party materials.


E. Rugayan


3

April 2016

Horizontal Scale



Northwest Territories Power Corporation Lot 58, 58A, LTO 33, Plan CLSR 40355, Aklavik, NT

Aerial Photograph of Biotreatment Cell July 14, 2017

Date:	Project:	Technical:	Reviewer:	Drawn:
November 2017	21784	S. McIntyre	M. Allen	S. McIntyre
Disclaimer: The information cont	at are subject to periodic change	Figure		
without prior notification. While e	racy of the information presented	7		
at the time of publication. Matrix	Calutiana las assumas as tiabilitut		racios in the third party material	/

TABLE 1

Soil Quality Results - Hydrocarbons

Northwest Territories Power Corporation Aklavik, N.W.T.

Sample	Start Depth	End Depth	Sample	MSI Sample	Benzene	Toluene	Ethylbenzene	Xvlenes	F1 C ₆ -C ₁₀ - BTEX	F2 C _{>10} -C ₁₆	F3 C _{>16} -C ₂₄	F4 C _{>24}	Moisture
Sample	Jan 2 Jan		Jampio			10140110		Ay.o.oo	6 -10	>10 - 16	>16 -34	> 34	
Point	m	m	Date	Number	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
Biocell: Start of 201	8 Season												
18-S1	1	2	19-Jun-18	21784180619001	0.024	<0.05	0.36	1.17	360	7560	10900	581	16.0
18-S1	2	3	19-Jun-18	21784180619002	0.041	<0.05	0.78	1.88	690	8500	11200	528	15.0
18-S2	1	2	19-Jun-18	21784180619003	0.019	<0.05	0.34	1.55	670	7580	10300	546	15.0
18-S2	2	3	19-Jun-18	21784180619004	0.027	<0.05	0.6	1.56	680	7170	9710	468	16.0
1002	_				0.02.	5,55	5.5						
18-S3	1	2	19-Jun-18	21784180619005	0.012	<0.05	0.19	0.51	470	7350	10200	482	19.0
18-S3	2	3	19-Jun-18	21784180619006	0.031	<0.05	0.65	1.56	760	6270	8420	533	16.0
18-S4	1	2	19-Jun-18	21784180619007	0.011	<0.05	0.18	0.55	600	7300	10000	491	15.0
18-S4	2	3	19-Jun-18	21784180619008	0.032	<0.05	0.49	1.45	760	6210	8280	508	17.0
18-S5	1	2	19-Jun-18	21784180619009	0.014	<0.05	0.15	0.45	480	6340	9170	660	16.0
18-S5	2	3	19-Jun-18	21784180619009	0.014	<0.05	1	1.57	610	7260	10100	608	15.0
16-33	2	3	19-3411-10	21784180019010	0.044	\0.03	'	1.57	010	7200	10100	008	13.0
Biocell: End of 2018	3 Season												
18-X1	0	1	02-Oct-18	21784181002001	0.01	<0.05	0.09	0.23	40	2960	5830	410	18.0
18-X1	1	2	02-Oct-18	21784181002002	0.017	<0.05	0.61	1.19	590	4980	6970	540	18.0
18-X1	2	3	02-Oct-18	21784181002003	0.011	<0.05	0.15	0.22	10	1320	5080	410	24.0
40 V2		_	00 0-4 40	24704404002004	0.000	40.05	0.00	0.44	50	2000	5000	400	40.0
18-X2	0	1	02-Oct-18	21784181002004	0.009	<0.05 <0.05	0.08	0.14	50	2800	5890 6670	460 340	19.0
18-X2		2 3	02-Oct-18	21784181002005	0.024		1.76	3.35	690	5460			17.0
18-X2	2	3	02-Oct-18	21784181002006	0.033	<0.05	2.84	3.92	790	5240	6100	270	18.0
18-X3	0	1	02-Oct-18	21784181002007	0.007	<0.05	0.1	0.15	90	2150	4230	310	19.0
18-X3	1	2	02-Oct-18	21784181002008	0.02	<0.05	1.47	2.17	490	3520	4770	340	17.0
18-X3	2	3	02-Oct-18	21784181002009	0.028	<0.05	1.67	2.26	500	4810	6690	440	17.0
18-X4	0	1	02-Oct-18	21784181002010	0.007	<0.05	0.11	0.16	70	3240	5960	480	18.0
18-X4	1	2	02-Oct-18	21784181002011	0.007	<0.05	0.15	0.3	140	2250	6080	510	17.0
18-X4	2	3	02-Oct-18	21784181002012	0.016	<0.05	0.39	0.68	160	2990	6400	530	20.0
10 VE		_	02 00+ 40	21794191002042	0.011	<0.0F	0.41	0.70	410	2240	4600	270	10.0
18-X5 18-X5	0	1 2	02-Oct-18 02-Oct-18	21784181002013 21784181002014	0.011 0.007	<0.05 <0.05	0.41 0.33	0.78 0.65	410 380	3310 4710	6670	360	18.0 16.0
18-X5 18-X5	2	3	02-Oct-18 02-Oct-18		0.007	<0.05		1	70		4040	280	
10-70		3	02-001-18	21784181002015	0.007	<0.03	0.12	0.22	/0	1450	4040	200	18.0
18-X6	0	1	02-Oct-18	21784181002016	0.006	<0.05	0.17	0.31	220	2970	5470	330	16.0
18-X6	1	2	02-Oct-18	21784181002017	<0.005	<0.05	0.21	0.42	250	4130	6670	380	19.0
18-X6	2	3	02-Oct-18	21784181002018	0.006	<0.05	0.22	0.49	280	3390	6180	430	17.0
40 V7			00.0-4.40	04704404000040	10.005	10.05		0.45	70	22.40	5000	470	20.0
18-X7	0	1	02-Oct-18	21784181002019	<0.005	<0.05	0.1	0.15	70	2240	5320	470	20.0
18-X7	1	2	02-Oct-18	21784181002020	0.009	<0.05	0.39	1	570	5150	7730	500	16.0
18-X7	2	3	02-Oct-18	21784181002021	0.037	<0.05	1.05	1.9	650	6050	7420	400	16.0
NWT - Fine Graine	d Surface Soil -	Industrial*			5	0.8	20	20	660 ^{ES}	1500 ^{ES}	2500 ^{ES}	6600 ^{ES}	NS
MATE THIC Graine	a sarrace son -	mausurur				0.0	20	20	000	1300	2300	0000	NO

TABLE 1

Soil Quality Results - Hydrocarbons

Northwest Territories Power Corporation Aklavik, N.W.T.

Sample	Start Depth	End Depth	Sample	MSI Sample	Benzene	Toluene	Ethylbenzene	Xylenes	F1 C ₆ -C ₁₀ - BTEX	F2 C _{>10} -C ₁₆	F3 C _{>16} -C ₃₄	F4 C _{>34}	Moisture
Point	m	m	Date	Number	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%
Biocell: End of 2018	8 Season												
18-X8	0	1	02-Oct-18	21784181002022	<0.005	<0.05	0.12	0.17	130	2600	5220	510	14.0
18-X8	1	2	02-Oct-18	21784181002023	0.013	< 0.05	0.56	0.98	540	5380	8220	520	19.0
18-X8	2	3	02-Oct-18	21784181002024	0.014	<0.05	0.32	0.82	440	5620	8490	530	16.0
18-X9	0	1	02-Oct-18	21784181002025	<0.005	<0.05	0.06	0.1	40	2570	5010	410	18.0
18-X9	1	2	02-Oct-18	21784181002026	0.005	<0.05	0.12	0.23	230	3920	6650	460	20.0
18-X9	2	3	02-Oct-18	21784181002027	0.033	<0.05	1.22	1.99	620	5730	7020	310	16.0
18-X10	0	1	02-Oct-18	21784181002028	<0.005	<0.05	0.07	0.08	60	2670	5690	350	19.0
18-X10	1	2	02-Oct-18	21784181002029	0.011	< 0.05	0.27	0.74	570	5290	6710	340	17.0
18-X10	2	3	02-Oct-18	21784181002030	0.027	<0.05	1.05	1.76	650	5450	6560	300	15.0
NWT - Fine Graine	ed Surface Soil -	Industrial*			5	0.8	20	20	660 ^{ES}	1500 ^{ES}	2500 ^{ES}	6600 ^{ES}	NS

Notes:

F4 - F4 fraction shown represents either extractable, gravimetric or post-silica gel gravimetric petroleum hydrocarbons (PHC)

* - excludes Protection of Potable Groundwater exposure pathway; Environmental Guideline for Contaminated Site Remediation (Northwest Territories 2003)

Italics - values do not meet Environmental Guideline for Contaminated Site Remediation (Northwest Territories 2003) guidelines

ES - Eco Soil Contact exposure pathway

TABLE 2 Water Quality Results - Water Characterization Northwest Territories Power Corporation Aklavik, N.W.T.

Sample Point Sample Date		Pre-treatment 19-Jun-18	Post-Treatment 19-Jun-18	Holding Tank 19-Jun-18	Post-Treatment 17-Jul-18	Post-Treatment	Post-treatment 01-Sep-18	Post-treatment 23-Sep-18	Site Specific Water Release
MSI Sample Number			21784180619102			05-Aug-18		23-Sep-18 21784180923001	Criteria*
	eters	21/04100019101	21/04/1000/19/102	21764160619103	21/04100/1/001	21704100000001	21704100901001	21704100923001	Cilleria
Lab pH	eters	8.11	8.32	8.37	8.02	8.21	7.98	7.8	6 to 9
Lab Electrical Conductivity	μS/cm	785	759	939	845	987	898	947	NS
Calcium	mg/L	120	109	115	125	145	138	154	NS
Magnesium	mg/L	32.2	31.2	28.3	35.7	44.2	37.4	46.2	NS
Sodium	mg/L	5.5	9.4	27.1	7.9	7.7	6.6	7.8	NS
Potassium	mg/L	2.1	4.2	23.1	3.7	4	3.9	4.2	NS
Chloride	mg/L	2.3	2.5	41.9	4	3.2	3	3.8	NS
Sulphate	mg/L	295	265	293	323	366	335	377	NS
Fluoride	mg/L	0.14	0.21	0.34	<0.05	0.18	<0.05	0.2	NS
Nitrite-Nitrogen	mg/L	<0.01	<0.01	<0.01	<0.02	<0.01	<0.02	<0.01	NS
Nitrate-Nitrogen	mg/L	0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	NS
(Nitrite + Nitrate)-Nitrogen	mg/L	0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	NS
Total Alkalinity	mg/L	136	118	149	130	159	139	161	NS
Bicarbonate	mg/L	166	143	175	159	194	170	196	NS
Hardness	mg/L	432	401	404	459	544	499	575	NS NS
Total Dissolved Solids	mg/L	539	492	615	577	666	608	689	NS NS
							000		
Total Suspended Solids	mg/L	2	<2	8	4	18		3	15
Total Metals	me/I	0.049	0.00	0.400	0.047	0.052	0.024	0.022	N.C.
Aluminum	mg/L	0.048	0.06	0.123	0.047	0.053	0.031	0.022	NS NC
Antimony	mg/L	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NS
Arsenic	mg/L	<0.001	<0.001	0.001	<0.001	0.001	<0.001	<0.001	NS
Barium	mg/L	0.07	<0.05	0.05	<0.05	< 0.05	<0.05	<0.05	NS
Beryllium	mg/L	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.001	<0.0005	NS
Boron	mg/L	0.12	2.1	4.6	0.71	0.35	0.33	0.31	NS
Cadmium	mg/L	0.000056	0.000038	0.000098	<0.000016	<0.000016	0.000021	<0.000016	NS
Chromium	mg/L	<0.0005	<0.0005	<0.0005	<0.001	<0.0005	<0.001	0.0006	NS
Cobalt	mg/L	<0.0009	<0.0009	<0.0009	<0.001	<0.0009	<0.001	<0.0009	NS
Copper	mg/L	0.0015	0.0035	0.0036	0.003	0.0039	0.008	0.0033	NS
Iron	mg/L	0.3	1.3	1.7	2	4.3	1.6	0.8	NS
Lead	mg/L	<0.0005	0.0011	0.0014	0.0009	0.0006	0.0019	0.0006	0.007 ^H
Lithium	mg/L	0.005	0.005	0.007	0.006	0.009	0.008	0.007	NS
Manganese	mg/L	0.419	0.297	0.294	0.169	0.176	0.059	0.013	NS
Mercury	mg/L					<0.000025		<0.000025	NS
Molybdenum	mg/L	0.002	0.002	0.002	0.002	0.002	0.002	0.002	NS
Nickel	mg/L	0.003	0.003	< 0.003	< 0.003	0.004	< 0.003	0.003	NS
Selenium	mg/L	0.0011	0.001	0.0023	< 0.0005	< 0.0005	<0.0005	0.0007	NS
Silicon	mg/L	0.869	1.18	1.37	1.52		1.75		NS
Silver	mg/L	0.0002	<0.0001	<0.0001	< 0.00005	<0.0001	0.00005	<0.0001	NS
Strontium	mg/L	0.268	0.37	0.562	0.356		0.391		NS
Thallium	mg/L	< 0.0001	<0.0001	< 0.0001	< 0.0005	< 0.0001	<0.0005	<0.0001	NS
Tin	mg/L	< 0.0001	<0.0001	0.0005	< 0.003		< 0.003		NS
Titanium	mg/L	0.001	<0.001	0.001	0.015	0.002	< 0.03	0.001	NS
Uranium	mg/L	0.003	0.003	0.004	0.003	0.003	0.003	0.003	NS
Vanadium	mg/L	< 0.001	<0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	NS
Zinc	mg/L	0.007	0.504	1.09	0.25	0.323	0.32	0.214	NS
Petroleum Hydrocarbons									
Benzene	mg/L	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	0.37
Toluene	mg/L	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003		< 0.0003	0.002
Ethylbenzene	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	0.09
Xylenes	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	0.03
Styrene	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005		< 0.0005	NS
VHw (C ₆ -C ₁₀)	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	NS
EPHw (C ₁₀ -C ₁₉)	mg/L	0.5	<0.1	0.4	0.4	0.2		0.1	NS
LEPHw (C ₁₀ -C ₁₉)**	mg/L	0.3	0.1	0.4	0.4	0.2		0.1	NS
EPHw (C ₁₉ -C ₃₂)	mg/L	0.5	<0.1	0.4	0.2	0.2		<0.1	NS
HEPHw (C ₁₉ -C ₃₂)**	mg/L	0.3	0.1	0.4	0.2	0.2		<0.1	NS
Total Petroleum Hydrocarbons	mg/L	0.1	0.8	0.8	0.6	0.4		0.1	5
Oil & Grease	mg/L	0.8	<0.2	0.9	<0.2	0.4	0.6	0.5	5
Polycyclic Aromatic Hydroca	rbons								
Acenaphthene	μg/L	<0.01	<0.01	<0.01	<0.00001	<0.00001		<0.00001	NS
Acridine	μg/L	<0.05	<0.05	<0.05	<0.00005	<0.00005		<0.00005	NS
Anthracene	μg/L	<0.010	<0.010	<0.010	<0.000010	<0.00000		<0.00001	NS
Benzo[a]anthracene	μg/L	<0.01	<0.010	<0.010	<0.000010	<0.000010		<0.00001	NS
Benzo[a]pyrene	μg/L	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	0.015
Chrysene	μg/L	<0.01	<0.01	<0.01	<0.0007	<0.0007		<0.0007	NS
Fluoranthene		<0.01	<0.01	<0.01	<0.00001	<0.00001		<0.00001	NS NS
Fluorantnene	μg/L	<0.01						<0.00001	NS NS
	μg/L		<0.01	<0.01	<0.00001	<0.00001			NS NS
Naphthalene	μg/L	0.03	<0.01	0.01	<0.00001	<0.00001		<0.00001	
Phenanthrene	μg/L	0.03	<0.01	<0.01	<0.00001	<0.00001		<0.00001	NS
Pyrene	μg/L μg/L	<0.01 <0.04	<0.01 <0.04	<0.01	<0.00001 <0.00004	<0.00001		<0.00001	NS NS
Quinoline			< 11 11/4	< 0.04	<0.00004	< 0.00004		< 0.00004	NS

Notes:

NS - not specified
--- - not analyzed
H - dependent on hardness value

1 - laboratory visual determination
+ Water Licence N3L8-1838 (Inuvialuit Water Board 2016)

Italics - indicates values do not meet applicable guidelines

APPENDIX A Inuvialuit Water Board, Licence N3L8-1838

August 5, 2016

Mr. Joshua Clark
Environmental Analyst
Northwest Territories Power Corporation
4 Capital Drive
Hay River, NT X0E 1G2

Dear Mr. Clark:

Re: N3L8-1838 - Northwest Territories Power Corporation - Remediation and Reclamation of the former Aklavik Power Plant Site, Aklavik, NWT

The Inuvialuit Water Board (IWB) is pleased to attach Water Licence N3L8-1838 granted to the Northwest Territories Power Corporation in accordance with the *Waters Act* for the period commencing August 15, 2016 and expiring December 31, 2019. Included with the attached Licence are the Terms and Conditions applying to the licence and the General Procedures for the Administration of Licences in that portion of the Inuvialuit Settlement Region located in the Northwest Territories. Please review the Licence, the Terms and Conditions and the General Procedures carefully and address any questions to the IWB.

A copy of this Licence and all documentation associated with the application for and issuance of this Licence has been filed in the Public Register. Copies are available at the IWB office and on the IWB website. All inspection reports and other documentation related to the implementation of this Licence will also be filed in the Public Register. All Public Register material will be considered if an amendment to the Licence is requested.

The IWB appreciates the cooperation of Northwest Territories Power Corporation in complying with the Terms and Conditions of the Licence. Should you have questions or concerns, please contact Mardy Semmler, Executive Director at (867) 678-2942.

Sincerely,

Roger Connelly Chairperson

Attachments

Copied to: Philippe Thibert-Leduc, Water Resources Officer - ENR, Inuvik Region

Inuvialuit Water Board, 125 Mackenzie Road - Suite 302,

INUVIALUIT WATER BOARD

Pursuant to the Waters Act and Waters Regulations the Inuvialuit Water Board, hereinafter referred to as the Board, hereby grants to

Northwest Territories Power Corporation

4 Capital Drive Hay River, NT X0E 1G2 (Mailing Address)

hereinafter called the Licensee, the right to deposit waste as provided for under the *Waters Act* and Waters Regulations and subject to and in accordance with the terms and conditions specified in this Licence.

Licence Number	N3L8-1838		
Licence Type	"B"		
Water Management Area	Northwest Territories 03		
Location	68° 13' 6.24" North and 135° 0' 21.24" West Northwest Territories		
Purpose	Waste Disposal		
Description	Miscellaneous Undertaking		
Quantity of Water Not To Be Exceeded	Not Applicable		
Effective Date of Licence	August 15, 2016		
Expiry Date of Licence	December 31, 2019		

This Licence issued and recorded at Inuvik includes and is subject to the annexed conditions.

INUVIALUIT WATER BOARD

Chairperson

Date

Just 5 3

PART A: SCOPE AND DEFINITIONS

1. Scope

- a) This Licence entitles the Licencee to dispose of waste associated with a miscellaneous undertaking for the remediation and reclamation of the former power plant site located in Aklavik within the Inuvialuit Settlement Region (ISR) of the Northwest Territories and with coordinates 68° 13' 6.24" North and 135° 0' 21.24" West.
- b) This Licence is issued subject to the conditions contained herein with respect to the depositing of waste of any type in any waters or in any place under any conditions where such waste or any other waste that results from the deposits of such waste may enter any waters. Whenever new Regulations are made or existing Regulations are amended by the Commissioner in Executive Council under the Waters Act, or other statutes imposing more stringent conditions relating to the quantity or type of waste that may be so deposited or under which any such waste may be so deposited, this Licence shall be deemed, upon promulgation of such Regulations, to be automatically amended to conform with such Regulations.
- c) Compliance with the terms and conditions of this Licence does not absolve the Licensee from responsibility for compliance with the requirements of all applicable federal, territorial and municipal legislation for which any and all applicable licences and permits shall also be obtained by Licensee.
- d) This Licence is issued subject to the conditions contained herein with respect to the deposit of waste as prescribed in Section 11 of the *Waters Act*.

2. Definitions

In this Licence: N3L8-1838

"Act" means the Waters Act;

"Amendment" means a change to any terms and conditions of this Licence as provided for under Section 36 (1)(b) of the Waters Act;

"Analyst" means an analyst designated by the minister under Section 65 (1) of the Act;

"Board" means the Inuvialuit Water Board continued under Section 13 (1) of the Act;

"Closure" means the permanent dismantlement of one or more components of the Project with the intent of making the components incapable of its intended use. This includes the removal of associated equipment and structures used in the construction or maintenance of the Project;

"Construction" means any activities undertaken to construct or build any component of, or associated with, the remediation, reclamation and closure of the Project;

"<u>Discharge</u>" or "<u>Deposit</u>" means the direct or indirect release of any waters or waste to the receiving environment;

"Engineer" means a professional engineer registered with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists and whose principal field of specialization is appropriate to address the components of the undertaking at hand;

"Inspector" means an inspector designated by the minister under Section 65 (1) of the Act;

- "Licence" means this Type B Water Licence N3L8-1838 as issued by the Board in accordance with the *Act*, to the Licensee;
- "Licensee" means the holder of this Licence;
- "Minister" means a duly appointed member of the Executive Council who is responsible for the Act;
- "<u>Modification</u>" means an alteration to a physical work that introduces a new structure or replaces or eliminates an existing structure and does not alter the purpose or function of the work, but does not include an expansion;
- "Monitoring Program" means any program designed to collect data on the quality or quantity of surface water or ground water to assess impacts on the environment of the Project;
- "Project" means the remediation and reclamation activities to be carried out at the former Aklavik power plant site, Aklavik NT as defined in the Water Licence Application and associated documents, which includes the Description of Undertaking;
- "Receiving Environment" means, for the purpose of this Licence, the natural environment that receives any deposit or discharge of waste, including seepage or runoff, from the Project;
- "Reclamation" means the process of restoring the Project area as nearly as possible to the same condition as it was prior to the commencement of the licensed activity;
- "Regulations" means Waters Regulations promulgated pursuant to Section 63 of the Act;
- "Remediation" means the removal, reduction or neutralization of substances, wastes or hazardous materials from a site so as to prevent or minimize any adverse effects on the environment now or in the future:
- "Seepage" includes water or waste that drains through or escapes from any structure designed to contain, treat, withhold, divert or retain water or waste;
- "Spill" means to allow or accidentally release waste from containment vessels or structures into the receiving environment;
- "Surveillance Network Program (SNP)" means a monitoring program established to define environmental sampling and analysis requirements, as detailed in Annex 1 of this Licence, to collect water quality data, and to assess discharge quality, compliance with Licence Terms and Conditions and potential for Licensee activity impact on the environment;
- "<u>Unauthorized Discharge</u>" is a discharge of any water or waste not authorized under this Licence;
- "Waste" means any substance defined as waste as defined by Section 1 of the Act;
- "<u>Water Licence Application</u>" means the Type B Water Licence application received on June 13, 2016 and all supplemental information submitted to the Board;
- "Waters" means any waters as defined by Section 1 of the Act.

PART B: GENERAL CONDITIONS

- 1. The Licensee shall file an Annual Report with the Board no later than January 31 of each year which shall contain the following information on Project related activities during the prior 12 month period January 1 to December 31:
 - a) the monthly and annual quantities in cubic metres (m³) of treated water discharged into the municipal drainage ditch;
 - b) the monthly and annual quantities in cubic metres (m³) of treated contaminated soil at the bio-treatment facility;
 - c) a summary report which includes all data and information generated under the "Surveillance Network Program (SNP)";
 - d) a list and description including location and volumes of all unauthorized discharges and spills, and summaries of all associated remediation activities and follow-up action taken:
 - e) a description of any spill and operational training carried out;
 - the results of any monitoring program undertaken (e.g. temperature, moisture of biotreatment cell);
 - g) a summary of remediation, reclamation and closure activities completed;
 - h) A report complete with summary, conclusion and recommendation. The report will include analytical data and a description of any work anticipated for the next year.
- 2. The Licensee shall comply with the "Surveillance Network Program" annexed to this Licence, and any amendment to the said "Surveillance Network Program" as may be made from time to time, pursuant to the conditions of this Licence.
- 3. The "Surveillance Network Program" and compliance dates specified in the Licence may be modified at the discretion of the Board.
- 4. Any meters, devices or other such methods used for measuring the volumes of waste disposed and discharged shall be installed, operated and maintained by the Licensee to the satisfaction of the inspector.
- 5. The Licensee shall ensure a copy of this Licence is maintained at the site of operations at all times.
- 6. The Licensee shall, at a minimum, implement all of the policies, practices, mitigation measures, recommendations and procedures for the protection of the environment referred to in its application, Description of Undertaking and other documents submitted regarding the remediation and reclamation of the former power plant site in Aklavik. All field operations staff shall be provided with appropriate advice/training on how to implement these policies, practices, mitigation measures, recommendations and procedures.
- 7. The Licensee shall ensure that all contractors and sub-contractors conform to all Terms and Conditions of this Licence.
- 8. The Licensee shall take every reasonable precaution to protect the environment.
- 9. All equipment used during the Project activities shall be mechanically sound and free of leaks.
- 10. In a form acceptable to the Board, the Licensee shall submit two (2) copies of all reports, plans, maps and drawings in printed format accompanied by two (2) electronic copies (CD's).

PART C: CONDITIONS APPLYING TO WASTE DISPOSAL

- 1. The Licensee shall collect precipitation and groundwater seepage from the excavation and bio-treatment facility and pump it to the water treatment system for treatment.
- 2. All treated water discharged to the existing municipal drainage ditch north of the site at "Surveillance Network Program" Station Number 1838-1 shall meet the following effluent quality requirements:

Parameter	Maximum Concentration of any Grab Sample				
Total suspended solids	15 mg/L				
Oil and grease	5 mg/L and no visible sheen				
Benzene	0.37 mg/L				
Toluene	0.002 mg/L				
Ethylbenzene	0.090 mg/L				
Xylene	0.03 mg/L				
Benzo(a)pyrene	0.000015 mg/L				
Total Petroleum					
Hydrocarbons	5 mg/L				
pH	Between 6 and 9				
Total lead	When the hardness is 0 to ≤ 60 mg/L (CaCO₃), the maximum concentration is 0.001 mg/L				
	At hardness >60 to ≤ 180 mg/L the maximum concentration is calculated using equation: e ^{{1.273[ln(hardness)]-4.705]}				
	At hardness >180 mg/L (CaCO ₃), the maximum concentration is 0.007 mg/L, If the hardness is unknown, the maximum concentration is 0.001 mg/L				

- 3. There should be no discharge of floating solids, garbage, grease, free oil, foam or sheen.
- 4. The Licensee shall inform the inspector at least five (5) days prior to initiating discharge of treated water to the municipal ditch system.
- 5. All analyses shall be conducted in accordance with methods prescribed in the current edition of "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, the American Waterworks Association and the Water Environmental Federation or by such other methods as may be approved by an analyst.
- 6. The Licensee shall contain all contaminated soil in such a manner as to minimize the potential for migration of contaminants into any waters to the satisfaction of the inspector.
- 7. Unless authorized by this Licence, the Licensee shall ensure that any wastes associated with this undertaking do not enter any water body.
- 8. Any contaminated soil that is not treated by a bio-treatment facility shall be shipped by the Licensee to a licenced disposal facility or remediated in another manner acceptable to and approved by the Board.
- 9. The Licensee shall dispose of all contaminated water that does not meet effluent criteria at a licenced disposal facility.

- 10. When transported off-site, contaminated soil or contaminated water shall be properly contained so as to prevent spillage or dispersal to the satisfaction of the inspector.
- 11. Where contaminated soils and/or water is to be transported to a licenced disposal facility, the Licensee shall provide to the Board, prior to shipment, copies of agreements or letters between the Licensee and the third parties where the third party has agreed to harbour, transport or dispose of such contaminated water and/or waste.
- 12. In the event that the surveillance station water quality exceeds the effluent standards outlined in this Licence the inspector shall be immediately notified.
- 13. The Licensee shall notify the Board and the inspector, in writing, at least forty-eight (48) hours prior to the shipping of any contaminated soil or contaminated water.

PART D: CONDITIONS APPLYING TO SPILL CONTINGENCY PLANNING

- The Licensee shall submit to the Board for approval, at least five (5) days prior to mobilization, a Spill Contingency Plan in accordance with the "A Guide to the Spill Contingency Planning and Reporting Regulations, updated March 2011" found on the Government of the Northwest Territories, Department of Environment and Natural Resources website: http://www.enr.gov.nt.ca/node/3003.
- 2. The Licensee shall include in Part D, Item 1 additional information on contingency actions in the event discharge criteria are not achieved including information on the proposed storage capacity, contingency storage capacity and whether offsite disposal at an approved waste disposal location has been considered.
- 3. If not approved by the Board, the Spill Contingency Plan shall be revised and resubmitted within fifteen (15) days of receiving notification of the Board's decision.
- 4. The Licensee shall ensure that petroleum products, hazardous material and other wastes associated with the Project do not enter any waters.
- 5. If, during the period of this Licence, an unauthorised discharge of waste occurs, or if such a discharge is foreseeable, the Licensee shall:
 - a) report the incident immediately via the 24 Hour Spill Reporting Line (867) 920-8130;
 - b) report each spill and unauthorized discharge of waste to the inspector at (867) 678-0623 (Cell), within 24 hours; and
 - c) submit to the inspector a detailed report on each occurrence not later than thirty (30) days after initially reporting the event.
- 6. All spills and unauthorized discharges of water or waste shall be cleaned up and the affected area reclaimed to the satisfaction of the inspector.

PART E: CONDITIONS APPLYING TO MODIFICATIONS

- 1. the Licensee may, without written approval from the Board, carry out modifications to the planned undertakings provided that such modifications are consistent with the terms of this Licence and the following requirements are met:
 - a) the Licensee has notified the Board and the inspector in writing of such proposed modifications at least five (5) days prior to beginning the modifications;
 - b) such modifications do not place the Licensee in contravention of either the Licence or the *Act*;

- c) the Board has not, during the five (5) days following notification of the proposed modifications, informed the Licensee that review of the proposal will require more than five (5) days; and
- d) the Board has not rejected the proposed modifications.
- 2. Modifications for which the conditions referred to in Part E, Item 1 have not been met may be carried out only with written approval from the Board.
- 3. The Licensee shall provide to the Board as-built plans and drawings of the modifications signed and stamped by an engineer referred to in this Licence within ninety (90) days of completion of the modifications.

PART F: CONDITIONS APPLYING TO CONSTRUCTION

- 1. The Licensee shall ensure that construction of the bio-treatment facility and water treatment systems are supervised by an engineer.
- 2. The Licensee shall undertake necessary corrective measures to mitigate negative impacts on surface drainage resulting from the Licensee's activities to the satisfaction of the inspector.
- The Licensee shall construct and operate all components of the Project designed to contain, treat, withhold, divert or retain water or waste in accordance with all applicable federal or territorial legislation and industry standards.
- 4. The Licensee shall provide to the Board, at least five (5) days prior to the mobilization, information for the bio-augmentation product intended to be used as part of the remediation (Bio-Reclaim) including how much of this product will be used, where will be stored, and how and when it will be applied.
- A minimum of ten (10) days prior to commencement of construction of the bio-treatment facility and water treatment system, the Licensee shall provide written notification to the inspector.

PART G: CONDITIONS APPLYING TO RECLAMATION, CLOSURE AND MONITORING PLAN

- 1. The Licensee shall, at least five (5) days prior to mobilization, submit a Remediation and Reclamation Action Plan for the Project to the Board for approval.
- A minimum of six (6) months prior to the expiry of the Licence, the Licensee shall provide to the Board a compilation report containing analytical data and effectiveness of the remediation and reclamation undertaken and water treatment system with summary, conclusion and recommendations.

INUVIALUIT WATER BOARD

Chairperson

Olugust 5.2016

Date

ANNEX 1: SURVEILLANCE NETWORK PROGRAM

LICENSEE: Northwest Territories Power Corporation

LICENCE NUMBER: N3L8-1838
EFFECTIVE DATE OF LICENCE: August 15, 2016

EFFECTIVE DATE OF

SURVEILLANCE NETWORK PROGRAM: August 15, 2016

A. Sampling Stations

Station Number	Description of Sampling Stations
1838-1	Prior to discharge of treated water from storage container to municipal drainage ditch north of the site

B. Sampling and Analysis Requirements

1. Effluent at "Surveillance Network Program" shall be sampled and analyzed prior to discharge for the following parameters:

Station Number and description	Parameters
1838-1: Prior to discharge of treated water from	Total suspended solids, Oil and Grease,
storage container to municipal drainage ditch	Benzene, Toluene, Ethylbenzene, Xylene,
north of the site	Benzo(a)pyrene, Total Petroleum
	Hydrocarbon, Hardness, Chloride, Sulphate
	pH, Total Cadmium (Cd), Total Chromium
	(Cr), Total Copper (Cu), Total iron (Fe),
	Total Lead (Pb), Total Mercury (Hg), Total
	Molybdenum (Mo), Total Nickel (Ni), Total
	Zinc (Zn)

- 2. Sample collection requirements such as sampling location, frequency and parameters in accordance of the Surveillance Network Program may be modified by the inspector.
- 3. All sampling, preservation, and analyses shall be conducted in accordance with methods prescribed in the current edition of "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, the American Waterworks Association and the Water Environmental Federation or by such other methods as approved by an analyst.
- 4. All analysis shall be performed in a laboratory as approved by an analyst.
- 5. The Licensee shall, within ten (10) days of Licence issuance, submit to an analyst for approval a Quality Assurance/Quality Control Plan, a copy of the approved plan shall be submitted to the Board.
- 6. The Quality Assurance/Quality Control Plan shall be implemented as approved by an analyst.

C. Flow and Volume Measurement Requirements

1. The Licensee shall measure and record in cubic metres (m³) the daily, monthly and annual quantities of treated water discharged to the municipal drainage ditch.

D. Reports

- 1. The Licensee shall submit the following information in electronic and printed formats as part of the **Annual Report** required in Part B, Item 1 of the Licence:
 - a) all laboratory results and analysis of all data collected during each SNP sampling period for the previous year;
 - b) tabular summaries of all data and information generated under Part B and C of the SNP;
 - c) rationale where samples were not collected from the SNP site;
 - d) Quality Assurance/Quality Control results and interpretations, in accordance with the approved Quality Assurance/Quality Control Plan;
 - e) any interpretive comments and calculations; and
 - f) identification of any anomalies and trends.

INUVIALUIT WATER BOARD

Chairperson

Date S. 2016

SUPPLEMENTAL INFORMATION TO BE SUBMITTED BY LICENSEE AS REQUIRED THROUGH LICENCE CONDITIONS

Licence Report/Others Condition		Timeline for Submission	Required Board Action/Others
Part B, Item 1	Annual Report	Not later than January 31 of each year	Acceptance
Part C, Item 4	Notice of initiating discharge of treated water	At least five (5) days prior to initiating discharge	Inform the inspector
Part C, Item 12 Notice of shipment of any contaminated soil or contaminated water		At least forty-eight (48) hours prior to the shipping	Notify the Board and the inspector in writing
Part D, Item 1	Spill Contingency Plan	At least five (5) days prior to mobilization	Submit to the Board for approval
Part E, Item 1a)	Notice of modification	At least five (5) days prior to beginning the modification	Notify the Board and the inspector
Part E, Item 3	Submission of as-built plans and drawings of the modifications	Within ninety (90) days of completion of the modification	Provide to the Board for acceptance
Part F, Item 4	MSDS of bio-augmentation product	At least five (5) days prior to mobilization	Provide to the Board for acceptance
Part F, Item 5	Notification of construction of the bio-treatment facility and water treatment system	A minimum of ten (10) days prior to commencement	Provide written notification to the inspector
Part G, Item 1	Submission of Remediation and Reclamation Action Plan for the Project	At least five (5) days prior to mobilization	Submit to the Board for approval
Part G, Item 2	Submission of a compilation report	A minimum of six (6) months prior to the expiry of the Licence	Submit to the Board for acceptance
Annex 1: SNP Part B, Item 5	A Quality Assurance/Quality Control	Within ten (10) days of Licence issuance	Submit to an analyst for approval and submit approved plan to the Board

GENERAL PROCEDURES FOR THE ADMINISTRATION OF LICENCES ISSUED UNDER THE WATERS ACT IN THAT PORTION OF THE INUVIALUIT SETTLEMENT REGION LOCATED IN THE NORTHWEST TERRITORIES

- At the time of issuance, a copy of the Licence is placed in the Public Register at the Inuvialuit Water Board (IWB) Office in Inuvik and on the IWB website.
- 2. To enforce the terms and conditions of the Licence, the Minister of Environment and Natural Resources has appointed Inspectors in accordance with Section 65(1) of the Waters Act. The Inspectors coordinate their activities with officials of the Water Resources Division of the Department of Environment and Natural Resources. The Inspector responsible for the Licence is located in the Department of Environment and Natural Resources Office in Inuvik.
- 3. To keep the IWB and members of the public informed of the Licensee's conformity to Licence Terms and Conditions, the Inspectors prepare reports which detail observations on how each requirement of the Licence has been met. These reports are forwarded to the Licensee with a covering letter indicating what action, if any, should be taken. The inspection reports and covering letters are placed in the Public Register, as are any responses received from the Licensee pertaining to the inspection reports. Licensees must respond to all areas of concern outlined in the inspection reports.
- 4. If renewal of the Licence is contemplated it is the responsibility of the Licensee to apply to the IWB for renewal of the Licence. The past performance of the Licensee, new documentation and information, and points raised during a public hearing, if required, will be used to determine the terms and conditions of any Licence renewal. Please note that if the Licence expires and another has not been issued, then water and waste disposal must cease, or the Licensee, will be in contravention of the *Waters Act*. It is suggested that an application for renewal of the Licence be made at least eight months in advance of the Licence expiry date.
- 5. If, for some reason the Licence requires an amendment, a public hearing may be required. You are reminded that applications for amendments should be submitted as soon as possible to provide the IWB with ample time to go through the amendment process. The process may take up to six (6) months or more depending on the scope of the amendment requested.

....2

6. Specific clauses of your Licence make reference to the IWB, Analyst or Inspector. The contact person, address, phone and fax number of each is:

BOARD: Executive Director

Inuvialuit Water Board

P.O. Box 2531

INUVIK, NT X0E 0T0

Phone No: (867) 678-2942 Fax No: (867) 678-2943

ANALYST: Analyst

Taiga Environmental Laboratory
Environment and Natural Resources

Government of the NWT

P.O. Box 1320

YELLOWKNIFE, NT X1A 2L9

Phone No: (867) 765-6644 Fax No: (867) 920-8740

INSPECTOR: Inspector

Environment and Natural Resources Government of the Northwest Territories

P.O. Box 2749

INUVIK, NT X0E 0T0

Phone No: (867) 678-6676 Fax No: (867) 678-6699

APPENDIX B Quality Assurance/Quality Control Plan

QUALITY ASSURANCE/QUALITY CONTROL PLAN

NORTHWEST TERRITORIES POWER CORPORATION FORMER AKLAVIK POWER PLANT WATER BOARD LICENSE N3L8-1838

1 INTRODUCTION

Data received from analytical laboratories will be used to assess water quality relative to discharge limits. Only laboratories certified by the Canadian Association for Laboratory Accreditation Inc. (CALA) will be used. Our primary laboratory will be ALS Environmental. Regardless of the laboratory, to verify that data obtained is of appropriate quality, Matrix Solutions Inc. will undertake various quality assurance/quality control (QA/QC) measures as outlined in this document.

2 SAMPLING

The QA/QC process begins at the time of sampling.

2.1 Water Samples

- 1. Personnel collecting water samples will don a fresh pair of nitrile gloves before taking each sample.
- 2. Water samples will be collected into clean bottles supplied by the analytical laboratory. Each analysis requires a specific type of bottle and certain samples must be preserved onsite before sealing the bottles. Typically analytical laboratories require the following:
 - a. For each routine analysis (including pH, electrical conductivity, chloride, sulphate, hardness) and hardness and total suspended solids, a clean 500 mL plastic bottle shall be filled to within 5 to 15 mm of the top, then capped.
 - b. For metal analyses, a clean 500 mL plastic bottle containing nitric acid preservative shall be filled to within 5 to 15 mm of the top, and then capped. Mercury analyses require a 40 mL vial with hydrochloric acid preservative.
 - c. Three 40 mL glass vials shall be used for the benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or petroleum hydrocarbon (PHC) fraction 1 (F1; C_6 - C_{10} , excluding BTEX) analyses. The vials shall be filled until a positive meniscus is formed at the lip of each vial, and then capped.
 - d. For total petroleum hydrocarbon analysis, two 60 mL amber vials shall be filled to within 5 to 15 mm of the top, then capped.
 - e. For benzo[a]pyrene analysis, one laboratory-cleaned, 1,000 mL amber glass bottle preserved with sodium bisulfate shall be used. Bottles are to be filled to within 5 to 15 mm of the top, and then capped.

- f. For oil and grease analysis, one laboratory-cleaned, 1,000 mL amber glass bottle preserved with hydrochloric acid shall be filled to within 5 to 15 mm of the top, and then capped.
- 3. All samples shall be labelled with a unique sample number. Sample codes usually follow the form XSITEYYMMDDNUM, where XSITE is a five-digit project code, YYMMDD is the sampling date, and NUM is a three-digit number indicating the sample number for that date. For example, a sample labelled 21784160201001 was the first sample collected at Site 21784 on February 1, 2016. The sample numbers are recorded and cross-referenced with the sample location in Matrix's log book.
- 4. Samples will be submitted to ALS Environmental in Edmonton (or an alternate CALA-certified laboratory) for analysis. An appropriate chain-of-custody form indicating sample numbers shall be signed and submitted to the laboratory. Copies of the signed forms are placed in Matrix's project files and are available upon request. The samples will be shipped with ice or cold packs as required to ensure that they are received within acceptable temperature ranges for the required analyses.

2.2 Quality Control Samples

The QA/QC verification may include submission of blind samples, duplicate samples, field blanks, equipment blanks, trip blanks, or trip reference standards, and always includes review of the laboratory's QA report. And at locations subjected to repeated sampling, historical data comparisons are done as a further measure of QA/QC to assess whether results are within previous ranges.

2.2.1 Blind Samples

Samples collected by Matrix are assigned a unique sample number and are submitted to the laboratory as a blind sample using this number for identification. This ensures that the sample location cannot be identified by the laboratory and are truly blind. The sample number follows Matrix's sample naming protocol of SITE#YYMMDDXXX, where SITE# is a five-digit project code, YYMMDD is the sampling date, and XXX is a three-digit number indicating the sample number for that date. All samples, including QC samples, are given these blind sample numbers.

2.2.2 Duplicate Samples

Results obtained from duplicate sample analysis are used to monitor the reproducibility (precision) and the expected variability of the sampling method and laboratory analysis. Two samples are collected from the same field location using the same equipment and procedures at the same time. The duplicate samples are submitted as blind samples to the laboratory and are typically not given sequential unique sample numbers. A minimum of 10% duplicate samples are collected and analyzed per analytical parameter.

2.2.3 Field Blanks

Results obtained from the analysis of field blanks are used to measure incidental or accidental sample contamination (i.e., artifacts or analytes detected by analysis but not present in the samples). One field blank should be collected for every day of sampling. The field blank does not need to be analyzed for

every sampling trip, but can be analyzed should analytical data for the actual samples appear anomalous.

Groundwater and surface water field blanks submitted to the laboratory for analysis of organic analytes are prepared using clean water, preferably laboratory-supplied, organic-free de-ionized water stored in laboratory-supplied glass containers. Groundwater and surface water field blanks submitted to the laboratory for analysis of inorganic analytes are prepared using clean water, preferably laboratory-supplied, metal-free de-ionized water stored in laboratory-supplied high-density polyethylene (HDPE) containers. Field blanks for groundwater and surface water are collected and handled in accordance with Matrix's sampling protocols near environments representative of those encountered during the sampling program and submitted to the laboratory as a blind sample that is part of the sampling program.

2.2.4 Equipment Blanks

Results obtained from the analysis of equipment blanks are used to determine the total field and laboratory sources of contamination. Equipment blanks (rinsate blanks) are prepared by first decontaminating equipment and then rinsing the equipment using analyte-free media. Laboratory-supplied, organic-free (or metal-free) de-ionized water is then used to rinse the equipment and the water is collected. The equipment blank is submitted as a blind sample that is part of the sampling program. The equipment blank does not need to be analyzed every time, but can be analyzed should analytical data for the actual samples appear anomalous.

2.2.5 Trip Blanks

Results obtained from the analysis of trip blanks are used to determine whether or not cross-contamination of volatile organic compound (VOCs) (or other contaminants) have been introduced to the actual samples during sample transportation. A trip blank is a sample of laboratory-supplied, organic-free de-ionized water that is transported to and from the laboratory along with the actual samples. The trip blank remains sealed and is not exposed to the sampling environment. The sample is submitted to the laboratory as a blind sample that is part of the sampling program. The trip blank does not need to be analyzed every time, but can be analyzed should analytical data for the actual samples appear anomalous.

2.2.6 Trip Reference Standards

Results obtained from the trip reference standard are used to measure both contamination and analyte loss that might arise during handling, transport, or storage of the samples as well as the accuracy of the laboratory method. The laboratory prepares the trip reference standard by adding a known concentration of the analyte parameter (usually VOCs such as BTEX) to laboratory-supplied, organic-free de-ionized water. The laboratory sends a trip reference letter with the sample that provides the concentration of each compound included in the standard.

The sample is transported to the field and remains sealed. The concentrations of each compound in the standard should be of similar concentration levels to what is expected in the actual samples. Concentrations of greater than 5 times the expected sample concentration may mask interferences and lead to over-optimistic estimates of analyte recovery. The trip reference standard is submitted as a blind sample that is part of the sampling program and analyzed using standard methods.

3 RESULTS EVALUATION

Results of laboratory analyses are received electronically and downloaded into Matrix's database management system without the need for manual entry. This eliminates transcription errors. Matrix's database management system is used to construct the data tables and figures provided in reports, again eliminating transcription errors.

To verify that data obtained is of appropriate quality, Matrix's Environmental Data Services (EDS) group performs a number of quality assurance/quality control (QA/QC) verifications. A description of these measures and subsequent criteria for evaluation are detailed in this section (B.C. MoE 2013; B.C. WLAP 2003). The results of the quality control sample analyses and the review of the laboratory QC report are reported on a *Data Quality Checklist*, prepared for each sampling event and summarized on project-specific QC sample results tables.

3.1 Duplicate Sample Results

The criteria for evaluation of the field duplicate samples take into account the laboratory detection limit (DL), the reliable detection limit (RDL; 5 times the DL), the absolute difference between the duplicate values, and the relative percent difference (RPD) calculated for each set of duplicate parameter analyses (Zeiner 1994; B.C. WAP 2003). As well, the criteria take into consideration the sample matrix and the concentration of the specific parameter (Zeiner 1994). Zeiner considers a positive result as an analyte concentration greater than the DL. Evaluation methods regarding the data scenarios are described below.

For each set of duplicate parameter results:

Scenario 1 – Two non-detectable results (organic and inorganic parameters)

The duplicate samples cannot be assessed using absolute difference or RPD; however, the duplicate samples show acceptable precision (both duplicate samples displayed no results above the DL).

Scenario 2a – One positive result and one non-detectable result (inorganic parameters)

Assess the two results by taking the absolute difference between the positive result and the DL.

- if the absolute difference is ≤ DL, then the duplicate samples show acceptable precision
- if the absolute difference is > DL, then the duplicate sample results are considered an estimate

Scenario 2b – One positive result and one non-detectable result (organic parameters)

Assess the two results by taking the absolute difference between the positive result and 0.5 x DL.

- if the absolute difference is ≤ DL, then the duplicate samples show acceptable precision
- if the absolute difference is > DL, then the duplicate sample results are considered an estimate

Scenario 3 – Two positive results with at least one result < RDL (organic and inorganic)

- if the absolute difference is ≤ DL, then the duplicate samples show acceptable precision
- if the absolute difference is > DL, then the duplicate sample results are considered an estimate

Scenario 4 – Two positive results both > RDL (organic and inorganic)

- If the RPD ≤ 20%, then the results are considered acceptable.
- If the RPD > 20%, then the results are considered an estimate.
 - A RPD > 20% indicates a possible problem while a RPD > 50% indicates a definite problem.
 Common problems associated with a large RPD are either contamination or lack of sample homogeneity.
- The RPD is calculated as follows (APHA 1998):

$$RPD = \frac{Absolute \ difference \ between \ the \ two \ duplicate \ results}{Mean \ of \ the \ two \ duplicate \ results} \times 100$$

3.2 Blank Sample Results

Upon receipt of the results, the EDS group checks the concentrations of the analytes of interest in field, trip, and equipment blanks. If analyte concentrations in the blanks are greater than ten times the DL and the sample result is less than five times the DL, there may be a problem with the laboratory data. The cause of the problem and the effect on the data quality will be investigated.

3.3 Trip Reference Standard Results

Upon receipt of the results, the EDS group compares the measured concentration of the parameter of interest to the known concentration; the percent recovery is calculated as follows:

% Recovery =
$$\frac{known\ concentration\ of\ spiked\ parameter}{measured\ concentration\ of\ spiked\ parameter} \times 100$$

Acceptable laboratory accuracy is indicated by a percent recovery between 70% and 130%. If the percent recoveries do not meet the criteria, the cause of the problem and the effect on the data quality will be investigated.

3.4 Laboratory Quality Control Evaluation

The approved environmental laboratories used by Matrix have QC measures in place that ensure the data released is as accurate and precise as possible. These measures include the use of laboratory blank samples, duplicate samples, spiked samples, and measuring surrogate recoveries.

Upon receipt of the analytical report, the EDS group checks to ensure that the data has passed the laboratory's QC measures for blanks, duplicates, spikes, and surrogate recoveries. If a discrepancy is found, the laboratory is contacted and asked to explain the discrepancy and, if necessary, the samples in question are reanalyzed by the laboratory, or all of the samples are reanalyzed for the parameter of concern. The EDS group also reviews holding time, DLs, and ion balances.

3.4.1 Hold Time

Hold time refers to the maximum amount of time permitted between when a sample is collected and when the sample is analyzed. Specific sample containers, storage temperature, preservatives, and

extraction methods can extend sample hold times (BCLM 2013). The EDS group checks to ensure that samples were analyzed or extracted within the holding time appropriate for that parameter. Analysis and extraction dates and times are recorded on the analytical reports issued by the laboratory. If the hold times exceed the recommended hold time, the reason for the hold time exceedance and the effect on the data quality will be investigated.

3.4.2 Detection Limits

The EDS group checks to ensure that the DLs reported by the laboratory adequately meet the applicable regulatory assessment guidelines defined for the project. DLs for a parameter should not be greater than the applicable regulatory guideline value for that parameter. If any DLs are found to be higher than the applicable regulatory guideline, a second analysis may be requested at the discretion of the project manager.

3.4.3 Ion Balance

The EDS group evaluates any ion balance values reported by the laboratory to ensure that the ratio of anions to cations is acceptable. Ion balances between 90% and 110% for water and between 80% and 120% for soil are indicative of acceptable laboratory data quality. For soil samples, the cation/electrical conductivity (EC) ratio is also calculated on samples with EC > 2 dS/m and ratios between 9 and 15 are considered acceptable. If the ion balances do not fall within the acceptable ranges, the cause of the failure and the effect on the data quality will be investigated.

3.5 Historical Comparison of Data

The EDS group compares laboratory results from a sample point to historical parameter concentrations, where available, particularly for surface water and groundwater monitoring programs. Significant changes from historical levels are identified and verification of the data obtained from the laboratory (rechecks) are usually requested and based on the result of this verification, the project manager may request that a new sample be collected.

4 REFERENCES

- American Public Health Association (APHA). 1998. *Standard Methods for the Examination of Water and Wastewater*. 20th Edition. American Public Health Association. Washington, D.C.
- British Columbia Ministry of the Environment (B.C. MoE). 2013. "Section A: Laboratory Quality Assurance/Quality Control." In: *BC Environmental Labratory Manual*. Environmental Monitoring and Reporting Section.
- British Columbia Ministry of Water, Land and Air Protection (B.C. WLAP). 2003. *British Columbia Field Sampling Manual For Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples*. GE45.S25B74 1996. ISBN 0-7726-2741-X. January 2003. 383 pp.
- Zeiner S.T. 1994. "Realistic criteria for the evaluation of field duplicate sample results." Reprinted from the proceedings of Superfund XV November 29-December 1, 1994, Washington, D.C.

APPENDIX C Remediation and Reclamation Action Plan

REMEDIATION AND RECLAMATION ACTION PLANFORMER AKLAVIK POWER PLANT 68° 13′ 6.24″ NORTH AND 135° 0′ 21.24″ WEST AKLAVIK, NORTHWEST TERRITORIES

Report Prepared for:

NORTHWEST TERRITORIES POWER CORPORATION

Prepared by:

MATRIX SOLUTIONS INC.

June 2017 Edmonton, Alberta

Suite 142, 6325 Gateway Blvd. Edmonton, AB, Canada T6H 5H6 T 780.490.6830 F 780.465.2973 www.matrix-solutions.com

June 26, 2017

Former Aklavik Power Plant

Water Board Licence No. N3L8-1838

INTRODUCTION

The Northwest Territories Power Corporation (NTPC) has retained Matrix Solutions Inc. to test a method of soil remediation at its former electricity generation plant in Aklavik, Northwest Territories. This bio-augmentation trial is licensed by the Inuvialuit Water Board under License No. N3L8-1838. Part G, Item 1 of this license requires NTPC to submit a Remediation and Reclamation Action Plan for the Project to the Board for approval at least 5 days prior to mobilization. Mobilization to construct the treatment cell is scheduled for July 5, 2017.

Although the results of the remediation trial will not be known until it is finished in 2018 or 2019, Matrix has prepared this plan to address the licence requirement to submit a Remediation and Reclamation Action Plan before mobilizing to the site. It is expected that the plan will need to be updated once the results of the bio-augmentation trial have been evaluated, since the outcome of the treatment trial will determine subsequent remediation options for the site as a whole.

SITE DESCRIPTION

Location:	The site is a former power station situated in the hamlet of Aklavik, Northwest Territories, located on the Peel Channel of the west side of Mackenzie River Delta (Figure 1), approximately 100 km south of the Beaufort Sea and 55 km west of Inuvik. The site legal description is Lots 58, 58A, and 58B, LTO 33, CLSR 40355.
Land Use:	The current land use is industrial. Surrounding land uses are residential to the north and commercial to the west. There is public land located south of the site (Anglican Church cemetery). Areas to the east are undeveloped.
Physical Features:	The site topography is flat, sloping gently to the southeast. Peel Channel bends around the south side of Aklavik. The distance between the channel shores to the east and the south of the site is approximately 250 m. A layer of gravel and clay fill covers most of the site, underlain by the original topsoil and clayey silt (Figure 2); the depth to permafrost is approximately 1.2 to 2.1 m below ground surface (bgs).

BACKGROUND

The site historically had a power plant that used bunker C and fuel oil (diesel) to generate electricity. Former infrastructure included the powerhouse, an aboveground diesel storage tank (AST), and an office. Remaining infrastructure includes a concrete dock used to support the original generator, a smaller concrete pad, and a chain-link fence around the perimeter.

Contaminants of concern onsite are petroleum hydrocarbons (PHCs), polycyclic aromatic hydrocarbons (PAHs), and

The site has been the subject of four environmental site assessments (ESA; Figure 3):

 A July 1997 Phase II ESA (EBA 1998) included digging 16 test pits; analytical results suggested that most of the soil impacts were downslope (to the south of) of the former AST. This observation was based on the highest total PHC concentrations at the south property line, including 96,000 parts per million (ppm) at a

June 26, 2017

Former Aklavik Power Plant

Water Board Licence No. N3L8-1838

- depth of 0.6 m bgs from a test pit south of the former AST, and 39,000 ppm at a depth of 0.3 m bgs from a test pit located between the former AST and the concrete dock.
- A groundwater assessment in 2002 (Golder 2002) included digging five test pits (to a depth between 1.8 and 2.2 m bgs) and installing five groundwater monitoring wells (Golder 2002). The well farthest to the north had no detectable PHCs, while other wells on the site had benzene, toluene, ethylbenzene, and PHC fraction 2 (F2; C_{>10}-C₁₆) concentrations higher than the applicable Canadian Council of Ministers of the Environment guidelines.
- A Phase III ESA in June 2003 to July 2003 (Biogenie 2004) included soil sampling from an additional 22 test pits and 8 manual boreholes offsite in the cemetery, plus groundwater sampling of the 5 wells (Biogenie 2004). The assessment concluded that an estimated 2,720 m³ of hydrocarbon-impacted soils was present on NTPC's property at an average depth of 1.8 m bgs. Limited data suggested that site soils were also impacted with PAHs higher than the *Environmental Guidelines for Contaminated Site Remediation* (NWT ENR 2003) for residential/parkland land use.
- In August 2015, Matrix collected soil samples using hand augers to a depth of 1 m. The investigation found levels of hydrocarbons and metals above the *Environmental Guidelines for Contaminated Site Remediation* guidelines (NWT ENR 2003). Impacts in the south portion of the site were consistent with the historical location of the generator and included PHC fraction 3 (C_{>16}-C₃₄; 3,280 to 42,300 mg/kg) and fraction 4 (C_{>34}; 7,710 to 25,800 mg/kg) and metals (copper, nickel, and zinc) consistent with historical fuel spillage and engine wear. Impacts in the north section of the site were characterized by elevated levels of F2 (1,660 to 22,700 mg/kg) indicative of diesel.
- Arsenic levels exceeded the guidelines at multiple locations; this is attributable to imported gravel from a nearby quarry and is not considered a contaminant of concern.

PREVIOUS AND CURRENT REMEDIATION ACTIVITY

2003:	 Remediation activities were undertaken following a June 2003 release of heating oil associated with the former power plant site office (Golder 2003).
2004:	Offsite remediation within the cemetery area was completed in 2004 (Biogenie 2005).
2007:	 The excavation of additional offsite soils was completed in 2007 (Biogenie 2008). Attempts were made to remediate the excavated soils within a biopile on a treatment pad, but remediation criteria were not met after one season of treatment.
2017:	 Beginning in July 2017, Matrix will construct a treatment cell (Figure 4) to test bio-augmentation using a proprietary BioReclaimTM solution. Actively growing, specialized microbial strains of the <i>Pseudomonas</i> genus in the augmentation solution will be applied to soils within the treatment cell to degrade PHCs. <i>Pseudomonas</i> bacteria are known to be effective at degrading PHCs even in cold temperatures, and they produce a surfactant molecule (rhamnolipid) that enhances bio-augmentation. Construction, operation, and monitoring of this treatment cell are the activities licensed under the Inuvialuit Water Board under Licence No. N3L8-1838.

June 26, 2017

Former Aklavik Power Plant

Water Board Licence No. N3L8-1838

REMEDIATION AND RECLAMATION ACTION PLAN

The action plan for this site is as outlined below. Since the method used for soil remediation will be contingent on whether the bio-augmentation trial shows success at the Aklavik site, this plan will need to be updated once results of the trial have been evaluated in 2018 or 2019.

1. Remediate the soil

- If bio-augmentation works, the treatment cell will continue to be used to process soils. Confirmatory sampling will be conducted in conjunction with soil treatment to affirm when no further impacted soils remain for treatment, and to affirm when sufficient treatment has been done in the treatment cell. As treated soil tests clean, it will be used to backfill excavations. Based on the size of the treatment cell and the amount of impacted soil estimated to require treatment, soil remediation by this method may take 5 or more years to complete.
- If bio-augmentation does not work sufficiently well, NTPC will assess other remediation options such as excavation and replacement, thermal desorption, and/or in situ chemical oxidation. The soil remediation method that provides the best combination of technical feasibility, cost effectiveness, suitability for site conditions, safety, and other concerns will be selected and proposed to the Inuvialuit Water Board. The timeline for remediation will depend on the technology ultimately selected. Regardless of the chosen method, confirmatory sampling will be conducted to establish when remediation is complete.

2. Demolish concrete dock and slabs

- While soil remediation is going on, NTPC will evaluate potential opportunities to reuse or recycle the
 concrete dock and slab (e.g., as excavation backfill, granular material, or riprap). The acceptable level of
 residual PHCs within the concrete and the maximum allowable size of concrete pieces will be determined
 and evaluated. If reuse/recycling is not deemed allowable or feasible, disposal options will be identified.
- The concrete will be broken into smaller pieces to enable removal for reuse/recycling or disposal, as appropriate. Since the dock has proven resistant to breaking with traditional excavating equipment, a qualified explosives contractor may be approached to assist with this task.
- The concrete pieces will be loaded and transported to the chosen reuse/recycling or disposal location.

3. Remove site infrastructure

 Soil treatment cell components (e.g., polyethylene liner, thermistors, wiring), the water treatment system (e.g., tanks, pumps, and piping), the perimeter chain-link fence, and any other infrastructure remaining onsite will be dismantled and reused/disposed elsewhere as appropriate.

4. Reclaim the surface

- Remediation activities will disrupt the ground surface. As work progresses, spot grading will be done to
 provide drainage and maintain a trafficable surface. Once soil remediation is complete and infrastructure
 is removed, any areas requiring further grading will be addressed.
- If required to support future commercial/industrial use, gravel will be imported and spread upon the graded surface.

June 26, 2017

Former Aklavik Power Plant

Water Board Licence No. N3L8-1838

CLOSURE

This Remediation and Reclamation Action Plan has been prepared to comply with Part G, Item 1 of Inuvialuit Water Board Licence No. N3L8-1838. Since the licensed project is one that will test a bio-augmentation method of soil remediation, the outcome of the trial will determine subsequent remediation of the site as a whole. Consequently, the foregoing plan will warrant review and updating once the results of the bio-augmentation trial have been evaluated in 2018 or 2019.

If you have any questions or concerns regarding this plan, please contact Margaret Allan at 780.989.8343.

MATRIX SOLUTIONS INC.

Reviewed by

Margaret Allan, M.Eng., P.Eng., P.Geo., EP(CEA)

Scott McIntyre, B.Sc., E.I.T. Remediation Engineer

Principal Engineer

MA/rsm

Attachments: Figure 1. Site Location Map

Figure 2. North-South Cross-section A-A'

Figure 3. Site Plan Showing Historical Information

Figure 4. Plan View of Biotreatment Cell and Water Treatment

DISCLAIMER

We certify that this letter report is accurate and complete and accords with the information available during the site investigation. Information obtained during the site investigation or provided by third parties is believed to be accurate but is not guaranteed. We have exercised reasonable skill, care, and diligence in assessing the information obtained during the preparation of this letter report.

This letter report was prepared for the Northwest Territories Power Corporation. The letter report may not be relied upon by any other person or entity without our written consent and that of the Northwest Territories Power Corporation. Any uses of this letter report by a third party, or any reliance on decisions made based on it, are the responsibility of that party. We are not responsible for damages or injuries incurred by any third party, as a result of decisions made or actions taken based on this letter report.

June 26, 2017

Former Aklavik Power Plant

Water Board Licence No. N3L8-1838

REFERENCES

- Biogenie S.R.D.C. Inc. (Biogenie). 2008. *Final Remediation, Aklavik NTPC Power Plant, Aklavik, Northwest Territories*. Report prepared for Northwest Territories Power Corporation. March 2008.
- Biogenie S.R.D.C. Inc. (Biogenie). 2005. *Site Remediation, Anglican Cemetery, Aklavik, Northwest Territories*. Report prepared for Northwest Territories Power Corporation. Quebec, Quebec. January 2005.
- Biogenie S.R.D.C. Inc. (Biogenie). 2004. *Phase III Environmental Site Assessment, NTPC Powerplant, Aklavik, Northwest Territories*. Report prepared for Northwest Territories Power Corporation. Sainte Foy, Quebec. February 2004.
- EBA Engineering Consultants Ltd. (EBA). 1998. *Phase II Environmental Site Assessment, NTPC Power Plant, Aklavik, NT*. Report prepared for Northwest Territories Power Corporation. April 1998.
- Golder Associates Ltd. (Golder). 2003. *Corporate Generating Site Aklavik, NT*. Prepared for Northwest Territories Power Corporation. October 2003.
- Golder Associates Ltd. (Golder). 2002. *Groundwater Monitoring Program Aklavik*. Prepared for Northwest Territories Power Corporation. October 2002.
- Northwest Territories Environment and Natural Resources (NWT ENR). 2003. *Environmental Guideline for Contaminated Site Remediation*. November 2003.

 http://mvlwb.com/sites/default/files/documents/Environmental-Guideline-for-Contaminated-Site-Remediation.pdf

April 11, 2018

Mr. Joshua Clark **Environmental Analyst** Northwest Territories Power Corporation 4 Capital Drive Hay River, NT X0E 1G2

Dear Mr. Clark:

Re: N3L8-1838 – Northwest Territories Power Corporation, Remediation and Reclamation - Aklavik former power plant site - 2017 Annual Report

The Inuvialuit Water Board (IWB) acknowledges receipt on February 27, 2018 of the additional information requested for the 2017 Annual Report submitted by the Matrix Solutions Inc., on behalf of the Northwest Territories Power Corporation. With the submission of the additional information, annual reporting requirements under Water All documents, including IWB related Licence N3L8-1838 are now satisfied. correspondence will be placed on the Public Register.

Should you have any questions or concerns regarding these matters, please do not hesitate to contact me at 867-678-8610 or adhikarib@inuvwb.ca or Mardy Semmler, Executive Director, at 867-678-8609 or semmlerm@inuvwb.ca.

Sincerely,

Bijaya Adhikari, PhD

Adlineur

Science & Regulatory Coordinator

cc: Lloyd Gruben, Water Resources Officer - ENR Inuvik

www.inuvwb.ca

APPENDIX D Laboratory Reports

CLIENT NAME: MATRIX SOLUTIONS INC. SUITE 600, 214 11 AVE SW CALGARY, AB T2R0K1 (403) 237-0606

ATTENTION TO: Accounts Payable

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

TRACE ORGANICS REVIEWED BY: Elena Gorobets, Report Writer

WATER ANALYSIS REVIEWED BY: Jennifer Liu, Analyst, Qualified Person

DATE REPORTED: Jun 29, 2018

PAGES (INCLUDING COVER): 50

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 50

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354938 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018						
SAMPLE DESCRIPTION: 21784180	619001					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.024	0.005	Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.36	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	1.17	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	360	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	360	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	7560	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	10900	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	581	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018
Moisture Content	%	16	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	98	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	65	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	120	50-150	Jun 26, 2018	SO	Jun 24, 2018
COMMENTS.						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Elena

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 2 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354939 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE TYPE: Soil DATE REPORTED: Jun 29, 2018

TE SAMI EED. 3411 19, 2010			D/-	TE KEI OKTED. Juli A	23, 2010	
SAMPLE DESCRIPTION: 21784180	619002					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.041	0.005	Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.78	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	1.88	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	700	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	690	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	8500	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	11200	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	528	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	so	Jun 24, 2018
Moisture Content	%	15	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	100	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	96	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	120	50-150	Jun 26, 2018	SO	Jun 24, 2018
COMMENTS						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Elena

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 3 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354940 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2018

DATE SAMPLED: Jun 19, 2018	DATE	: REPORTED: Jun 2	29, 2018			
SAMPLE DESCRIPTION: 21784180	619003					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.019	0.005	Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.34	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	1.55	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	670	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	670	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	7580	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	10300	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	546	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018
Moisture Content	%	15	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	96	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	92	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	113	50-150	Jun 26, 2018	SO	Jun 24, 2018
COMMENTS.						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Gorobets

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354941 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2018

DATE SAMPLED: Jun 19, 2018	: REPORTED: Jun 2	29, 2018				
SAMPLE DESCRIPTION: 21784180	619004					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.027	0.005	Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.60	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	1.56	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	680	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	680	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	7170	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	9710	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	468	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018
Moisture Content	%	16	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	96	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	89	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	113	50-150	Jun 26, 2018	SO	Jun 24, 2018
COMMENTS.						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Elena

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 5 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354942 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2019

DATE SAMPLED: Jun 19, 2018	DATE	E REPORTED: Jun 2	29, 2018			
SAMPLE DESCRIPTION: 21784180	619005					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.012	0.005	Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.19	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	0.51	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	470	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	470	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	7350	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	10200	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	482	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018
Moisture Content	%	19	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	95	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	65	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	114	50-150	Jun 26, 2018	SO	Jun 24, 2018
COMMENTS						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 6 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354943 DATE RECEIVED: Jun 23, 2018 DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

SAMPLE DESCRIPTION: 21784180	619006					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.031	0.005	5 Jun 25, 2018	ML	Jun 24, 2018
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene	mg/kg	0.65	0.01	Jun 25, 2018	ML	Jun 24, 2018
Xylenes	mg/kg	1.56	0.05	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1)	mg/kg	760	10	Jun 25, 2018	ML	Jun 24, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	760	10	Jun 25, 2018	ML	Jun 24, 2018
C10 - C16 (F2)	mg/kg	6270	10	Jun 26, 2018	SO	Jun 24, 2018
C16 - C34 (F3)	mg/kg	8420	10	Jun 26, 2018	SO	Jun 24, 2018
C34 - C50 (F4)	mg/kg	533	10	Jun 26, 2018	SO	Jun 24, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018
Moisture Content	%	16	1	Jun 26, 2018	SO	Jun 24, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	96	50-150	Jun 25, 2018	ML	Jun 24, 2018
Ethylbenzene-d10 (BTEX)	%	94	50-150	Jun 25, 2018	ML	Jun 24, 2018
o-Terphenyl (F2-F4)	%	100	50-150	Jun 26, 2018	SO	Jun 24, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified Bv:

Sorobeta

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 7 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354944 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2018

DATE SAMPLED: Jun 19, 2018	DATE REPORTED: Jun 29, 2018						
SAMPLE DESCRIPTION: 21784180	619007						
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
Benzene	mg/kg	0.011	0.005	Jun 25, 2018	ML	Jun 24, 2018	
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene	mg/kg	0.18	0.01	Jun 25, 2018	ML	Jun 24, 2018	
Xylenes	mg/kg	0.55	0.05	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1)	mg/kg	600	10	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1 minus BTEX)	mg/kg	600	10	Jun 25, 2018	ML	Jun 24, 2018	
C10 - C16 (F2)	mg/kg	7300	10	Jun 26, 2018	SO	Jun 24, 2018	
C16 - C34 (F3)	mg/kg	10000	10	Jun 26, 2018	SO	Jun 24, 2018	
C34 - C50 (F4)	mg/kg	491	10	Jun 26, 2018	SO	Jun 24, 2018	
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018	
Moisture Content	%	15	1	Jun 26, 2018	so	Jun 24, 2018	
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED	
Toluene-d8 (BTEX)	%	102	50-150	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene-d10 (BTEX)	%	74	50-150	Jun 25, 2018	ML	Jun 24, 2018	
o-Terphenyl (F2-F4)	%	111	50-150	Jun 26, 2018	SO	Jun 24, 2018	
COMMENTO:							

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Elena

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 8 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354945 DATE RECEIVED: Jun 23, 2018

DATE SAMPLE D: Jun 10, 2019

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018							
SAMPLE DESCRIPTION: 21784180	619008						
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
Benzene	mg/kg	0.032	0.005	Jun 25, 2018	ML	Jun 24, 2018	
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene	mg/kg	0.49	0.01	Jun 25, 2018	ML	Jun 24, 2018	
Xylenes	mg/kg	1.45	0.05	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1)	mg/kg	760	10	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1 minus BTEX)	mg/kg	760	10	Jun 25, 2018	ML	Jun 24, 2018	
C10 - C16 (F2)	mg/kg	6210	10	Jun 26, 2018	SO	Jun 24, 2018	
C16 - C34 (F3)	mg/kg	8280	10	Jun 26, 2018	SO	Jun 24, 2018	
C34 - C50 (F4)	mg/kg	508	10	Jun 26, 2018	SO	Jun 24, 2018	
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018	
Moisture Content	%	17	1	Jun 26, 2018	SO	Jun 24, 2018	
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED	
Toluene-d8 (BTEX)	%	100	50-150	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene-d10 (BTEX)	%	94	50-150	Jun 25, 2018	ML	Jun 24, 2018	
o-Terphenyl (F2-F4)	%	102	50-150	Jun 26, 2018	SO	Jun 24, 2018	
COMMENTS.							

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 9 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354946 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018	DATE REPORTED: Jun 29, 2018						
SAMPLE DESCRIPTION: 21784180	619009						
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
Benzene	mg/kg	0.014	0.005	Jun 25, 2018	ML	Jun 24, 2018	
Toluene	mg/kg	< 0.05	0.05	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene	mg/kg	0.15	0.01	Jun 25, 2018	ML	Jun 24, 2018	
Xylenes	mg/kg	0.45	0.05	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1)	mg/kg	480	10	Jun 25, 2018	ML	Jun 24, 2018	
C6 - C10 (F1 minus BTEX)	mg/kg	480	10	Jun 25, 2018	ML	Jun 24, 2018	
C10 - C16 (F2)	mg/kg	6340	10	Jun 26, 2018	SO	Jun 24, 2018	
C16 - C34 (F3)	mg/kg	9170	10	Jun 26, 2018	SO	Jun 24, 2018	
C34 - C50 (F4)	mg/kg	660	10	Jun 26, 2018	SO	Jun 24, 2018	
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Jun 26, 2018	SO	Jun 24, 2018	
Moisture Content	%	16	1	Jun 26, 2018	so	Jun 24, 2018	
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED	
Toluene-d8 (BTEX)	%	98	50-150	Jun 25, 2018	ML	Jun 24, 2018	
Ethylbenzene-d10 (BTEX)	%	69	50-150	Jun 25, 2018	ML	Jun 24, 2018	
o-Terphenyl (F2-F4)	%	108	50-150	Jun 26, 2018	SO	Jun 24, 2018	
0014145150							

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Gorobets

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non- Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9354947 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

Ditte of the ELD. dan 10, 2010			BATE REF ORTED. Gan 25, 2016					
SAMPLE DESCRIPTION: 21784180	619010							
PARAMETER	UNIT	RESULT	G/S RD	L DATE ANALYZED	INITIAL	DATE PREPARED		
Benzene	mg/kg	0.044	0.00)5 Jun 25, 2018	ML	Jun 24, 2018		
Toluene	mg/kg	< 0.05	0.0	5 Jun 25, 2018	ML	Jun 24, 2018		
Ethylbenzene	mg/kg	1.00	0.0	Jun 25, 2018	ML	Jun 24, 2018		
Xylenes	mg/kg	1.57	0.0	5 Jun 25, 2018	ML	Jun 24, 2018		
C6 - C10 (F1)	mg/kg	610	10	Jun 25, 2018	ML	Jun 24, 2018		
C6 - C10 (F1 minus BTEX)	mg/kg	610	10	Jun 25, 2018	ML	Jun 24, 2018		
C10 - C16 (F2)	mg/kg	7260	10	Jun 26, 2018	SO	Jun 24, 2018		
C16 - C34 (F3)	mg/kg	10100	10	Jun 26, 2018	SO	Jun 24, 2018		
C34 - C50 (F4)	mg/kg	608	10	Jun 26, 2018	SO	Jun 24, 2018		
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	100	00 Jun 26, 2018	SO	Jun 24, 2018		
Moisture Content	%	15	1	Jun 26, 2018	SO	Jun 24, 2018		
SURROGATE	UNIT	RESULT	ACCEPTABLE LIM	ITS DATE ANALYZED	INITIAL	DATE PREPARED		
Toluene-d8 (BTEX)	%	96	50-150	Jun 25, 2018	ML	Jun 24, 2018		
Ethylbenzene-d10 (BTEX)	%	82	50-150	Jun 25, 2018	ML	Jun 24, 2018		
o-Terphenyl (F2-F4)	%	108	50-150	Jun 26, 2018	SO	Jun 24, 2018		
COMMENTO:								

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.

Certified By:

Elena

Gorobets

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 11 of 50

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

			<u> </u>					
SAMPLE TYPE: Water	SAMPLE	ID: 9354948	DATE RECEIVED: Jun 23, 2018					
DATE SAMPLED: Jun 19, 2018			DA	29, 2018				
SAMPLE DESCRIPTION: 217841806	319101							
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED		
Benzene	mg/L	<0.0005	0.000	5 Jun 26, 2018	OM	Jun 25, 2018		
Toluene	mg/L	< 0.0003	0.000	3 Jun 26, 2018	OM	Jun 25, 2018		
Ethylbenzene	mg/L	< 0.0005	0.000	5 Jun 26, 2018	OM	Jun 25, 2018		
Xylenes	mg/L	< 0.0005	0.000	5 Jun 26, 2018	OM	Jun 25, 2018		
Styrene	mg/L	<0.0005	0.000	5 Jun 26, 2018	OM	Jun 25, 2018		
VH W6-10	mg/L	<0.1	0.1	Jun 26, 2018	ОМ	Jun 25, 2018		
VPH	mg/L	<0.1	0.1	Jun 26, 2018	OM	Jun 25, 2018		
EPH (WC10-C19)	mg/L	0.5	0.1	Jun 26, 2018	LP	Jun 25, 2018		
EPH (WC19-C32)	mg/L	0.3	0.1	Jun 26, 2018	LP	Jun 25, 2018		
LEPH (WC10-C19 - PAH)	mg/L	0.5	0.1	Jun 28, 2018	SYS	Jun 28, 2018		
HEPH (WC19-C32 - PAH)	mg/L	0.3	0.1	Jun 28, 2018	SYS	Jun 28, 2018		
Acenaphthene	mg/L	< 0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Acridine	mg/L	< 0.00005	0.0000	05 Jun 28, 2018	AS	Jun 28, 2018		
Anthracene	mg/L	< 0.000010	0.0000	10 Jun 28, 2018	AS	Jun 28, 2018		
Chrysene	mg/L	<0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Fluorene	mg/L	<0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Naphthalene	mg/L	0.00003	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Phenanthrene	mg/L	0.00003	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Benzo[a]anthracene	mg/L	<0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Benzo[a]pyrene	mg/L	<0.000007	0.0000	07 Jun 28, 2018	AS	Jun 28, 2018		
Fluoranthene	mg/L	<0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Pyrene	mg/L	< 0.00001	0.0000	01 Jun 28, 2018	AS	Jun 28, 2018		
Quinoline	mg/L	< 0.00004	0.0000)4 Jun 28, 2018	AS	Jun 28, 2018		
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED		
Toluene-d8 (BTEX)	%	104	50-150	Jun 26, 2018	OM	Jun 25, 2018		
o-Terphenyl (EPH)	%	104	50-150	Jun 26, 2018	LP	Jun 25, 2018		
2-Fluorobiphenyl (PAH)	%	105	50-150	Jun 28, 2018	AS	Jun 28, 2018		
p-Terphenyl-d14 (PAH)	%	101	50-150	Jun 28, 2018	AS	Jun 28, 2018		

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9354948 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

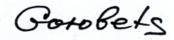
SAMPLE DESCRIPTION: 21784180619101

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

VPH results have been corrected for BTEX contributions.


LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

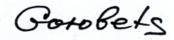
HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:


Oil and Grease in Water (FTIR)									
SAMPLE TYPE: Water SAMPLE ID: 9354948 DATE RECEIVED: Jun 23, 2018									
DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018									
SAMPLE DESCRIPTION: 217841806	SAMPLE DESCRIPTION: 21784180619101								
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED		
Oil Content, Infrared	mg/L	0.8	·	0.2	Jun 26, 2018	AR	Jun 26, 2018		

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Routine Chemistry Water Analysis SAMPLE ID: 9354948 DATE RECEIVED: Jun 23, 2018 SAMPLE TYPE: Water

DATE SAMPLED: Jun 19, 2018	9, 2018 DATE REPORTED: Jun 29, 2018						
SAMPLE DESCRIPTION: 21784180	0619101						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
рН	pH Units	8.11	7.0-10.5	N/A	Jun 27, 2018	KT	Jun 27, 2018
p - Alkalinity (as CaCO3)	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018
T - Alkalinity (as CaCO3)	mg/L	136		5	Jun 27, 2018	KT	Jun 27, 2018
Bicarbonate	mg/L	166		5	Jun 27, 2018	KT	Jun 27, 2018
Carbonate	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018
Hydroxide	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018
Electrical Conductivity	uS/cm	785		5	Jun 27, 2018	KT	Jun 27, 2018
Chloride	mg/L	2.3	(250)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018
Fluoride	mg/L	0.14	1.5	0.01	Jun 29, 2018	ΙP	Jun 29, 2018
Nitrate	mg/L	0.10	45	0.08	Jun 29, 2018	IP	Jun 29, 2018
Nitrate-N	mg/L	0.02	10	0.02	Jun 29, 2018	SYS	Jun 29, 2018
Nitrite	mg/L	< 0.03	3	0.03	Jun 29, 2018	ΙP	Jun 29, 2018
Nitrite-N	mg/L	<0.01	1	0.01	Jun 29, 2018	SYS	Jun 29, 2018
Sulfate	mg/L	295	(500)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018
Dissolved Calcium	mg/L	120		0.3	Jun 25, 2018	AS	Jun 25, 2018
Dissolved Magnesium	mg/L	32.2		0.2	Jun 25, 2018	AS	Jun 25, 2018
Dissolved Sodium	mg/L	5.5		0.6	Jun 25, 2018	AS	Jun 25, 2018
Dissolved Potassium	mg/L	2.1		0.6	Jun 25, 2018	AS	Jun 25, 2018
Dissolved Iron	mg/L	<0.1		0.1	Jun 25, 2018	AS	Jun 25, 2018
Dissolved Manganese	mg/L	0.364		0.005	Jun 25, 2018	AS	Jun 25, 2018
Ion Balance	%	100		1	Jun 29, 2018	SYS	Jun 29, 2018
Hardness	mg CaCO3/L	432		0.5		SYS	
Nitrate + Nitrite - Nitrogen	mg/L	0.02		0.02		SYS	
Calculated TDS	mg/L	539		1		SYS	

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

Certified By:

Page 15 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

	Matrix Solutions Total Me	Matrix Solutions Total Metals Scan in Water							
SAMPLE TYPE: Water	SAMPLE ID: 9354948	DATE RECEIVED: Jun 23, 2018							
DATE SAMPLED: Jun 19, 2018		DATE REPORTED: Jun 29, 2018							

DATE SAMPLED: Jun 19, 2018			DATE REPORTED: Jun 29, 2018									
SAMPLE DESCRIPTION: 2178418	0619101											
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED					
Total Aluminum	mg/L	0.048		0.004	Jun 28, 2018	EB	Jun 28, 2018					
Total Antimony	mg/L	0.004		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Arsenic	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Barium	mg/L	0.07		0.05	Jun 28, 2018	EB	Jun 28, 2018					
Total Beryllium	mg/L	<0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018					
Total Boron	mg/L	0.12		0.01	Jun 28, 2018	EB	Jun 28, 2018					
Total Cadmium	mg/L	0.000056		0.000025	Jun 28, 2018	EB	Jun 28, 2018					
Total Chromium	mg/L	< 0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018					
Total Cobalt	mg/L	< 0.0009		0.0009	Jun 28, 2018	EB	Jun 28, 2018					
Total Copper	mg/L	0.0015		0.0008	Jun 28, 2018	EB	Jun 28, 2018					
Total Iron	mg/L	0.3		0.1	Jun 28, 2018	AS	Jun 28, 2018					
Total Lead	mg/L	< 0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018					
Total Lithium	mg/L	0.005		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Manganese	mg/L	0.419		0.005	Jun 28, 2018	AS	Jun 28, 2018					
Total Molybdenum	mg/L	0.002		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Nickel	mg/L	0.003		0.003	Jun 28, 2018	EB	Jun 28, 2018					
Total Selenium	mg/L	0.0011		0.0005	Jun 28, 2018	EB	Jun 28, 2018					
Total Silicon	mg/L	0.869		0.032	Jun 28, 2018	AS	Jun 28, 2018					
Total Silver	mg/L	0.0002		0.0001	Jun 28, 2018	EB	Jun 28, 2018					
Total Strontium	mg/L	0.268		0.005	Jun 28, 2018	AS	Jun 28, 2018					
Total Thallium	mg/L	<0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018					
Total Tin	mg/L	< 0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018					
Total Titanium	mg/L	0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Uranium	mg/L	0.003		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Vanadium	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018					
Total Zinc	mg/L	0.007		0.001	Jun 28, 2018	EB	Jun 28, 2018					

COMMENTS:

G / S - Guideline / Standard RDL - Reported Detection Limit;

< - Values refer to Method Detection Limit.

Certified By:

Page 16 of 50

Results relate only to the items tested and to all the items tested

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Water Analysis - TSS SAMPLE ID: 9354948 SAMPLE TYPE: Water DATE RECEIVED: Jun 23, 2018 DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018 SAMPLE DESCRIPTION: 21784180619101 **PARAMETER RESULT** G/S DATE PREPARED UNIT **RDL** DATE ANALYZED INITIAL Total Suspended Solids 2 2 Jun 28, 2018 mg/L ΚT Jun 28, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

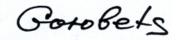
Certified By:

G/A

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable


SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

			<u> </u>								
SAMPLE TYPE: Water	SAMPLE	ID: 9354949		DATE RECEIVED: Jun 23, 2018							
DATE SAMPLED: Jun 19, 2018				DATE	REPORTED: Jun 2	29, 2018					
SAMPLE DESCRIPTION: 217841806	19102										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Benzene	mg/L	<0.0005		0.0005	Jun 26, 2018	OM	Jun 25, 2018				
Toluene	mg/L	< 0.0003		0.0003	Jun 26, 2018	OM	Jun 25, 2018				
Ethylbenzene	mg/L	< 0.0005		0.0005	Jun 26, 2018	OM	Jun 25, 2018				
Xylenes	mg/L	< 0.0005		0.0005	Jun 26, 2018	OM	Jun 25, 2018				
Styrene	mg/L	<0.0005		0.0005	Jun 26, 2018	OM	Jun 25, 2018				
VH W6-10	mg/L	<0.1		0.1	Jun 26, 2018	OM	Jun 25, 2018				
VPH	mg/L	<0.1		0.1	Jun 26, 2018	OM	Jun 25, 2018				
EPH (WC10-C19)	mg/L	<0.1		0.1	Jun 26, 2018	LP	Jun 25, 2018				
EPH (WC19-C32)	mg/L	0.1		0.1	Jun 26, 2018	LP	Jun 25, 2018				
LEPH (WC10-C19 - PAH)	mg/L	<0.1		0.1	Jun 28, 2018	SYS	Jun 28, 2018				
HEPH (WC19-C32 - PAH)	mg/L	0.1		0.1	Jun 28, 2018	SYS	Jun 28, 2018				
Acenaphthene	mg/L	< 0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Acridine	mg/L	< 0.00005		0.00005	Jun 28, 2018 AS		Jun 28, 2018				
Anthracene	mg/L	<0.000010		0.000010	Jun 28, 2018	AS	Jun 28, 2018				
Chrysene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Fluorene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Naphthalene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Phenanthrene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Benzo[a]anthracene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Benzo[a]pyrene	mg/L	<0.000007		0.000007	Jun 28, 2018	AS	Jun 28, 2018				
Fluoranthene	mg/L	<0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Pyrene	mg/L	< 0.00001		0.00001	Jun 28, 2018	AS	Jun 28, 2018				
Quinoline	mg/L	<0.00004		0.00004	Jun 28, 2018	AS	Jun 28, 2018				
SURROGATE	UNIT	RESULT	ACCEPTAB	LE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED				
Toluene-d8 (BTEX)	%	99	50-1		Jun 26, 2018	OM	Jun 25, 2018				
o-Terphenyl (EPH)	%	104	50-1		Jun 26, 2018	LP	Jun 25, 2018				
2-Fluorobiphenyl (PAH)	%	99	50-1	50	Jun 28, 2018	AS	Jun 28, 2018				
p-Terphenyl-d14 (PAH)	%	99	50-1	50	Jun 28, 2018	AS	Jun 28, 2018				

Certified By:

Page 18 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9354949 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

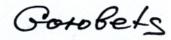
SAMPLE DESCRIPTION: 21784180619102

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

VPH results have been corrected for BTEX contributions.


LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 19 of 50

Jun 26, 2018

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

< 0.2

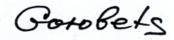
SAMPLING SITE: SAMPLED BY:

	Oil and Grease in Water (FTIR)										
SAMPLE TYPE: Water SAMPLE ID: 9354949 DATE RECEIVED: Jun 23, 2018											
DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018											
SAMPLE DESCRIPTION: 2178418061	SAMPLE DESCRIPTION: 21784180619102										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				

0.2

Jun 26, 2018

AR


COMMENTS:

Oil Content, Infrared

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 ATTENTION TO: Accounts Payable PROJECT: 21784-546 / Aklavik, NTPC

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Routine Chemistry Water Analysis

SAMPLE ID: 9354949 SAMPLE TYPE: Water DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018	018 DATE REPORTED: Jun 29, 2018									
SAMPLE DESCRIPTION: 21784	180619102									
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
рН	pH Units	8.32	7.0-10.5	N/A	Jun 27, 2018	KT	Jun 27, 2018			
p - Alkalinity (as CaCO3)	mg/L	<5		5		KT	Jun 27, 2018			
T - Alkalinity (as CaCO3)	mg/L	118		5	Jun 27, 2018	KT	Jun 27, 2018			
Bicarbonate	mg/L	143		5	Jun 27, 2018	KT	Jun 27, 2018			
Carbonate	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018			
Hydroxide	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018			
Electrical Conductivity	uS/cm	759		5	Jun 27, 2018	KT	Jun 27, 2018			
Chloride	mg/L	2.5	(250)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018			
Fluoride	mg/L	0.21	1.5	0.01	Jun 29, 2018	ΙP	Jun 29, 2018			
Nitrate	mg/L	<0.08	45 0.08		Jun 29, 2018 IP		Jun 29, 2018			
Nitrate-N	mg/L	<0.02	10	0.02	Jun 29, 2018	SYS	Jun 29, 2018			
Nitrite	mg/L	< 0.03	3	0.03	Jun 29, 2018	ΙP	Jun 29, 2018			
Nitrite-N	mg/L	<0.01	1	0.01	Jun 29, 2018	SYS	Jun 29, 2018			
Sulfate	mg/L	265	(500)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018			
Dissolved Calcium	mg/L	109		0.3	Jun 25, 2018	AS	Jun 25, 2018			
Dissolved Magnesium	mg/L	31.2		0.2	Jun 25, 2018	AS	Jun 25, 2018			
Dissolved Sodium	mg/L	9.4		0.6	Jun 25, 2018	AS	Jun 25, 2018			
Dissolved Potassium	mg/L	4.2		0.6	Jun 25, 2018	AS	Jun 25, 2018			
Dissolved Iron	mg/L	0.1		0.1	Jun 25, 2018	AS	Jun 25, 2018			
Dissolved Manganese	mg/L	0.261		0.005	Jun 25, 2018	AS	Jun 25, 2018			
Ion Balance	%	107		1	Jun 29, 2018	SYS	Jun 29, 2018			
Hardness	mg CaCO3/L	401		0.5		SYS				
Nitrate + Nitrite - Nitrogen	mg/L	< 0.02		0.02		SYS				
Calculated TDS	mg/L	492		1		SYS				

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Page 21 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

	Matrix Solutions Total Metals Scan in Water							
SAMPLE TYPE: Water	SAMPLE ID: 9354949	DATE RECEIVED: Jun 23, 2018						
DATE SAMPLED: Jun 19, 2018		DATE REPORTED: Jun 29, 2018						

DATE SAMPLED: Jun 19, 2018			DATE REPORTED: Jun 29, 2018								
SAMPLE DESCRIPTION: 2178418	30619102										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Total Aluminum	mg/L	0.060		0.004	Jun 28, 2018	EB	Jun 28, 2018				
Total Antimony	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Arsenic	mg/L	< 0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Barium	mg/L	< 0.05		0.05	Jun 28, 2018	EB	Jun 28, 2018				
Total Beryllium	mg/L	<0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Boron	mg/L	2.1		0.2	Jun 28, 2018	EB	Jun 28, 2018				
Total Cadmium	mg/L	0.000038		0.000025	Jun 28, 2018	EB	Jun 28, 2018				
Total Chromium	mg/L	< 0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Cobalt	mg/L	< 0.0009		0.0009	Jun 28, 2018	EB	Jun 28, 2018				
Total Copper	mg/L	0.0035		0.0008	Jun 28, 2018	EB	Jun 28, 2018				
Total Iron	mg/L	1.3		0.1	Jun 28, 2018	AS	Jun 28, 2018				
Total Lead	mg/L	0.0011		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Lithium	mg/L	0.005		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Manganese	mg/L	0.297		0.005	Jun 28, 2018	AS	Jun 28, 2018				
Total Molybdenum	mg/L	0.002		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Nickel	mg/L	0.003		0.003	Jun 28, 2018	EB	Jun 28, 2018				
Total Selenium	mg/L	0.0010		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Silicon	mg/L	1.18		0.032	Jun 28, 2018	AS	Jun 28, 2018				
Total Silver	mg/L	< 0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Strontium	mg/L	0.370		0.005	Jun 28, 2018	AS	Jun 28, 2018				
Total Thallium	mg/L	<0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Tin	mg/L	< 0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Titanium	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Uranium	mg/L	0.003		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Vanadium	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Zinc	mg/L	0.504		0.001	Jun 28, 2018	EB	Jun 28, 2018				

COMMENTS:

G / S - Guideline / Standard RDL - Reported Detection Limit;

< - Values refer to Method Detection Limit.

Certified By:

Page 22 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Water Analysis - TSS SAMPLE ID: 9354949 SAMPLE TYPE: Water DATE RECEIVED: Jun 23, 2018 DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018 SAMPLE DESCRIPTION: 21784180619102 **PARAMETER RESULT** G/S DATE PREPARED UNIT **RDL** DATE ANALYZED INITIAL Total Suspended Solids 2 Jun 28, 2018 mg/L <2 ΚT Jun 28, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Gh-

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water	SAMPLE	ID: 9354950	DATE RECEIVED: Jun 23, 2018								
DATE SAMPLED: Jun 19, 2018				DATE	REPORTED: Jun 2	29, 2018					
SAMPLE DESCRIPTION: 217841806	19103										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Benzene	mg/L	<0.0005	0	.0005	Jun 26, 2018	OM	Jun 25, 2018				
Toluene	mg/L	< 0.0003	0	.0003	Jun 26, 2018	OM	Jun 25, 2018				
Ethylbenzene	mg/L	< 0.0005	0	.0005	Jun 26, 2018	OM	Jun 25, 2018				
Xylenes	mg/L	< 0.0005	0	.0005	Jun 26, 2018	OM	Jun 25, 2018				
Styrene	mg/L	<0.0005	0	.0005	Jun 26, 2018	OM	Jun 25, 2018				
VH W6-10	mg/L	<0.1		0.1	Jun 26, 2018	OM	Jun 25, 2018				
VPH	mg/L	<0.1		0.1	Jun 26, 2018	OM	Jun 25, 2018				
EPH (WC10-C19)	mg/L	0.4		0.1	Jun 26, 2018	LP	Jun 25, 2018				
EPH (WC19-C32)	mg/L	0.4		0.1	Jun 26, 2018	LP	Jun 25, 2018				
LEPH (WC10-C19 - PAH)	mg/L	0.4		0.1	Jun 28, 2018	SYS	Jun 28, 2018				
HEPH (WC19-C32 - PAH)	mg/L	0.4		0.1	Jun 28, 2018	SYS	Jun 28, 2018				
Acenaphthene	mg/L	< 0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Acridine	mg/L	< 0.00005	0.	00005	Jun 28, 2018	AS	Jun 28, 2018				
Anthracene	mg/L	<0.000010	0.0	000010	Jun 28, 2018	AS	Jun 28, 2018				
Chrysene	mg/L	<0.00001	0.	0.00001 Jun 28, 2018		AS	Jun 28, 2018				
Fluorene	mg/L	<0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Naphthalene	mg/L	0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Phenanthrene	mg/L	< 0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Benzo[a]anthracene	mg/L	< 0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Benzo[a]pyrene	mg/L	<0.000007	0.0	000007	Jun 28, 2018	AS	Jun 28, 2018				
Fluoranthene	mg/L	<0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Pyrene	mg/L	< 0.00001	0.	.00001	Jun 28, 2018	AS	Jun 28, 2018				
Quinoline	mg/L	<0.00004	0.	00004	Jun 28, 2018	AS	Jun 28, 2018				
SURROGATE	UNIT	RESULT	ACCEPTABLE L	IMITS	DATE ANALYZED	INITIAL	DATE PREPARED				
Toluene-d8 (BTEX)	%	99	50-150		Jun 26, 2018	OM	Jun 25, 2018				
o-Terphenyl (EPH)	%	106	50-150		Jun 26, 2018	LP	Jun 25, 2018				
2-Fluorobiphenyl (PAH)	%	97	50-150		Jun 28, 2018	AS	Jun 28, 2018				
p-Terphenyl-d14 (PAH)	%	101	50-150		Jun 28, 2018	AS	Jun 28, 2018				

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9354950 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

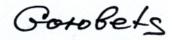
SAMPLE DESCRIPTION: 21784180619103

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

VPH results have been corrected for BTEX contributions.


LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

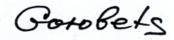
Certified By:

Page 25 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:


Oil and Grease in Water (FTIR)												
SAMPLE TYPE: Water SAMPLE ID: 9354950 DATE RECEIVED: Jun 23, 2018												
DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018												
SAMPLE DESCRIPTION: 2178418061	9103											
PARAMETER UNIT RESULT G/S RDL DATE ANALYZED INITIAL DATE PREPAR												
Oil Content, Infrared	mg/L	0.9		0.2	Jun 26, 2018	AR	Jun 26, 2018					

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Routine Chemistry Water Analysis

SAMPLE TYPE: Water SAMPLE ID: 9354950 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

DATE SAMPLED. Juli 19, 2016			DATE REPORTED. Juli 29, 2016								
SAMPLE DESCRIPTION: 21784	180619103										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
рН	pH Units	8.37	7.0-10.5	N/A	Jun 27, 2018	KT	Jun 27, 2018				
p - Alkalinity (as CaCO3)	3) mg/L <		5		Jun 27, 2018	KT	Jun 27, 2018				
T - Alkalinity (as CaCO3)	mg/L	149		5	Jun 27, 2018	KT	Jun 27, 2018				
Bicarbonate	mg/L	175		5	Jun 27, 2018	KT	Jun 27, 2018				
Carbonate	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018				
Hydroxide	mg/L	<5		5	Jun 27, 2018	KT	Jun 27, 2018				
Electrical Conductivity	uS/cm	939		5	Jun 27, 2018	KT	Jun 27, 2018				
Chloride	mg/L	41.9	(250)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018				
Fluoride	mg/L	0.34	1.5	0.01	Jun 29, 2018	ΙP	Jun 29, 2018				
Nitrate	mg/L	0.09	45	0.08	Jun 29, 2018	ΙP	Jun 29, 2018				
Nitrate-N	mg/L	0.02	10	0.02	Jun 29, 2018	SYS	Jun 29, 2018				
Nitrite	mg/L	< 0.03	3	0.03	Jun 29, 2018	ΙP	Jun 29, 2018				
Nitrite-N	mg/L	<0.01	1	0.01	Jun 29, 2018	SYS	Jun 29, 2018				
Sulfate	mg/L	293	(500)	0.6	Jun 29, 2018	ΙP	Jun 29, 2018				
Dissolved Calcium	mg/L	115		0.3	Jun 25, 2018	AS	Jun 25, 2018				
Dissolved Magnesium	mg/L	28.3		0.2	Jun 25, 2018	AS	Jun 25, 2018				
Dissolved Sodium	mg/L	27.1		0.6	Jun 25, 2018	AS	Jun 25, 2018				
Dissolved Potassium	mg/L	23.1		0.6	Jun 25, 2018	AS	Jun 25, 2018				
Dissolved Iron	mg/L	<0.1		0.1	Jun 25, 2018	AS	Jun 25, 2018				
Dissolved Manganese	mg/L	0.261		0.005	Jun 25, 2018	AS	Jun 25, 2018				
Ion Balance	%	97		1	Jun 29, 2018	SYS	Jun 29, 2018				
Hardness	mg CaCO3/L	404		0.5		SYS					
Nitrate + Nitrite - Nitrogen	mg/L	0.02		0.02		SYS					
Calculated TDS	mg/L	615		1		SYS					

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

Certified By:

4

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425 PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Total Metals Scan in Water

SAMPLE ID: 9354950 SAMPLE TYPE: Water DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018	DATE REPORTED: Jun 29, 2018										
SAMPLE DESCRIPTION: 2178418061	9103										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
Total Aluminum	mg/L	0.123		0.004	Jun 28, 2018	EB	Jun 28, 2018				
Total Antimony	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Arsenic	mg/L	0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Barium	mg/L	0.05		0.05	Jun 28, 2018	EB	Jun 28, 2018				
Total Beryllium	mg/L	<0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Boron	mg/L	4.6		0.2	Jun 28, 2018	EB	Jun 28, 2018				
Total Cadmium	mg/L	0.000098		0.000025	Jun 28, 2018	EB	Jun 28, 2018				
Total Chromium	mg/L	< 0.0005		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Cobalt	mg/L	< 0.0009		0.0009	Jun 28, 2018	EB	Jun 28, 2018				
Total Copper	mg/L	0.0036		0.0008	Jun 28, 2018	EB	Jun 28, 2018				
Total Iron	mg/L	1.7		0.1	Jun 28, 2018	AS	Jun 28, 2018				
Total Lead	mg/L	0.0014		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Lithium	mg/L	0.007		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Manganese	mg/L	0.294		0.005	Jun 28, 2018	AS	Jun 28, 2018				
Total Molybdenum	mg/L	0.002		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Nickel	mg/L	<0.003		0.003	Jun 28, 2018	EB	Jun 28, 2018				
Total Selenium	mg/L	0.0023		0.0005	Jun 28, 2018	EB	Jun 28, 2018				
Total Silicon	mg/L	1.37		0.032	Jun 28, 2018	AS	Jun 28, 2018				
Total Silver	mg/L	<0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Strontium	mg/L	0.562		0.005	Jun 28, 2018	AS	Jun 28, 2018				
Total Thallium	mg/L	<0.0001		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Tin	mg/L	0.0005		0.0001	Jun 28, 2018	EB	Jun 28, 2018				
Total Titanium	mg/L	0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Uranium	mg/L	0.004		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Vanadium	mg/L	<0.001		0.001	Jun 28, 2018	EB	Jun 28, 2018				
Total Zinc	mg/L	1.09		0.001	Jun 28, 2018	EB	Jun 28, 2018				

COMMENTS:

G / S - Guideline / Standard RDL - Reported Detection Limit;

< - Values refer to Method Detection Limit.

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Page 28 of 50

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Water Analysis - TSS

SAMPLE TYPE: Water SAMPLE ID: 9354950 DATE RECEIVED: Jun 23, 2018

DATE SAMPLED: Jun 19, 2018 DATE REPORTED: Jun 29, 2018

SAMPLE DESCRIPTION: 21784180619103

PARAMETER UNIT RESULT G/S RDL DATE ANALYZED INITIAL DATE PREPARED
Total Suspended Solids mg/L 8 2 Jun 28, 2018 KT Jun 28, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Gh-

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:								SAMP	LED B	Y:					
			Trac	e Org	gani	cs An	alysi	is							
RPT Date: Jun 29, 2018				UPLICATE	Ē		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Lin	ptable nits	Recovery	Lir	ptable nits	Recovery	Lir	eptable mits
								Lower	Upper		Lower	Upper		Lower	Upper
Petroleum Hydrocarbons (BTEX/F	1-F4) in \$	Soil (CWS)	(Non- Me	thanol Fie	ld Stabi	lized)									
Benzene	5038	9351991	< 0.005	< 0.005	NA	< 0.005	101%	80%	120%	86%	80%	120%	106%	60%	140%
Toluene	5038	9351991	< 0.05	< 0.05	NA	< 0.05	96%	80%	120%	103%	80%	120%	101%	60%	140%
Ethylbenzene	5038	9351991	<0.01	<0.01	NA	< 0.01	85%	80%	120%	106%	80%	120%	108%	60%	140%
Xylenes	5038	9351991	< 0.05	< 0.05	NA	< 0.05	83%	80%	120%	104%	80%	120%	102%	60%	140%
C6 - C10 (F1)	5038	9351991	<10	<10	NA	< 10	99%	80%	120%	99%	80%	120%	111%	60%	140%
C10 - C16 (F2)	6541	9351991	<10	<10	NA	< 10	103%	80%	120%	94%	80%	120%	94%	60%	140%
C16 - C34 (F3)	6541	9351991	55	41	NA	< 10	103%	80%	120%	94%	80%	120%	95%	60%	140%
C34 - C50 (F4)	6541	9351991	31	27	NA	< 10	103%	80%	120%	84%	80%	120%	84%	60%	140%
Comments: If the RPD value is NA, the	ne results	of the duplic	ates are u	nder 5X the	e RDL ar	nd will not be	e calculate	ed.							
Oil and Grease in Water (FTIR)															
Oil Content, Infrared	333	9346578	0.3	0.3	NA	< 0.2	102%	70%	130%	110%	70%	130%	118%	70%	130%
Comments: If the RPD value is NA, the	ne results	of the duplic	ates are u	nder 5X the	RDL ar	nd will not be	e calculate	ed.							
British Columbia CSR - Extended	Site Rem	nediation A	nalysis - ۱	Water											
Benzene	3503	9354949	< 0.0005	< 0.0005	NA	< 0.0005	96%	80%	120%	101%	80%	120%	99%	70%	130%
Toluene	3503	9354949	< 0.0003	< 0.0003	NA	< 0.0003	105%	80%	120%	115%	80%	120%	112%	70%	130%
Ethylbenzene	3503	9354949	< 0.0005	< 0.0005	NA	< 0.0005	98%	80%	120%	105%	80%	120%	105%	70%	130%
Xylenes	3503	9354949	< 0.0005	< 0.0005	NA	< 0.0005	100%	80%	120%	114%	80%	120%	117%	70%	130%
Styrene	3503	9354949	< 0.0005	< 0.0005	NA	< 0.0005	110%	80%	120%	120%	80%	120%	118%	70%	130%
VH W6-10	3503	9354949	< 0.1	< 0.1	NA	< 0.1	108%	80%	120%	108%	80%	120%	110%	70%	130%
EPH (WC10-C19)	138	9353363	< 0.1	< 0.1	NA	< 0.1	108%	80%	120%	88%	80%	120%	90%	70%	130%
EPH (WC19-C32)	138	9353363	< 0.1	< 0.1	NA	< 0.1	108%	80%	120%	94%	80%	120%	95%	70%	130%
Acenaphthene	1678	9353363 <	< 0.00001	< 0.00001	NA	< 0.0000	1 95%	70%	130%	99%	70%	130%	108%	70%	130%
Acridine	1678	9353363 <	< 0.00005	< 0.00005	NA NA	< 0.00005	5 84%	70%	130%	92%	70%	130%	83%	70%	130%
Anthracene	1678	9353363 <	- 0 000010	< 0.000010	NA NA	< 0.000010	0 84%	70%	130%	94%	70%	130%	83%	70%	130%
Chrysene	1678			< 0.00001		< 0.00001		70%	130%	95%	70%	130%	80%	70%	130%
Fluorene	1678	9353363			NA	< 0.0000		70%	130%	99%		130%	85%	70%	130%
Naphthalene	1678	9353363		0.00001	NA	< 0.0000		70%	130%	93%	70%	130%	84%	70%	130%
Phenanthrene	1678			< 0.00001		< 0.0000		70%	130%	93%	70%	130%	84%	70%	130%
Benzo[a]anthracene	1678	9353363 <	< 0.00001	< 0.00001	NA	< 0.0000	1 89%	70%	130%	103%	70%	130%	87%	70%	130%
Benzo[a]pyrene	1678	9353363 <				< 0.00000		70%	130%	103%	70%	130%	85%	70%	130%
Fluoranthene	1678			< 0.00001		< 0.0000		70%	130%	93%	70%	130%	85%	70%	130%
Pyrene	1678			< 0.00001		< 0.0000		70%	130%	96%	70%	130%	88%	70%	130%
Quinoline	1678			< 0.00004		< 0.00004		70%	130%	90%	70%	130%	79%	70%	130%
							, 0	. 3,5		/ 0	. 3,3	0 , 0	. 5 , 5	. 5,5	. 50,0

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Jun 29, 2018 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SP								RIX SPI	KE						
PARAMETER	Sample		Method Blank	Measured Value	otable nits	Recovery	Lin	ptable nits	Recovery	Lim	otable nits				
		"					value	Lower	Upper		Lower	Upper		Lower	Upper

Certified By:

Elena

Gorobets

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

				Wate	er An	alys	is										
RPT Date: Jun 29, 2018			DUPLICATE			REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE			
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Measured Lim		Acceptable Limits		Recovery		ptable nits	Recovery		ptable
		lu					value	Lower	Upper		Lower	Upper		Lower	Upper		
Matrix Solutions Routine Chem	nistry Water A	nalysis															
pH	9354964		6.54	6.56	0.3%	N/A	100%	90%	110%								
T - Alkalinity (as CaCO3)	9354964		34	33	4.2%	< 5	101%	80%	120%								
Electrical Conductivity	9354964		85	84	1.5%	< 5	104%	80%	120%								
Chloride	9355143		45.1	45.8	1.5%	< 0.6	97%	80%	120%	100%	80%	120%	NA	80%	120%		
Fluoride	9355143		<0.06	<0.06	NA	< 0.01	95%	80%	120%	95%	80%	120%	98%	80%	120%		
Nitrate	9355143		135	134	1.2%	< 0.08	98%	80%	120%	100%	80%	120%	NA	80%	120%		
Nitrite	9355143		0.44	0.43	NA	< 0.03	97%	80%	120%	99%	80%	120%	94%	80%	120%		
Sulfate	9355143		65.7	64.3	2.1%	< 0.6	98%	80%	120%	100%	80%	120%	NA	80%	120%		
Dissolved Calcium	9351540		225	227	1.1%	< 0.3	105%	80%	120%	107%	80%	120%	NA	80%	120%		
Dissolved Magnesium	9351540		63.4	64.2	1.3%	< 0.2	99%	80%	120%	98%	80%	120%	NA	80%	120%		
Dissolved Sodium	9351540		26.3	26.6	1.1%	< 0.6	93%	80%	120%	89%	80%	120%	NA	80%	120%		
Dissolved Potassium	9351540		1.7	1.7	NA	< 0.6	86%	80%	120%	83%	80%	120%	97%	80%	120%		
Dissolved Iron	9351540		<0.1	<0.1	NA	< 0.1	101%	80%	120%	99%	80%	120%	98%	80%	120%		
Dissolved Manganese	9351540		0.455	0.466	2.3%	< 0.005	99%	80%	120%	96%	80%	120%	NA	80%	120%		

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

pH has been analyzed past the recommended holding time of 15 minutes from sampling (field measurement ideal if more accurate data required)

Nitrate and Nitrite: The regulatory hold time for the analysis of nitrate and/or nitrite in water is 72 hours.

Matrix Solutions Total Metal	s Scan in Water													
Total Aluminum	9361960	0.539	0.556	3.3%	< 0.004	109%	80%	120%	108%	80%	120%	NA	80%	120%
Total Antimony	9361960	< 0.001	< 0.001	NA	< 0.001	97%	80%	120%	103%	80%	120%	101%	80%	120%
Total Arsenic	9361960	0.002	0.002	NA	< 0.001	98%	80%	120%	105%	80%	120%	103%	80%	120%
Total Barium	9361960	0.22	0.21	NA	< 0.05	98%	80%	120%	107%	80%	120%	101%	80%	120%
Total Beryllium	9361960	<0.0005	<0.0005	NA	< 0.0005	103%	80%	120%	116%	80%	120%	113%	80%	120%
Total Boron	9361960	0.03	0.03	NA	< 0.01	98%	80%	120%	104%	80%	120%	107%	80%	120%
Total Cadmium	9361960	<0.	<0.	NA	< 0.000025	97%	80%	120%	105%	80%	120%	103%	80%	120%
Total Chromium	9361960	< 0.0005	< 0.0005	NA	< 0.0005	102%	80%	120%	97%	80%	120%	100%	80%	120%
Total Cobalt	9361960	< 0.0009	< 0.0009	NA	< 0.0009	96%	80%	120%	97%	80%	120%	93%	80%	120%
Total Copper	9361960	0.0008	<0.0008	NA	< 0.0008	102%	80%	120%	100%	80%	120%	95%	80%	120%
Total Iron	9361960	<0.1	<0.1	NA	< 0.1	103%	80%	120%	96%	80%	120%	91%	80%	120%
Total Lead	9361960	< 0.0005	< 0.0005	NA	< 0.0005	97%	80%	120%	102%	80%	120%	100%	80%	120%
Total Lithium	9361960	0.032	0.032	0.0%	< 0.001	105%	80%	120%	116%	80%	120%	110%	80%	120%
Total Manganese	9361960	0.010	0.010	NA	< 0.005	103%	80%	120%	101%	80%	120%	95%	80%	120%
Total Molybdenum	9361960	0.003	0.003	NA	< 0.001	97%	80%	120%	99%	80%	120%	97%	80%	120%
Total Nickel	9361960	< 0.003	<0.003	NA	< 0.003	101%	80%	120%	99%	80%	120%	97%	80%	120%
Total Selenium	9361960	0.0009	0.0010	NA	< 0.0005	100%	80%	120%	103%	80%	120%	103%	80%	120%
Total Silicon	9361960	1.36	1.34	1.4%	< 0.032	102%	80%	120%	109%	80%	120%	NA	80%	120%
Total Silver	9361960	0.0002	0.0001	NA	< 0.0001	84%	80%	120%	82%	80%	120%	82%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 32 of 50

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Water Analysis (Continued)															
RPT Date: Jun 29, 2018			DUPLICATE				REFERENCE MATERIAL		TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD		Measured			Recovery	Lie	ptable nits	Recovery	منا أ	ptable nits
		ld		·			Value	Lower	Upper	,	Lower	Upper	ĺ	Lower	Upper
Total Strontium	9361960		0.490	0.494	0.8%	< 0.001	100%	80%	120%	95%	80%	120%	NA	80%	120%
Total Thallium	9361960		<0.0001	<0.0001	NA	< 0.0001	93%	80%	120%	101%	80%	120%	99%	80%	120%
Total Tin	9361960		<0.0001	<0.0001	NA	< 0.0001	100%	80%	120%	103%	80%	120%	99%	80%	120%
Total Titanium	9361960		0.001	0.001	NA	< 0.001	94%	80%	120%	99%	80%	120%	99%	80%	120%
Total Uranium	9361960		<0.001	< 0.001	NA	< 0.001	96%	80%	120%	102%	80%	120%	103%	80%	120%
Total Vanadium	9361960		<0.001	<0.001	NA	< 0.001	93%	80%	120%	97%	80%	120%	99%	80%	120%
Total Zinc	9361960		0.003	0.002	NA	< 0.001	103%	80%	120%	100%	80%	120%	98%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Water Analysis - TSS

Total Suspended Solids 9346565 <2 <2 NA <2 101% 80% 120% NA 80% 120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

April 1

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

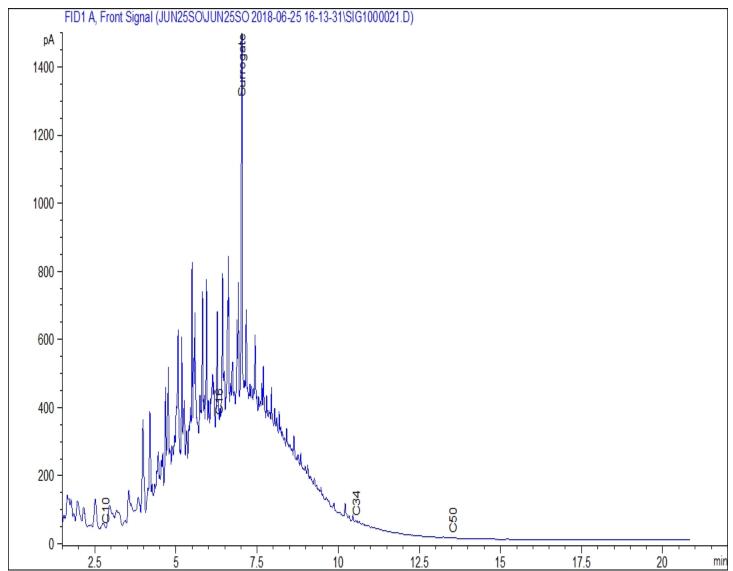
SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	<u> </u>		
Benzene	TO-0542	EPA SW-846 8260	GC/MS
Toluene	TO-0542	EPA SW-846 8260	GC/MS
Ethylbenzene	TO-0542	EPA SW-846 8260	GC/MS
Xylenes	TO-0542	EPA SW-846 8260	GC/MS
Styrene	TO-0542	EPA SW-846 8260	GC/MS
VH W6-10	TO-0542	B.C. ENVIRONMENT	GC/FID
VPH	TO-0542	B.C. ENVIRONMENT	GC/MS/FID
EPH (WC10-C19)	TO 0511	B.C. ENVIRONMENT	GC/FID
EPH (WC19-C32)	TO 0511	B.C. ENVIRONMENT	GC/FID
LEPH (WC10-C19 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID
HEPH (WC19-C32 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID
Acenaphthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Acridine	TO 0200	EPA SW846 3511 & 8270	GC/MS
Anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Chrysene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluorene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Naphthalene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Phenanthrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluoranthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Quinoline	TO 0200	EPA SW846 3511 & 8270	GC/MS
Toluene-d8 (BTEX)	TO-0543	BC Environment	GC/MS
o-Terphenyl (EPH)	TO 0511	B.C. ENVIRONMENT	GC/FID
2-Fluorobiphenyl (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
p-Terphenyl-d14 (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
Oil Content, Infrared	TO-2200	Method 5520C	FTIR
Benzene	TO-0543	EPA SW-846 8260-S	GC/MS
Toluene	TO-0543	EPA SW-846 8260-S	GC/MS
Ethylbenzene	TO-0543	EPA SW-846 8260-S	GC/MS
Xylenes	TO-0543	EPA SW-846 8260-S	GC/MS
C6 - C10 (F1)	TO-0543	CCME Tier 1 Method-S L	GC/FID
C6 - C10 (F1 minus BTEX)	TO-0543	CCME Tier 1 Method-S L	GC/FID
C10 - C16 (F2)	TO-0560	CCME Tier 1 Method-S H	GC/FID
C16 - C34 (F3)	TO-0560	CCME Tier 1 Method-S H	GC/FID
C34 - C50 (F4)	TO-0560	CCME Tier 1 Method-S H	GC/FID
Gravimetric Heavy Hydrocarbons	TO-0560	CCME Tier 1 Method-S H	GC/FID
Moisture Content	TO-0560	CCME Tier 1 Method-S %	GRAVIMETRIC
Toluene-d8 (BTEX)	TO-0543	EPA SW-846 8260-S	GC/MS
Ethylbenzene-d10 (BTEX)	TO-0543	EPA SW-846 8260-S	GC/MS
o-Terphenyl (F2-F4)	TO 0560	CCME Tier 1 Method-S H	GC/FID

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

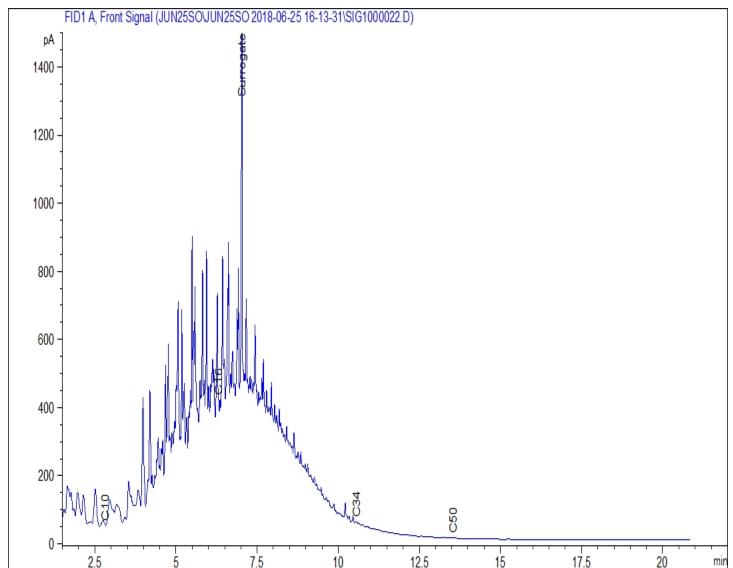

SAMPLING SITE.		SAIVIPLED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis		·	•
pH	INST 0101	SM 4500 H+	pH METER
p - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
T - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
Bicarbonate	INST 0101	SM 2320 B	PC TITRATE
Carbonate	INST 0101	SM 2320 B	PC TITRATE
Hydroxide	INST 0101	SM 2320 B	TITRATION
Electrical Conductivity	INST 0101	SM 2510 B	CONDUCTIVITY METER
Chloride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate-N	INST 0150	SM 4110 B	CALCULATION
Nitrite	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrite-N	INST 0150	SM 4110 B	CALCULATION
Sulfate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Dissolved Calcium	INST 0130	SM 3120 B	ICP/OES
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES
Dissolved Magnesium Dissolved Sodium	INST 0140	SM 3120 B	ICP/OES
Dissolved Socialiii	INST 0140	SM 3120 B	ICP/OES
Dissolved Iron	INST 0140	SM 3120 B	ICP/OES
	INST 0140	SM 3120 B	ICP/OES
Dissolved Manganese	INST 0140		ICF/OES
Ion Balance	WATE COOK INCT OF 14	SM 1030E	ICD MC
Total Autimoun	WATR 0200; INST 0141	SM 3030 E; SM 3120 B	ICP-MS
Total Antimony	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Beryllium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Boron	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Cadmium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Chromium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Cobalt	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Copper	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Iron	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Lead	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Lithium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Manganese	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Molybdenum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP/MS
Total Nickel	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Selenium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Silicon	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Silver	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Strontium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/OES
Total Thallium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Tin	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Titanium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B	ICP/MS
Total Uranium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Vanadium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Zinc	WATR 0200; INST 0141	SM 3030 E; SM 3125 B	ICP-MS
Total Suspended Solids	WATR 0600	SM 2540 D	GRAVIMETRIC
i otal Suspended Solids	VVA I K U0UU	3IVI 254U D	GRAVIMETRIC

Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

IMAGE001: 9354938, 21784180619001

Chromatogram Image

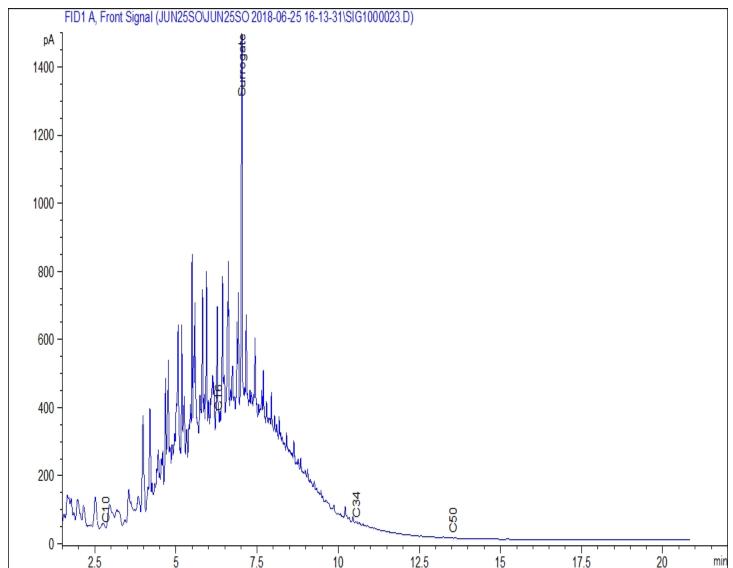

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE002: 9354939, 21784180619002

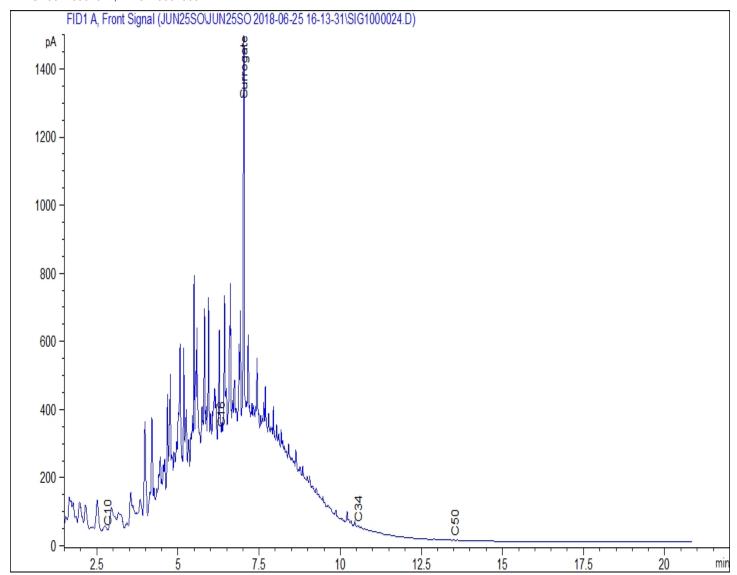


Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

IMAGE003: 9354940, 21784180619003

Chromatogram Image

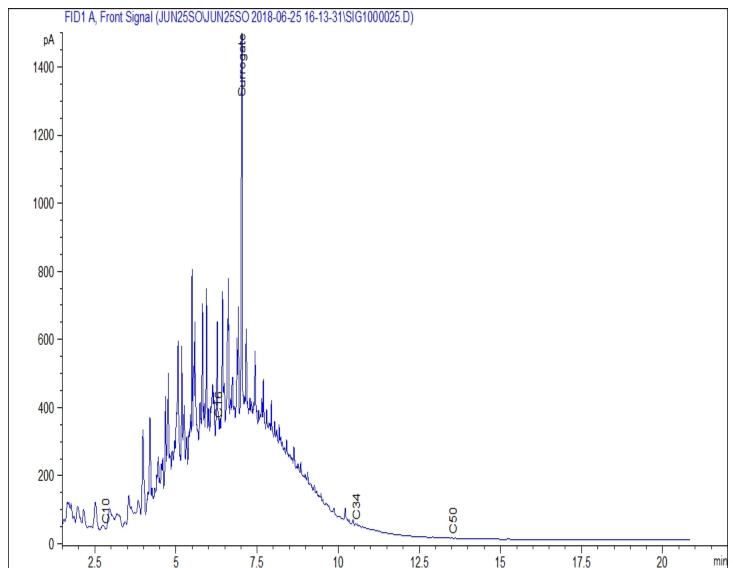

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

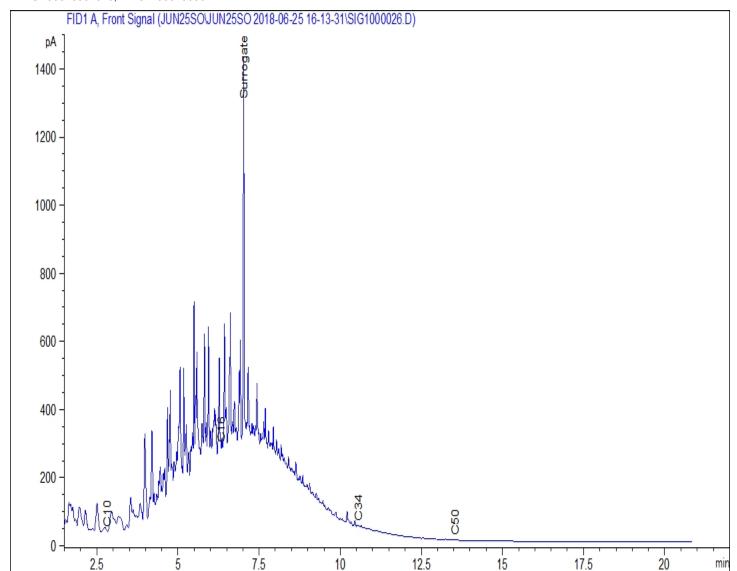
IMAGE004: 9354941, 21784180619004



Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

IMAGE005: 9354942, 21784180619005

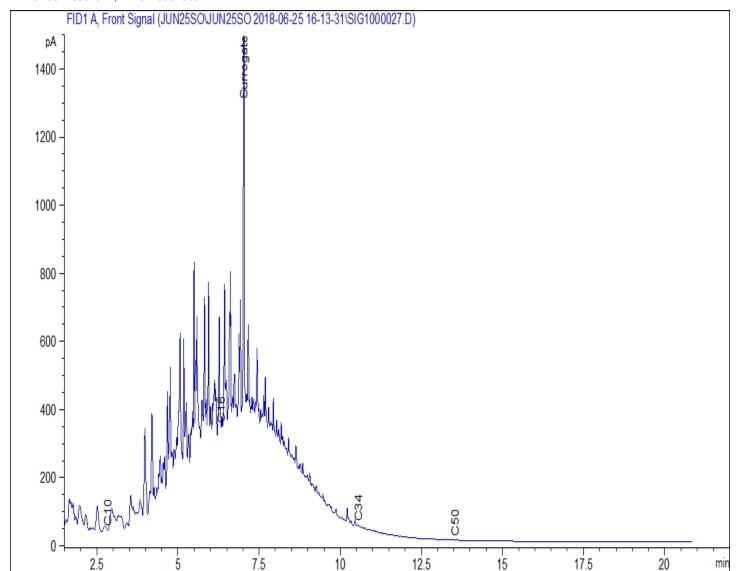


Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18C354425
PROJECT: 21784-546 / Aklavik, NTPC ATTENTION TO: Accounts Payable

IMAGE006: 9354943, 21784180619006

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

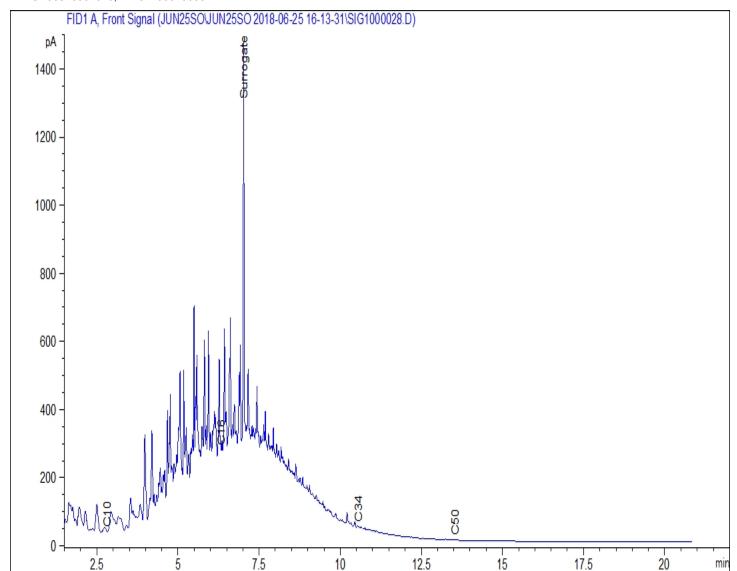
PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE007: 9354944, 21784180619007

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE008: 9354945, 21784180619008

Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC.

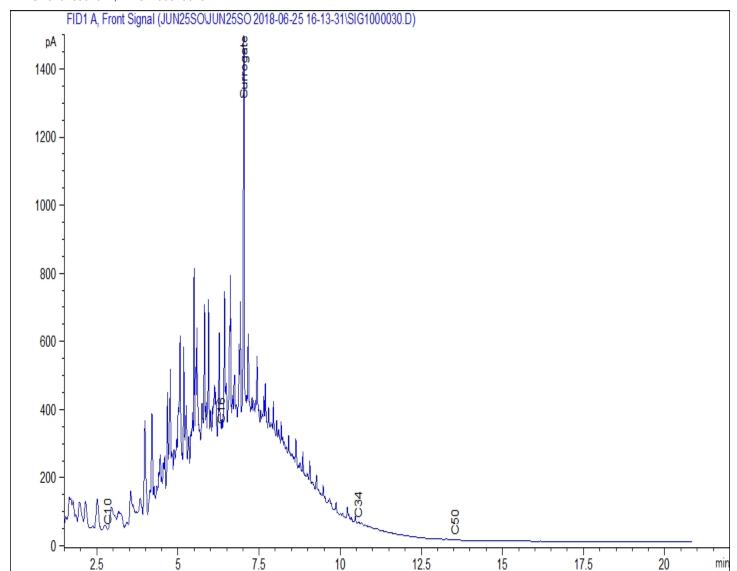
PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE009: 9354946, 21784180619009

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

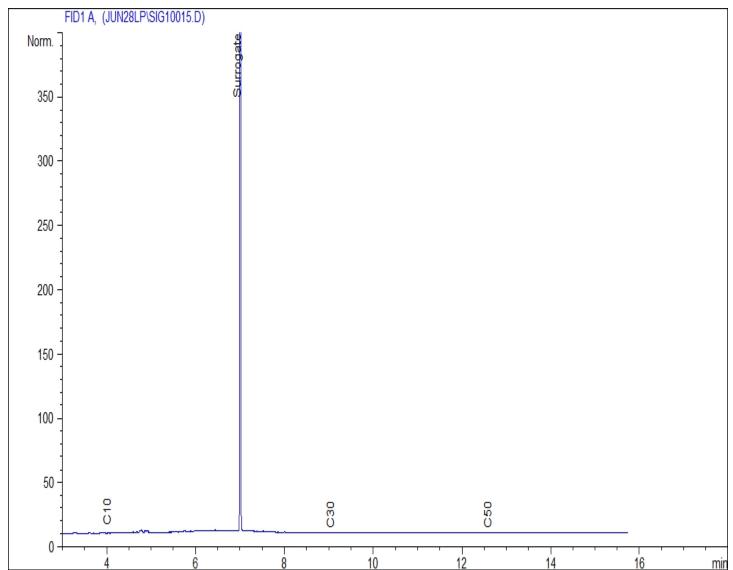
PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE010: 9354947, 21784180619010

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

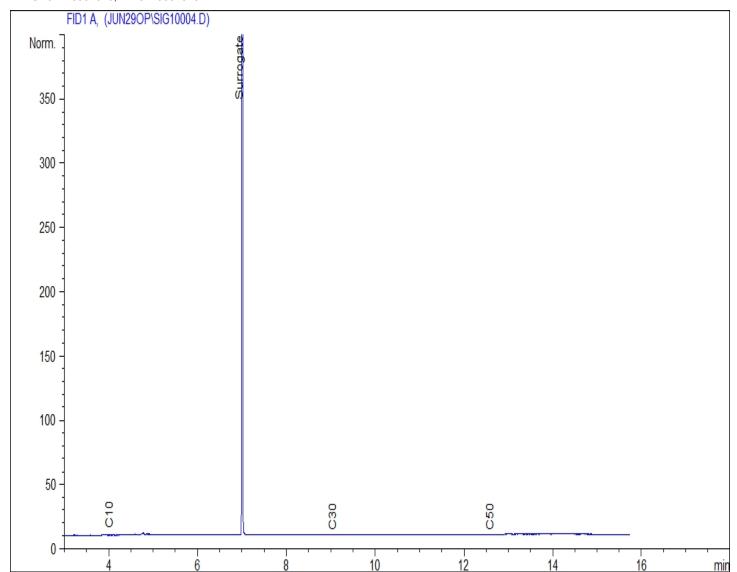
PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE011: 9354948, 21784180619101

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

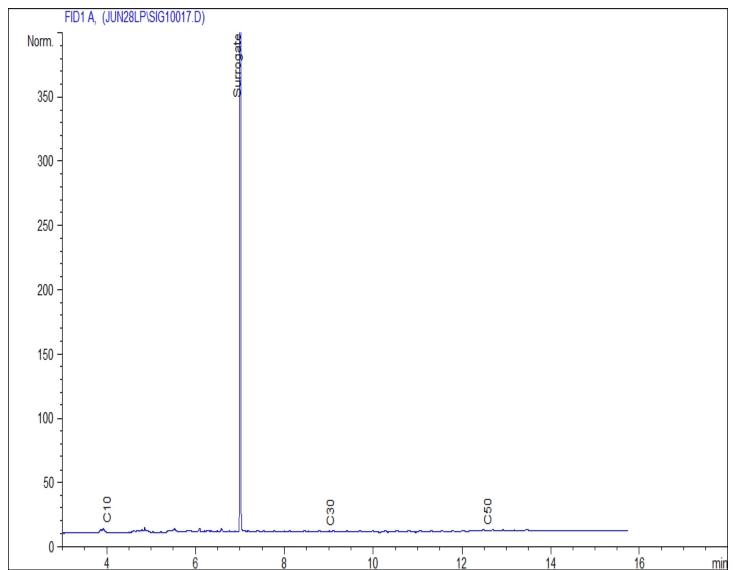
PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE012: 9354949, 21784180619102

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik, NTPC

AGAT WORK ORDER: 18C354425

ATTENTION TO: Accounts Payable

IMAGE013: 9354950, 21784180619103

Matrix Solutions = EDS		Matrix S ENVIRONMEN	olutions NT & ENGINE	Inc. ERING		coc# 099	9927			Submit Agreen				AGAT	Page:		of	
Salle 600, 214 - 11th Avenuo SW Address: PC: Phone I Fast: PC: PC: Phone I Fast: PC: PC: PC: PC: PC: PC: PC: PC: PC: PC					Copy of	Report to:							7-	22-III	1 1 B	PM 2 ;	09	
Address:	ompany				Matrix So	olutions - EDS							18		124			0
PC		lame: Accounts t	ayable						Matri	x Projec	ct#:	2	178		0	A.1-	5.1	0
Phone Faxe: Ph: Fax: Ph. 483-237-3606 Fox: 403-283-2493 sampler's Name(s): C. Martysis Required AE E: Semblar's Teri SCULATORY REQUIREMENTS: (check) Abortis Teri SCULATORY REQUIREMENTS: (check) Abortis WFAL Conceition Deriking Wester COME FAL SEROC Onter: NMT / TIR- 1 SAmple Point Name REPORT DISTRIBUTION: always send to ede@matrix-solutions.com Madditional Similar Surface And S	ddress:		I i			Alberta, Canada							_	7	1			_
Analysis Required Anal	hono / Eo					227 0000	F 400 000	2.0400	_						MA .	-		-
Analysis Required REGULATORY REQUIREMENTS: (check) BC CSR Analysis Required BC CSR BC	none / Fa	ax+. FII.		rax:				3-2493	Samp	oler's Na	ame(s)	5	Mig	TYP, K,	II Wyo	_		<u></u>
Abberts Tier 1 Abberts WF AL Consider Derking Water COME FAL Series Series Series Series Sample Number (14 digits only) y-mith-day 1 2754/180619 Oo 1 1 2754/180619 Oo 1 2 00 2 2 1-2 3 00 3 2 1-2 4 00 4 2 2-3 5 00 5 3 1-2 6 00 00 3 2-3 7 00 7 4 1-2 9 0 00 9 5 1-2 10 0 010 5 2-3 11 101 Influed 10 0 10 5 2-3 11 101 Influed 10 0 10 5 2-3 11 101 Influed 10 0 10 0 10 5 2-3 11 101 Influed 10 0 10 0 10 5 2-3 11 10 0	-				Ontail inte	voices to ap@matrix-son	itions.com						Ana	lysis Require	∌d			1
ABorta SW FAL Caradian Derking Witter Come FAL Single Come Come Come FAL Single Come		·	7								2	111	3					
SPIGEC SEGG Other: Not Title 1 Sample Polint Name Depth (m) Sample Type Date/Time Sample Quantity & of Containors Title Ti	-	<u> </u>	Tec csk		and the second s	act the lab) Due Date:					7	艺	CA	7				
SPIGEC SEGG Other: Not Title 1 Sample Polint Name Depth (m) Sample Type Date/Time Sample Quantity & of Containors Title Ti	100011000					send to eds@matrix-solutio	ons.com		Ια.		1		4	1				
SPIGEC SEOG Other NWT TIPL Sample Point Name Depth (m) Sample Type Date/Time Sampled Quantity # of Containers	CCN	ME FAL						1	N. C.		8	8	3	II.				
Sample Number (14 digits only) yr-mth-day		GEC A/A #	1-2-1	Emails	2	Complete Solut	10015.0017		17		4	X	2	7				_
1 2754180619 00 1 8	SEQ		Mer I			7	,		2	M	K	4	I	17				
1 2754180619 00 1 18 - 5 1 186-286 SOFL Supe 19 20 18 2 3 00 3 2 1-2 4 00 4 2 2-3 5 00 5 3 1-2 6 00 6 3 2-3 7 00 7 4 1-2 8 00 9 4 2-3 9 00 9 5 1-2 10 0 10 5 2-3 11 101 Influed H20 9 VVVV 9 12 102 EFFluet - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Sample Point Name	Depth (m)	Sample Type	Date/Time Sampled			12	K	5	0	3	27				HOLD
2	1 21	784180619 00 1	18-51	149-200	SOIL	June 192018	2/									ax	2/012	0
4				200-3										V	9	79 (320	-
5	3	003	2	1-2				į.						V	9	40 6	744	
6	4	004	2	2-3										V	9	41 (745	
7	5	005	3	1-2										V	9	12 6	7/65	
8	6	006	3	2-3										V	94	3 €	7414	
9 OV9 5 1-2 10 O10 5 2-3 11 101 Influed H20 12 102 Efflued -	7	007	4	1-2										V	94	419	AC.	
10 010 5 2-3 1 1 1 101 Influed H20 9 V V V V 1 12 102 EAFHuist H20 13 103 District Tank V 1 14 15 For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Relinquished by: Soft Muthure Date/Time: June 23, 208 Received by: Date/Time: 2:0	8	009	4	2-3											94	19	46	
11 101 Influed H20 12 102 Effluet H20 13 103 Discharge Tank H20 14 15 15 Preserved/Filtered Preserved/Filter	9	009	5	1-2											94	0 5	747	
12 102 Effluent 13 103 Discharge Tank 14 15 For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Preserved/Filtered Received by: Received by: Received by: Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/	0	010	5	2-3	7		V							V	94	7 9	48	
13 103 Distance Tank 14 15 For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Relinquished by: Soft Mithighe Date/Time: June 23, 208 Received by: Received by: Date/Time: Q:0	1	101	Influet		H20			9	V	V	V	7			948	1	49	
14 15 Preserved/Filtered Preserved/Filtered Preserved/Filtered Preserved/Filtered Preserved/Filtered Pate/Time: Date/Time: Date/Time	2		Effluent						1		1	1	1		074	9	40	
For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Relinquished by: Soft Mitrigre Date/Time: June 23, 208 Received by: Received by: Date/Time: Date/Tim	3	103	Discharge Tonk						V	V	$ \Psi $	1	1		430			
For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Preserved/Filtered Received by: Received by: Preserved/Filtered Received by: Date/Time: 2:0	4		0									,			7			
Relinquished by: Soft Mutatyre Date/Time: June 23, 2018 Received by: 23 June Date/Time: 2:0	5																	
	or metals	in water samples indicate if you	want Total (T) or Dissolv	ved (D) as part of "A	nalysis Required"		Pres	served/Filtered			1	/	1					
	linguishe	ed by: Scott My	Intyre	Date/Time:	June 23.	2018	Received by:		יעוד		13	JUNI	L	Pate/Time:	2:09	!		
Signature: Signature:		do no	0				•	A.	1	6								
COMMENTS/SPECIAL INSTRUCTIONS		S/SPECIAL INSTRUCTIONS					giiaidioi											A
I = Jars V = vials C 3	jars V=	= vials													C 316	383		

SAMPLE INTEGRITY RECEIPT FORM

AGAT Laboratories

The second secon	
RECEIVING BASICS - Shipping	Temperature (Bottles Mars only) N/A if only Soil Bags Received
Company/Consultant: MATRIX SOLUTION INC	FROZEN (Please Circle if samples received Frozen)
Courier: Prepaid Collect	1 (Bottle/Jar) 5 / + 5 0+ 5 2 = 5 / °C 2(Bottle/Jar) + + = _ °C
Waybill#	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++=°C
	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++_=°C
Branch: EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C
If multiple sites were submitted at once: Yes	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No:
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? Yes No	Other:
Inorganic Tests (Please Circle): Mibi , BOD (Nitrate/Nitrite), Turbidity , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* ,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
Earliest Expiry: 22 - JUNG -18	CPM Initial
Hydrocarbons: Earliest Expiry	General Comments: 1x Geomber of 1D 102 recid
SAMPLE INTEGRITY - Shipping	broken.
Hazardous Samples: YES NO Precaution Taken:	
Legal Samples: Yes No	
International Samples: Yes No	.,
Tape Sealed: Yes No	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

CLIENT NAME: MATRIX SOLUTIONS INC. SUITE 600, 214 11 AVE SW CALGARY, AB T2R0K1 (403) 237-0606

ATTENTION TO: Accounts Payable

PROJECT: 21784-546 / Aklavik Water Treatment

AGAT WORK ORDER: 18E363626

TRACE ORGANICS REVIEWED BY: Alison Sekera, Trace Organics Supervisor

WATER ANALYSIS REVIEWED BY: Violet Yu, Lab Coordinator

DATE REPORTED: Jul 24, 2018

PAGES (INCLUDING COVER): 15

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

*NOTES		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626 PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water	SAMPLE	ID: 9410885	DATE RECEIVED: Jul 18, 2018					
DATE SAMPLED: Jul 17, 2018				DATE	REPORTED:			
SAMPLE DESCRIPTION: 21784180	717001							
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
Benzene	mg/L	<0.0005		0.0005	Jul 23, 2018	OM	Jul 20, 2018	
Toluene	mg/L	< 0.0003	(0.0003	Jul 23, 2018	OM	Jul 20, 2018	
Ethylbenzene	mg/L	< 0.0005		0.0005	Jul 23, 2018	OM	Jul 20, 2018	
Xylenes	mg/L	< 0.0005		0.0005	Jul 23, 2018	OM	Jul 20, 2018	
Styrene	mg/L	<0.0005		0.0005	Jul 23, 2018	OM	Jul 20, 2018	
VH W6-10	mg/L	<0.1		0.1	Jul 23, 2018	OM	Jul 20, 2018	
VPH	mg/L	<0.1		0.1	Jul 23, 2018	OM	Jul 20, 2018	
EPH (WC10-C19)	mg/L	0.4		0.1	Jul 24, 2018	OP	Jul 21, 2018	
EPH (WC19-C32)	mg/L	0.2		0.1	Jul 24, 2018	OP	Jul 21, 2018	
LEPH (WC10-C19 - PAH)	mg/L	0.4		0.1	Jul 24, 2018	SYS	Jul 24, 2018	
HEPH (WC19-C32 - PAH)	mg/L	0.2		0.1	Jul 24, 2018	SYS	Jul 24, 2018	
Acenaphthene	mg/L	< 0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Acridine	mg/L	< 0.00005	C	0.00005	Jul 22, 2018	TD	Jul 21, 2018	
Anthracene	mg/L	< 0.000010	0	.000010	Jul 22, 2018	TD	Jul 21, 2018	
Chrysene	mg/L	<0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Fluorene	mg/L	<0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Naphthalene	mg/L	< 0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Phenanthrene	mg/L	< 0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Benzo[a]anthracene	mg/L	< 0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Benzo[a]pyrene	mg/L	<0.000007	0.	.000007	Jul 22, 2018	TD	Jul 21, 2018	
Fluoranthene	mg/L	<0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Pyrene	mg/L	< 0.00001	(0.00001	Jul 22, 2018	TD	Jul 21, 2018	
Quinoline	mg/L	< 0.00004	C	0.00004	Jul 22, 2018	TD	Jul 21, 2018	
SURROGATE	UNIT	RESULT	ACCEPTABLE	LIMITS	DATE ANALYZED	INITIAL	DATE PREPAREI	
Toluene-d8 (BTEX)	%	87	50-150		Jul 23, 2018	OM	Jul 20, 2018	
o-Terphenyl (EPH)	%	104	50-150		Jul 24, 2018	OP	Jul 21, 2018	
2-Fluorobiphenyl (PAH)	%	110	50-150		Jul 22, 2018	TD	Jul 21, 2018	
p-Terphenyl-d14 (PAH)	%	110	50-150		Jul 22, 2018	TD	Jul 21, 2018	

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 2 of 15

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626 PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9410885 DATE RECEIVED: Jul 18, 2018

DATE SAMPLED: Jul 17, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784180717001

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

VPH results have been corrected for BTEX contributions.

LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E363626

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Oil and Grease in Water (FTIR)

SAMPLE TYPE: Water SAMPLE ID: 9410885 DATE RECEIVED: Jul 18, 2018

DATE SAMPLED: Jul 17, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784180717001

 PARAMETER
 UNIT
 RESULT
 G / S
 RDL
 DATE ANALYZED
 INITIAL
 DATE PREPARED

 Oil Content, Infrared
 mg/L
 <0.2</td>
 0.2
 Jul 20, 2018
 JS
 Jul 20, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

alison Sekera

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik Water Treatment

AGAT WORK ORDER: 18E363626

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE:				SAMF	PLED BY:		
	M	latrix Total M	etals Scan i	n Water			
SAMPLE TYPE: Water	SAMPLE	ID: 9410885		DATE	RECEIVED: Jul 18	, 2018	
DATE SAMPLED: Jul 17, 2018				DATE	REPORTED:		
SAMPLE DESCRIPTION: 2178418071	17001						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Total Aluminum	mg/L	0.047	0.1	0.004	Jul 20, 2018	QD	Jul 20, 2018
Total Antimony	mg/L	< 0.001	0.006	0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Arsenic	mg/L	< 0.001	0.005	0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Barium	mg/L	< 0.05	1	0.05	Jul 20, 2018	QD	Jul 20, 2018
Total Beryllium	mg/L	<0.001		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Boron	mg/L	0.71	1	0.01	Jul 20, 2018	QD	Jul 20, 2018
Total Cadmium	mg/L	<0.00016	0.00009	0.000016	Jul 20, 2018	QD	Jul 20, 2018
Total Chromium	mg/L	< 0.001		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Cobalt	mg/L	< 0.001		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Copper	mg/L	0.003	0.007	0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Iron	mg/L	2.0	0.3	0.1	Jul 20, 2018	LK	Jul 20, 2018
Total Lead	mg/L	0.0009	0.010	0.0005	Jul 20, 2018	QD	Jul 20, 2018
Total Lithium	mg/L	0.006		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Manganese	mg/L	0.169	0.05	0.005	Jul 20, 2018	LK	Jul 20, 2018
Total Molybdenum	mg/L	0.002		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Nickel	mg/L	< 0.003	VARIABLE	0.003	Jul 20, 2018	QD	Jul 20, 2018
Total Selenium	mg/L	< 0.0005	0.001	0.0005	Jul 20, 2018	QD	Jul 20, 2018
Total Silicon	mg/L	1.52		0.032	Jul 20, 2018	LK	Jul 20, 2018
Total Silver	mg/L	< 0.00005	0.0001	0.00005	Jul 20, 2018	QD	Jul 20, 2018
Total Strontium	mg/L	0.356		0.001	Jul 20, 2018	LK	Jul 20, 2018
Total Thallium	mg/L	<0.0005		0.0005	Jul 20, 2018	QD	Jul 20, 2018
Total Tin	mg/L	< 0.003		0.003	Jul 20, 2018	QD	Jul 20, 2018
Total Titanium	mg/L	0.015		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Uranium	mg/L	0.003	0.01	0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Vanadium	mg/L	<0.001		0.001	Jul 20, 2018	QD	Jul 20, 2018
Total Zinc	mg/L	0.25	0.03	0.01	Jul 20, 2018	QD	Jul 20, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Alberta Tier 1 - Groundwater - Agricultural - Coarse Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

< - Values refer to Method Detection Limit.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626 ATTENTION TO: Accounts Payable PROJECT: 21784-546 / Aklavik Water Treatment

SAMPLING SITE: SAMPLED BY:

Routine Chemistry	[,] Water Analysis - Matr	ΊX

SAMPLE TYPE: Water SAMPLE ID: 9410885 DATE RECEIVED: Jul 18, 2018

DATE SAMPLED: Jul 17, 2018		DATE REPORTED:						
SAMPLE DESCRIPTION: 21784180	0717001							
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
рН	pH Units	8.02		NA	Jul 19, 2018	VD	Jul 19, 2018	
p - Alkalinity (as CaCO3)	mg/L	<5		5	Jul 19, 2018	VD	Jul 19, 2018	
T - Alkalinity (as CaCO3)	mg/L	130		5	Jul 19, 2018	VD	Jul 19, 2018	
Bicarbonate	mg/L	159		5	Jul 19, 2018	VD	Jul 19, 2018	
Carbonate	mg/L	<5		5	Jul 19, 2018	VD	Jul 19, 2018	
Hydroxide	mg/L	<5		5	Jul 19, 2018	VD	Jul 19, 2018	
Electrical Conductivity	uS/cm	845		1	Jul 19, 2018	VD	Jul 19, 2018	
Fluoride	mg/L	< 0.05		0.05	Jul 21, 2018	RA	Jul 21, 2018	
Chloride	mg/L	4		1	Jul 21, 2018	RA	Jul 21, 2018	
Nitrite	mg/L	<0.05		0.05	Jul 21, 2018	RA	Jul 21, 2018	
Nitrate	mg/L	<0.5		0.5	Jul 21, 2018	RA	Jul 21, 2018	
Nitrite-N	mg/L	< 0.02		0.02	Jul 21, 2018	SYS	Jul 21, 2018	
Nitrate-N	mg/L	< 0.02		0.02	Jul 21, 2018	SYS	Jul 21, 2018	
Nitrate+Nitrite - Nitrogen	mg/L	< 0.02		0.02	Jul 21, 2018	SYS	Jul 21, 2018	
Sulfate	mg/L	323		1	Jul 21, 2018	RA	Jul 21, 2018	
Dissolved Calcium	mg/L	125		0.3	Jul 19, 2018	LK	Jul 19, 2018	
Dissolved Magnesium	mg/L	35.7		0.2	Jul 19, 2018	LK	Jul 19, 2018	
Dissolved Sodium	mg/L	7.9		0.6	Jul 19, 2018	LK	Jul 19, 2018	
Dissolved Potassium	mg/L	3.7		0.6	Jul 19, 2018	LK	Jul 19, 2018	
Dissolved Iron	mg/L	<0.1		0.1	Jul 19, 2018	LK	Jul 19, 2018	
Dissolved Manganese	mg/L	0.139		0.005	Jul 19, 2018	LK	Jul 19, 2018	
Calculated TDS	mg/L	577		0.6	Jul 21, 2018	SYS	Jul 21, 2018	
Sodium Adsorption Ratio	N/A	0.160			Jul 19, 2018	SYS	Jul 19, 2018	
Hardness	mg CaCO3/L	459		1	Jul 19, 2018	SYS	Jul 19, 2018	
Ion Balance	%	102		1	Jul 21, 2018	SYS	Jul 21, 2018	

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

If sodium results in mg/L are less than detection, SAR is non-calculable and is reported as 0.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626 PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

		Water A	nalysis - TS	S			
SAMPLE TYPE: Water	SAMPLE I	D: 9410885		DATE	RECEIVED: Jul 18	, 2018	
DATE SAMPLED: Jul 17, 2018				DATE	REPORTED:		
SAMPLE DESCRIPTION: 2178418071	17001						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Total Suspended Solids	mg/L	4		1	Jul 19, 2018	IS	Jul 19, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

pH has been analyzed past the recommended holding time of 15 minutes from sampling (field measurement ideal if more accurate data required)

539

1706

1706

1706

1706

1706

1706

Oil Content, Infrared

Phenanthrene

Benzo[a]pyrene

Fluoranthene

Pyrene

Quinoline

Benzo[a]anthracene

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

70% 130%

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626 PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

< 0.2

0.00853

0.00758

0.00783

0.00815

0.00862

0.00946

SAMPLING SITE: SAMPLED BY:

< 0.2

Trace Organics Analysis															
RPT Date:				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery	Lin	ptable nits
		ld	,				Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
Oil and Grease in Water (FTIR)															

NΑ

< 0.2

98%

80% 120%

106%

70% 130%

107%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

LS

British Columbia CSR - Extended	Site Rer	nediation A	Analysis - Y	Water											
Benzene	3169	9412793	< 0.0005	< 0.0005	NA	< 0.0005	101%	80%	120%	100%	80%	120%	102%	70%	130%
Toluene	3169	9412793	<0.0003	<0.0003	NA	< 0.0003	102%	80%	120%	99%	80%	120%	100%	70%	130%
Ethylbenzene	3169	9412793	< 0.0005	< 0.0005	NA	< 0.0005	94%	80%	120%	84%	80%	120%	88%	70%	130%
Xylenes	3169	9412793	< 0.0005	<0.0005	NA	< 0.0005	107%	80%	120%	99%	80%	120%	106%	70%	130%
Styrene	3169	9412793	< 0.0005	<0.0005	NA	< 0.0005	99%	80%	120%	98%	80%	120%	101%	70%	130%
VH W6-10	3169	9412793	<0.1	<0.1	NA	< 0.1	90%	80%	120%	99%	80%	120%	109%	70%	130%
EPH (WC10-C19)	182	9409274	<0.1	<0.1	NA	< 0.1	115%	80%	120%	100%	80%	120%	96%	70%	130%
EPH (WC19-C32)	182	9409274	<0.1	<0.1	NA	< 0.1	115%	80%	120%	113%	80%	120%	101%	70%	130%
Acenaphthene	1706	MS-1706	0.00848	0.00846	0.2%	< 0.00001	99%	70%	130%	98%	70%	130%	97%	70%	130%
Acridine	1706	MS-1706	0.00904	0.00896	0.9%	< 0.00005	88%	70%	130%	103%	70%	130%	104%	70%	130%
Anthracene	1706	MS-1706	0.00766	0.00764	0.3%	< 0.000010	88%	70%	130%	88%	70%	130%	88%	70%	130%
Chrysene	1706	MS-1706	0.00833	0.00831	0.2%	< 0.00001	97%	70%	130%	96%	70%	130%	96%	70%	130%
Fluorene	1706	MS-1706	0.00817	0.00816	0.1%	< 0.00001	97%	70%	130%	94%	70%	130%	94%	70%	130%
Naphthalene	1706	MS-1706	0.00863	0.00863	0.0%	< 0.00001	100%	70%	130%	99%	70%	130%	99%	70%	130%

0.0%

0.4%

0.1%

0.4%

1.4%

0.1%

< 0.00001

< 0.00001

< 0.000007

< 0.00001

< 0.00001

< 0.00004

97%

90%

79%

89%

99%

89%

70%

70%

70%

70%

70%

70%

130%

130%

130%

130%

130%

130%

98%

88%

90%

94%

100%

109%

70%

70%

70%

70%

70%

70%

130%

130%

130%

130%

130%

130%

98%

87%

90%

94%

99%

109%

70%

70%

70%

70%

70%

130%

130%

130%

130%

130%

70% 130%

MS-1706 0.00947 Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

MS-1706 0.00853

MS-1706 0.00761

MS-1706 0.00784

MS-1706 0.00818

MS-1706 0.00874

Certified By:

Alison Sekera

Page 8 of 15

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

				Wate	er An	alysi	S								
RPT Date:			С	UPLICATI	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		la la	·	·			Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Routine Chemistry Water Analysis	s - Matrix														
рН	1822	9408074	7.58	7.59	0.1%		100%	90%	110%						
p - Alkalinity (as CaCO3)	1822	9408074	< 5	< 5	0.0%	< 5									
T - Alkalinity (as CaCO3)	1822	9408074	520	513	1.4%	< 5	99%	80%	120%						
Bicarbonate	1822	9408074	625	635	1.6%	< 5									
Carbonate	1822	9408074	< 5	< 5	0.0%	< 5									
Hydroxide	1822	9408074	< 5	< 5	0.0%	< 5									
Electrical Conductivity	1822	9408074	3390	3400	0.3%	< 1	96%	80%	120%						
Fluoride	1650	9408844	< 0.05	< 0.05	NA	< 0.05	89%	80%	120%	93%	80%	120%	95%	80%	120%
Chloride	1650	9408844	<1	<1	NA	< 1	105%	80%	120%	110%	80%	120%	102%	80%	120%
Nitrite	1650	9408844	<0.05	<0.05	NA	< 0.05	106%	80%	120%	109%	80%	120%	96%	80%	120%
Nitrate	1650	9408844	<0.5	<0.5	NA	< 0.5	105%	80%	120%	108%	80%	120%	100%	80%	120%
Sulfate	1650	9408844	3	3	NA	< 1	99%	80%	120%	97%	80%	120%	97%	80%	120%
Dissolved Calcium	200	9402643	87.7	93.4	6.3%	< 0.3	108%	80%	120%				115%	80%	120%
Dissolved Magnesium	200	9402643	25.6	26.9	4.8%	< 0.2	106%	80%	120%				111%	80%	120%
Dissolved Sodium	200	9402643	202	227	11.9%	< 0.6	101%	80%	120%				102%	80%	120%
Dissolved Potassium	200	9402643	24.9	25.4	2.0%	< 0.6	113%	80%	120%				107%	80%	120%
Dissolved Iron	200	9402643	0.1	0.1	NA	< 0.1	109%	80%	120%				106%	80%	120%
Dissolved Manganese	200	9402643	0.012	0.011	NA	< 0.005	106%	80%	120%				106%	80%	120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

Matrix Total Metals Scan in Water												
Total Aluminum	201	9414387	0.012	0.012	NA	< 0.004	101%	80%	120%	97%	80%	120%
Total Antimony	201	9414387	<0.001	< 0.001	NA	< 0.001	108%	80%	120%	93%	80%	120%
Total Arsenic	201	9414387	<0.001	<0.001	NA	< 0.001	100%	80%	120%	103%	80%	120%
Total Barium	201	9414387	0.86	0.88	2.2%	< 0.05	105%	80%	120%	97%	80%	120%
Total Beryllium	201	9414387	<0.001	<0.001	NA	< 0.001	95%	80%	120%	99%	80%	120%
T / 15	004	0444007	0.00	0.00	0.50/	0.04	2221	000/	1000/	200/	000/	1000/
Total Boron	201	9414387	0.20	0.20	3.5%	< 0.01	99%	80%	120%	98%	80%	
Total Cadmium	201	9414387	0.000045	0.000034	NA	< 0.000016	100%	80%	120%	97%	80%	120%
Total Chromium	201	9414387	<0.001	<0.001	NA	< 0.001	105%	80%	120%	96%	80%	120%
Total Cobalt	201	9414387	0.001	0.002	NA	< 0.001	101%	80%	120%	99%	80%	120%
Total Copper	201	9414387	<0.001	<0.001	NA	< 0.001	105%	80%	120%	92%	80%	120%
Total Iron	201	9410885	2.0	2.0	3.2%	< 0.1	110%	80%	120%	100%	80%	120%
Total Lead	201	9414387	<0.0005	<0.0005	NA	< 0.0005	105%	80%	120%	103%	80%	120%
Total Lithium	201	9414387	0.112	0.111	0.9%	< 0.001	94%	80%	120%	99%	80%	120%
Total Manganese	201	9410885	0.169	0.170	1.1%	< 0.005	102%	80%	120%	96%	80%	120%
Total Molybdenum	201	9414387	<0.001	<0.001	NA	< 0.001	105%	80%	120%	98%	80%	120%
Total Nickel	201	9414387	<0.003	<0.003	NA	< 0.003	109%	80%	120%	95%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik Water Treatment

AGAT WORK ORDER: 18E363626

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

	Water Analysis (Continued)														
RPT Date:				DUPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Measured Limits		Recovery	Acceptable Limits		Recovery	منا أ	ptable nits
		ld	i i	,			Value	Lower	Upper	ĺ	Lower	Upper		Lower	Upper
Total Selenium	201	9414387	0.0020	<0.0005	NA	< 0.0005	105%	80%	120%				103%	80%	120%
Total Silicon	201	9410885	1.52	1.57	3.0%	< 0.032	97%	80%	120%				94%	80%	120%
Total Silver	201	9414387	0.00005	<0.00005	NA	< 0.00005	102%	80%	120%				96%	80%	120%
Total Strontium	201	9410885	0.356	0.355	0.1%	< 0.001	106%	80%	120%				98%	80%	120%
Total Thallium	201	9414387	<0.0005	<0.0005	NA	< 0.0005	102%	80%	120%				101%	80%	120%
Total Tin	201	9414387	<0.001	< 0.001	NA	< 0.001	119%	80%	120%				95%	80%	120%
Total Titanium	201	9414387	0.007	0.005	NA	< 0.001	101%	80%	120%				108%	80%	120%
Total Uranium	201	9414387	<0.001	< 0.001	NA	< 0.001	111%	80%	120%				115%	80%	120%
Total Vanadium	201	9414387	<0.001	<0.001	NA	< 0.001	96%	80%	120%				97%	80%	120%
Total Zinc	201	9414387	<0.01	<0.01	NA	< 0.01	102%	80%	120%				96%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Water Analysis - TSS

Total Suspended Solids 200 9411373 2 2 NA <1 86% 80% 120% NA 86% 80% 120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

1 sets

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E363626

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

PARAMETER AGAT S.O.P LITERATURE REFERENCE ANALYTICAL TECHNIQUE Trace Organics Analysis To-0542 EPA SW-846 8260 GC/MS Toluene TO-0542 EPA SW-846 8260 GC/MS Ethylbenzene TO-0542 EPA SW-846 8260 GC/MS Xylenes TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-G2-2 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200	SAMPLING SITE.		SAMPLED BY.	
Benzene TO-0542 EPA SW-846 8260 GC/MS Toluene TO-0542 EPA SW-846 8260 GC/MS Ethylbenzene TO-0542 EPA SW-846 8260 GC/MS Xylenes TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 351	PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Toluene TO-0542 EPA SW-846 8260 GC/MS Ethylbenzene TO-0542 EPA SW-846 8260 GC/MS Xylenes TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS WH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-G32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Phyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyren	Trace Organics Analysis		•	•
Ethylbenzene TO-0542 EPA SW-846 8260 GC/MS Xylenes TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/MS/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acradine TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 020	Benzene	TO-0542	EPA SW-846 8260	GC/MS
Xylenes TO-0542 EPA SW-846 8260 GC/MS Styrene TO-0542 EPA SW-846 8260 GC/MS VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Arrivacene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene <td< td=""><td>Toluene</td><td>TO-0542</td><td>EPA SW-846 8260</td><td>GC/MS</td></td<>	Toluene	TO-0542	EPA SW-846 8260	GC/MS
Styrene TO-0542 EPA SW-846 8260 GC/MS VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/MS/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Aceraline TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene	Ethylbenzene	TO-0542	EPA SW-846 8260	GC/MS
VH W6-10 TO-0542 B.C. ENVIRONMENT GC/FID VPH TO-0542 B.C. ENVIRONMENT GC/MS/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluora	Xylenes	TO-0542	EPA SW-846 8260	GC/MS
VPH TO-0542 B.C. ENVIRONMENT GC/MS/FID EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS <t< td=""><td>Styrene</td><td>TO-0542</td><td>EPA SW-846 8260</td><td>GC/MS</td></t<>	Styrene	TO-0542	EPA SW-846 8260	GC/MS
EPH (WC10-C19) TO 0511 B.C. ENVIRONMENT GC/FID EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]ayrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS	VH W6-10	TO-0542	B.C. ENVIRONMENT	GC/FID
EPH (WC19-C32) TO 0511 B.C. ENVIRONMENT GC/FID LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Ace aphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinolline TO 0200 EPA SW846 3511 & 8270 GC/MS	VPH	TO-0542	B.C. ENVIRONMENT	GC/MS/FID
LEPH (WC10-C19 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/MS	EPH (WC10-C19)	TO 0511	B.C. ENVIRONMENT	GC/FID
HEPH (WC19-C32 - PAH) TO 0511 B.C. ENVIRONMENT GC/FID Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO 0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/MS	EPH (WC19-C32)	TO 0511	B.C. ENVIRONMENT	GC/FID
Acenaphthene TO 0200 EPA SW846 3511 & 8270 GC/MS Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	LEPH (WC10-C19 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID
Acridine TO 0200 EPA SW846 3511 & 8270 GC/MS Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510 & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510 & 8270 GC/MS	HEPH (WC19-C32 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID
Anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510 C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510 C & 8270 GC/MS	Acenaphthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Chrysene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO 0200 EPA SW846 3511 & 8270 GC/MS To-Terphenyl (EPH) TO 0511 B.C. Environment GC/MS 0-Terphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Acridine	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluorene TO 0200 EPA SW846 3511 & 8270 GC/MS Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Naphthalene TO 0200 EPA SW846 3511 & 8270 GC/MS Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Chrysene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Phenanthrene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Fluorene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]anthracene TO 0200 EPA SW846 3511 & 8270 GC/MS Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Naphthalene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Phenanthrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluoranthene TO 0200 EPA SW846 3511 & 8270 GC/MS Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Benzo[a]anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Pyrene TO 0200 EPA SW846 3511 & 8270 GC/MS Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Benzo[a]pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Quinoline TO 0200 EPA SW846 3511 & 8270 GC/MS Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Fluoranthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Toluene-d8 (BTEX) TO-0543 BC Environment GC/MS o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
o-Terphenyl (EPH) TO 0511 B.C. ENVIRONMENT GC/FID 2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Quinoline	TO 0200	EPA SW846 3511 & 8270	GC/MS
2-Fluorobiphenyl (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	Toluene-d8 (BTEX)	TO-0543	BC Environment	GC/MS
p-Terphenyl-d14 (PAH) TO 0200 EPA SW846 3510C & 8270 GC/MS	o-Terphenyl (EPH)	TO 0511	B.C. ENVIRONMENT	GC/FID
	2-Fluorobiphenyl (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
Oil Content, Infrared ORG-170-5200 Method 5520C FTIR	p-Terphenyl-d14 (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
	Oil Content, Infrared	ORG-170-5200	Method 5520C	FTIR

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E363626
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Aluminum	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Antimony	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Beryllium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Boron	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Cadmium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP/MS
Total Chromium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Cobalt	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Copper	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Iron	INOR-171-6100, 171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Lead	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Lithium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Manganese	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Molybdenum	INOR-171-6202	SM 3030 E; SM 3125 B	ICP/MS
Total Nickel	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Selenium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Silicon	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Silver	INO-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Strontium	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Thallium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Tin	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Titanium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP/MS
Total Uranium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Vanadium	INORG-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Zinc	INORG-171-6202	SM 3030 E; SM 3125 B	ICP-MS
pH	INOR-171-6205	SM 4500 H+	PH METER
p - Alkalinity (as CaCO3)	INOR-171-6205	SM 2320 B	TITRATION
T - Alkalinity (as CaCO3)	INOR-171-6205	SM 2320 B	TITRATION
Bicarbonate	INOR-171-6205	SM 2320 B	PC TITRATE
Carbonate	INOR-171-6205	SM 2320 B	PC TITRATE
Hydroxide	INOR-171-6205	SM 2320 B	TITRATION
Electrical Conductivity	INOR-171-6205	SM 2510 B	CONDUCTIVITY METER
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Nitrite	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Nitrite-N	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate-N	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate+Nitrite - Nitrogen	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Sulfate	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Dissolved Calcium	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES
Dissolved Sodium	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES
Dissolved Iron	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Manganese	INOR-171-6201	SM 3120 B	ICP/OES
	2 v.		

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E363626

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Calculated TDS		SM 1030E	CALCULATION
Sodium Adsorption Ratio		CARTER & GREGORICH 2007	ICP/OES
Hardness		SM 3120 B	ICP/OES
Ion Balance		SM 1030E	CALCULATION
Total Suspended Solids	INORG-171-6102	SM 2540 D	GRAVIMETRIC

Matrix Se ENVIRONMEN				coc# 099	932	2		Lab A	Submit Agreen	ient n	0:	ACC	Γ	Page		01	
Invoice to:	Require Report Y_N_			Report to:				Lab J	lob ID:	7	18838	3636		- 1410		1400	
npany Name: ////////////////////////////////////	Solutions Payeble			utions - EDS 214 - 11th Avenue SW				Matrix	Projec	t#:	21	184.	346	57.88			
ress:	1 myre		The second second second	Alberta, Canada		100		Matrix	Proj. N	lame:	AKI	184 avic NI	Wal	0 7	cotor	ent	
		PC:	T2R 0K1					Locati	ion: /	Kla	ivile	NI	10	·	110	1	
ne / Fax#: Ph:	F	ax:	Ph: 403-2	37-0606	Fax: 403	263-249	3	Sampl	ler's Na	me(s):	K	16 /	nex	do F	(fx	0)	
# 21784-94b			email inv	oices to ap@matrix-solu	itions.cor	n	-					Analysis	Requi	ired			
ULATORY REQUIREMENTS: (check)	BC CSR	REGULAR REPORT DIST	ase ensure you conta Turnaround RIBUTION: always s	end to eds@matrix-solution	ns.com	com		whe	S	1 Motors	x forease	Hydroundons					D
Sample Number (14 digits only) yr-mth-day	Sample Point Name	Depth (m)	Sample Type	Date/Time Sampled	Quant	y # of Cor Bags		Ra	X	101	110	2					HOLD
2 +70, (LIQATITAD)			H20	July 17 7018	314	pags	O	Y	V	X	X	X			9410	RRC	
1109100111001			1120	1019 11 2012	/	3 2 2		~	^		1	_				1	
		7/2 9		The state of the s	/	4 /61		a summer					199 9 1997			previous and	
					//												
						ASSELL		ALCOHOL:		1 9			0.55		(100 FE)	Manue	TO VICE
					//										2017110		
					/		20 10 EV		1181								
					/					A FORE							
					/	A STATE OF THE STA	A DE LE	1.00	100						77, 85		
								1113									
					/										прими		
							The state of		flog V	V I	anipes					Tales .	
	CHINA CHENNELL		Mark to more		/						1918						
					/	Lui R			1				23.	1,78	IUL 16	12:	(
					/			78	120			Estable.			TO A TO		VI S
					/	17)8		11-150	1 1		VE.	10 mm		400			
Market Assemble of the second section of the section of the second section of the se						Description of the last of the	.l	1	1	1	1/	1/	//	11	1	1/	/
etals in water samples indicate if you w	ant Total (T) or Dissolved	d (D) as part of "A	natysis Required"	2410		Preserv	ed/Filtered	0	n	V		VV			Coul	411	12
ished by: re: NTS/SPECIAL INSTRUCTIONS	Intyre _	Date/Time:	2019 16,	W10	Receivo Signatu		49)	57(9			D	ate/Time	e:	SINC		10000 1 - 10000 H

SAMPLE INTEGRITY RECEIPT FORM

RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A if only Soil Bags Received
Company/Consultant: MATRIX	FROZEN (Please Circle if samples received Frozen)
Courier: CANADIAN N. Prepaid Collect	1 (Bottle/Jar) + 0++= 6 °C 2(Bottle/Jar) + + = 0°C
Waybill# 78-16V-32205/03	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++_=°C
	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C
Branch EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C
If multiple sites were submitted at once: Yes No	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr (eg) Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 186363626
TIME SENSITIVE ISSUES - Shipping ALREADY EXCEEDED HOLD TIME? Yes No Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Microtox , Ortho PO4 Tedlar Bag , Residual Chlorine , Chlorophyll* , Chloroamines* 155 Earliest Expiry: 14 TMM 1 & Hydrocarbons: Earliest Expiry 2 MM 8	Samples Damaged: Yes No If YES why? No Bubble Wrap Frozen Courier Other: Account Project Manager:have they been notified of the above issues: Yes No Whom spoken to: Date/Time: CPM Initial General Comments: Samples ONES ONE War receive braken
SAMPLE INTEGRITY - Shipping	(Non-sulvage). Gid for 0805 CD were broken-replaced with
Hazardous Samples: YES NO Precaution Taken:	new hid.
Legal Samples: Yes No	* Serding axasom CA, 2x40ml vials to CGY for
International Samples: Yes No	
Tape Sealed: Yes No	BC Hydrocarbons
Coolant Used: Icanack Bagged Ica Frontis Front Water Mana	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

CLIENT NAME: MATRIX SOLUTIONS INC. SUITE 600, 214 11 AVE SW CALGARY, AB T2R0K1 (403) 237-0606

ATTENTION TO: Accounts Payable

PROJECT: 21784-546 / Aklavik Water Treatment

AGAT WORK ORDER: 18E372699

TRACE ORGANICS REVIEWED BY: Elena Gorobets, Report Writer WATER ANALYSIS REVIEWED BY: Krystyna Krauze, Senior Analyst

DATE REPORTED: Aug 14, 2018

PAGES (INCLUDING COVER): 17

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

*NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

age 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Weeter Fourier Agricultural Leberatory Association (WEALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E372699

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

%

%

%

%

British Columbia CSR - Extended Site Remediation Analysis - Water SAMPLE TYPE: Water SAMPLE ID: 9466000 DATE RECEIVED: Aug 09, 2018 DATE SAMPLED: Aug 05, 2018 DATE REPORTED: Aug 14, 2018 SAMPLE DESCRIPTION: 21784180805001 **PARAMETER** G/S DATE PREPARED UNIT RESULT **RDL** DATE ANALYZED INITIAL < 0.0005 0.0005 Aug 14, 2018 OM Benzene mg/L Aug 13, 2018 Toluene mg/L <0.0003 0.0003 Aug 14, 2018 OM Aug 13, 2018 Ethylbenzene mg/L < 0.0005 0.0005 Aug 14, 2018 OM Aug 13, 2018 **Xylenes** < 0.0005 0.0005 Aug 14, 2018 OM Aug 13, 2018 mg/L < 0.0005 Styrene mg/L 0.0005 Aug 14, 2018 OM Aug 13, 2018 VH W6-10 mg/L < 0.1 0.1 Aug 14, 2018 OM Aug 13, 2018 VPH mg/L < 0.1 0.1 Aug 14, 2018 OM Aug 13, 2018 EPH (WC10-C19) 0.2 0.1 OP mg/L Aug 13, 2018 Aug 13, 2018 EPH (WC19-C32) mg/L 0.2 0.1 Aug 13, 2018 OP Aug 13, 2018 LEPH (WC10-C19 - PAH) mg/L 0.2 0.1 Aug 13, 2018 SYS Aug 13, 2018 HEPH (WC19-C32 - PAH) 0.2 0.1 Aug 13, 2018 SYS Aug 13, 2018 mg/L < 0.00001 0.00001 Acenaphthene Aug 13, 2018 TD Aug 13, 2018 mg/L 0.00005 < 0.00005 TD Acridine mg/L Aug 13, 2018 Aug 13, 2018 < 0.000010 Anthracene mg/L 0.000010 Aug 13, 2018 TD Aug 13, 2018 Chrysene mg/L < 0.00001 0.00001 Aug 13, 2018 TD Aug 13, 2018 Aug 13, 2018 Fluorene mg/L < 0.00001 0.00001 Aug 13, 2018 TD TD Naphthalene < 0.00001 0.00001 Aug 13, 2018 Aug 13, 2018 mg/L Phenanthrene < 0.00001 0.00001 Aug 13, 2018 TD Aug 13, 2018 mg/L Benzo[a]anthracene < 0.00001 TD mg/L 0.00001 Aug 13, 2018 Aug 13, 2018 Aug 13, 2018 Benzo[a]pyrene < 0.000007 0.000007 TD mg/L Aug 13, 2018 < 0.00001 TD Fluoranthene mg/L 0.00001 Aug 13, 2018 Aug 13, 2018 Pyrene mg/L < 0.00001 0.00001 Aug 13, 2018 TD Aug 13, 2018 Quinoline mg/L < 0.00004 0.00004 Aug 13, 2018 TD Aug 13, 2018 **SURROGATE** UNIT **RESULT ACCEPTABLE LIMITS** DATE ANALYZED INITIAL DATE PREPARED

Certified By:

96

105

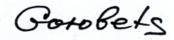
117

120

Aug 14, 2018

Aug 14, 2018

Aug 13, 2018


Aug 13, 2018

50-150

50-150

50-150

50-150

OM

OP

TD

TD

Toluene-d8 (BTEX)

o-Terphenyl (EPH)

2-Fluorobiphenyl (PAH)

p-Terphenyl-d14 (PAH)

Aug 13, 2018

Aug 13, 2018

Aug 13, 2018

Aug 13, 2018

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E372699

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9466000 DATE RECEIVED: Aug 09, 2018

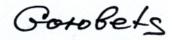
DATE SAMPLED: Aug 05, 2018 DATE REPORTED: Aug 14, 2018

SAMPLE DESCRIPTION: 21784180805001

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.


VPH results have been corrected for BTEX contributions.

LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

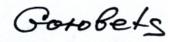
Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E372699

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable


SAMPLING SITE: SAMPLED BY:

	C	il and Grea	se in Water	(FTIR)			
SAMPLE TYPE: Water	SAMPLE I	D: 9466000		DATE	RECEIVED: Aug 0	9, 2018	
DATE SAMPLED: Aug 05, 2018				DATE	REPORTED: Aug	14, 2018	
SAMPLE DESCRIPTION: 2178418080	5001						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Oil Content, Infrared	mg/L	0.4	·	0.2	Aug 13, 2018	AR	Aug 13, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E372699

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Schedule 6 Total Metals SAMPLE TYPE: Water SAMPLE ID: 9466000 DATE RECEIVED: Aug 09, 2018 DATE REPORTED: Aug 14, 2018 DATE SAMPLED: Aug 05, 2018 SAMPLE DESCRIPTION: 21784180805001 G/S DATE PREPARED **PARAMETER** UNIT RESULT **RDL** DATE ANALYZED INITIAL 0.004 Aug 14, 2018 Total Aluminum mg/L 0.053 AS Aug 14, 2018 **Total Antimony** mg/L < 0.001 0.001 Aug 14, 2018 AS Aug 14, 2018 Total Arsenic mg/L 0.001 0.001 Aug 14, 2018 AS Aug 14, 2018 **Total Barium** Aug 14, 2018 Aug 14, 2018 mg/L < 0.05 0.05 AS Total Beryllium mg/L < 0.0005 0.0005 Aug 14, 2018 AS Aug 14, 2018 **Total Boron** mg/L 0.35 0.01 Aug 14, 2018 AS Aug 14, 2018 < 0.000016 **Total Cadmium** mg/L 0.000016 Aug 14, 2018 AS Aug 14, 2018 **Total Calcium** KD mg/L 151 0.3 Aug 13, 2018 Aug 13, 2018 **Total Chromium** mg/L < 0.0005 0.0005 Aug 14, 2018 AS Aug 14, 2018 **Total Cobalt** mg/L < 0.0009 0.0009 Aug 14, 2018 AS Aug 14, 2018 **Total Copper** 0.0039 0.0008 Aug 14, 2018 AS Aug 14, 2018 mg/L KD Total Iron 4.3 0.1 Aug 13, 2018 Aug 13, 2018 mg/L Total Lead mg/L 0.0006 0.0005 Aug 14, 2018 AS Aug 14, 2018 0.009 Total Lithium mg/L 0.001 Aug 14, 2018 AS Aug 14, 2018 **Total Magnesium** mg/L 43.0 0.2 Aug 13, 2018 KD Aug 13, 2018 **Total Manganese** mg/L 0.176 0.005 Aug 13, 2018 KD Aug 13, 2018 PS **Total Mercury** < 0.000025 0.000025 Aug 15, 2018 Aug 15, 2018 mg/L Total Molybdenum 0.002 Aug 14, 2018 AS Aug 14, 2018 mg/L 0.001 Total Nickel Aug 14, 2018 mg/L 0.0040.003 Aug 14, 2018 AS **Total Selenium** Aug 14, 2018 mg/L < 0.0005 0.0005 Aug 14, 2018 AS Total Silver < 0.0001 mg/L 0.0001 Aug 14, 2018 AS Aug 14, 2018 **Total Sodium** mg/L 7.7 0.6 Aug 13, 2018 KD Aug 13, 2018 **Total Thallium** mg/L < 0.0001 0.0001 Aug 14, 2018 AS Aug 14, 2018 Total Titanium mg/L 0.002 0.001 Aug 14, 2018 AS Aug 14, 2018 **Total Uranium** 0.003 0.001 Aug 14, 2018 AS Aug 14, 2018 mg/L

Total Zinc COMMENTS:

Total Vanadium

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Method Detection Limit.

Certified By:

0.001

0.323

mg/L

mg/L

Aug 14, 2018

Aug 14, 2018

AS

AS

0.001

0.001

Page 5 of 17

Aug 14, 2018

Aug 14, 2018

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E372699

PROJECT: 21784-546 / Aklavik Water Treatment

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Routine Chemistry Water Analysis

SAMPLE TYPE: Water SAMPLE ID: 9466000 DATE RECEIVED: Aug 09, 2018

DATE SAMPLED: Aug 05, 2018			DATE REPORTED: Aug 14, 2018							
SAMPLE DESCRIPTION: 217841	80805001									
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
рН	pH Units	8.21	7.0-10.5	N/A	Aug 14, 2018	KT	Aug 14, 2018			
p - Alkalinity (as CaCO3)	mg/L	<5		5	Aug 14, 2018	KT	Aug 14, 2018			
T - Alkalinity (as CaCO3)	mg/L	159		5	Aug 14, 2018	KT	Aug 14, 2018			
Bicarbonate	mg/L	194		5	Aug 14, 2018	KT	Aug 14, 2018			
Carbonate	mg/L	<5		5	Aug 14, 2018	KT	Aug 14, 2018			
Hydroxide	mg/L	<5		5	Aug 14, 2018	KT	Aug 14, 2018			
Electrical Conductivity	uS/cm	987		5	Aug 14, 2018	KT	Aug 14, 2018			
Chloride	mg/L	3.2	(250)	0.6	Aug 13, 2018	JM	Aug 13, 2018			
Fluoride	mg/L	0.18	1.5	0.01	Aug 13, 2018	JM	Aug 13, 2018			
Nitrate	mg/L	<0.08	45	0.08	Aug 13, 2018	JM	Aug 13, 2018			
Nitrate-N	mg/L	<0.02	10	0.02	Aug 13, 2018	SYS	Aug 13, 2018			
Nitrite	mg/L	< 0.03	3	0.03	Aug 13, 2018	JM	Aug 13, 2018			
Nitrite-N	mg/L	<0.01	1	0.01	Aug 13, 2018	SYS	Aug 13, 2018			
Sulfate	mg/L	366	(500)	0.6	Aug 13, 2018	JM	Aug 13, 2018			
Dissolved Calcium	mg/L	145		0.3	Aug 15, 2018	ΙP	Aug 15, 2018			
Dissolved Magnesium	mg/L	44.2		0.2	Aug 15, 2018	IP	Aug 15, 2018			
Dissolved Sodium	mg/L	7.7	(200)	0.6	Aug 15, 2018	IP	Aug 15, 2018			
Dissolved Potassium	mg/L	4.0		0.6	Aug 15, 2018	IP	Aug 15, 2018			
Dissolved Iron	mg/L	<0.1	(0.3)	0.1	Aug 15, 2018	IP	Aug 15, 2018			
Dissolved Manganese	mg/L	0.113	0.05	0.005	Aug 15, 2018	ΙP	Aug 15, 2018			
Ion Balance	%	104		1	Aug 15, 2018	SYS	Aug 15, 2018			
Hardness	mg CaCO3/L	544		0.5		SYS				
Nitrate + Nitrite - Nitrogen	mg/L	< 0.02		0.02		SYS				
Calculated TDS	mg/L	666		1		SYS				

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

	Water Analysis - TSS												
SAMPLE TYPE: Water	SAMPLE I	D: 9466000		DATE	RECEIVED: Aug 0	9, 2018							
DATE SAMPLED: Aug 05, 2018 DATE REPORTED: Aug 14, 2018													
SAMPLE DESCRIPTION: 2178418080	05001												
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED						
Total Suspended Solids	mg/L	18		2	Aug 15, 2018	KT	Aug 15, 2018						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Oil Content, Infrared

Quinoline

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

70% 130%

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699 PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

274

SAMPLING SITE: SAMPLED BY:

272

Trace Organics Analysis															
RPT Date: Aug 14, 2018 DUPLICATE							REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	TER Batch Sample Dup #1 Dup #2 RF)up #1 Dup #2 RPI			Method Blank	Measured		ptable nits	Recovery	Lir	ptable nits	Recovery	Lin	ptable nits	
.,		Id Dup #1 Dup #2 KFD				Value	Lower	Upper	,		Upper			Upper	
Oil and Grease in Water (FTIR)															

1.0%

< 0.2

93%

70% 130%

109%

70% 130% 113%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated

463

346

Comments: If the RPD value is NA,	ne results	s of the duplicates are	under 5X the	RDL ar	na will not be	calculate	ea.							
British Columbia CSR - Extended	Site Rer	mediation Analysis	- Water											
Benzene	3187	9465653 < 0.0005	< 0.0005	NA	< 0.0005	113%	80%	120%	111%	80%	120%	109%	70%	130%
Toluene	3187	9465653 < 0.0003	3 < 0.0003	NA	< 0.0003	104%	80%	120%	104%	80%	120%	110%	70%	130%
Ethylbenzene	3187	9465653 < 0.0005	< 0.0005	NA	< 0.0005	108%	80%	120%	85%	80%	120%	80%	70%	130%
Xylenes	3187	9465653 < 0.0005	< 0.0005	NA	< 0.0005	118%	80%	120%	90%	80%	120%	102%	70%	130%
Styrene	3187	9465653 < 0.0005	< 0.0005	NA	< 0.0005	104%	80%	120%	88%	80%	120%	93%	70%	130%
VH W6-10	3187	9465653 < 0.1	< 0.1	NA	< 0.1	94%	80%	120%	97%	80%	120%	100%	70%	130%
EPH (WC10-C19)	208	9465655 < 0.1	0.1	NA	< 0.1	111%	80%	120%	97%	80%	120%	107%	70%	130%
EPH (WC19-C32)	208	9465655 < 0.1	0.2	NA	< 0.1	111%	80%	120%	83%	80%	120%	102%	70%	130%
Acenaphthene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	99%	70%	130%	98%	70%	130%	95%	70%	130%
Acridine	1726	9465653 < 0.00008	5 <0.00005	NA	< 0.00005	87%	70%	130%	96%	70%	130%	108%	70%	130%
Anthracene	1726	9465653 <0.0000	1 <0.00001	NA	< 0.000010	84%	70%	130%	83%	70%	130%	86%	70%	130%
Chrysene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	97%	70%	130%	92%	70%	130%	95%	70%	130%
Fluorene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	96%	70%	130%	92%	70%	130%	91%	70%	130%
Naphthalene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	100%	70%	130%	94%	70%	130%	95%	70%	130%
Phenanthrene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	95%	70%	130%	96%	70%	130%	95%	70%	130%
Benzo[a]anthracene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	86%	70%	130%	85%	70%	130%	85%	70%	130%
Benzo[a]pyrene	1726	9465653 < 0.00000	7 < 0.000007	NA	< 0.000007	79%	70%	130%	78%	70%	130%	86%	70%	130%
Fluoranthene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	89%	70%	130%	89%	70%	130%	95%	70%	130%
Pyrene	1726	9465653 < 0.0000	1 <0.00001	NA	< 0.00001	98%	70%	130%	93%	70%	130%	97%	70%	130%

NA

< 0.00004 86%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

1726

9465653 < 0.00004 < 0.00004

Certified By:

70%

130%

104%

70%

130%

120%

70% 130%

Gorobeta

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 17

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

				Wate	er An	alysi	is								
RPT Date: Aug 14, 2018			DUPLICATE				REFERENCE MATERIAL		TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank		Acceptable Limits		Recovery		ptable nits	Recovery		ptable
		lu					value	Lower	Upper		Lower	Upper		Lower	Upper
Matrix Solutions Routine Chemis	stry Water A	Analysis													
рН	9466000	9466000	8.21	8.23	0.2%	N/A	100%	90%	110%						
T - Alkalinity (as CaCO3)	9466000	9466000	159	161	1.3%	< 5	103%	80%	120%						
Electrical Conductivity	9466000	9466000	987	993	0.6%	< 5	106%	80%	120%						
Chloride	9466000	9466000	3.2	3.1	3.2%	< 0.6	100%	80%	120%	99%	80%	120%	103%	80%	120%
Fluoride	9466000	9466000	<0.06	<0.06	NA	< 0.01	96%	80%	120%	90%	80%	120%	99%	80%	120%
Nitrate	9466000 9	9466000	<0.40	<0.40	NA	< 0.08	102%	80%	120%	100%	80%	120%	106%	80%	120%
Nitrite	9466000	9466000	<0.20	< 0.20	NA	< 0.03	100%	80%	120%	96%	80%	120%	103%	80%	120%
Sulfate	9466000	9466000	366	367	0.3%	< 0.6	99%	80%	120%	99%	80%	120%	NA	80%	120%
Dissolved Calcium	9472640		80.4	79.5	1.1%	< 0.3	107%	80%	120%	104%	80%	120%	NA	80%	120%
Dissolved Magnesium	9472640		29.9	31.5	5.2%	< 0.2	100%	80%	120%	98%	80%	120%	NA	80%	120%
Dissolved Sodium	9472640		38.6	38.1	1.3%	< 0.6	102%	80%	120%	100%	80%	120%	NA	80%	120%
Dissolved Potassium	9472640		3.3	3.3	0.0%	< 0.6	91%	80%	120%	93%	80%	120%	107%	80%	120%
Dissolved Iron	9472640		<0.1	<0.1	NA	< 0.1	104%	80%	120%	99%	80%	120%	99%	80%	120%
Dissolved Manganese	9472640		<0.005	<0.005	NA	< 0.005	102%	80%	120%	96%	80%	120%	96%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

pH has been analyzed past the recommended holding time of 15 minutes from sampling (field measurement ideal if more accurate data required)

Nitrate and Nitrite: The regulatory hold time for the analysis of nitrate and/or nitrite in water is 72 hours.

British Columbia CSR - Schedule 6 Total Metals Total Aluminum 0.303 0.312 120% 9454480 2.9% < 0.004 89% 80% 120% 96% 80% 120% NA 80% **Total Antimony** 9454480 < 0.001 < 0.001 NA < 0.001 107% 80% 120% 101% 80% 120% 109% 80% 120% Total Arsenic 9454480 0.002 0.002 NA < 0.001 106% 80% 120% 101% 80% 120% 109% 80% 120% **Total Barium** 9454480 0.17 0.18 NA < 0.05 112% 80% 120% 105% 80% 120% 110% 120% 80% Total Beryllium 9454480 < 0.0005 < 0.0005 < 0.0005 97% 80% 99% 80% 120% 108% 120% NA 120% 80% Total Boron 120% 9454480 0.03 0.03 NA < 0.01 83% 80% 120% 107% 80% 120% 106% 80% Total Cadmium < 0.000016 9454480 <0. 0.000051 NA 106% 80% 120% 99% 80% 120% 105% 80% 120% Total Calcium 9459395 65.7 68.2 3.7% < 0.3 101% 80% 120% 105% 80% 120% NA 80% 120% **Total Chromium** 9454480 < 0.0005 < 0.0005 NA < 0.0005 98% 80% 120% 100% 80% 120% 105% 80% 120% **Total Cobalt** 9454480 < 0.0009 < 0.0009 NA < 0.0009 99% 80% 120% 103% 80% 120% 105% 80% 120% **Total Copper** 9454480 0.0059 0.0014 < 0.0008 102% 80% 120% 101% 80% 120% 95% 80% 120% NA Total Iron 9459395 < 0.1 < 0.1 NA < 0.1 96% 80% 120% 95% 80% 120% 93% 80% 120% Total Lead 9454480 < 0.0005 0.0005 NA < 0.0005 103% 80% 120% 104% 80% 120% 106% 80% 120% Total Lithium 9454480 0.043 0.052 18.9% < 0.001 100% 80% 120% 99% 80% 120% 76% 80% 120% Total Magnesium 9459395 28.8 30.4 5.4% < 0.2 94% 80% 120% 100% 80% 120% NA 80% 120% Total Manganese 120% 9459395 0.007 0.007 NA < 0.005 99% 80% 120% 100% 80% 120% 97% 80% Total Mercury < 0.000025 104% 90% 101% 116% 80% 120% 9466000 9466000 <0 <0 NA 110% 90% 110% Total Molvbdenum 120% 9454480 0.002 0.002 NA < 0.001 101% 80% 120% 99% 80% 120% 104% 80% Total Nickel 9454480 < 0.003 < 0.003 NA < 0.003 99% 80% 120% 102% 80% 120% 103% 80% 120%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 17

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Water Analysis (Continued)															
RPT Date: Aug 14, 2018	UPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE				
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Lin	ptable nits	Recovery		ptable nits
		Id	·	·			value	Lower	Upper		Lower	Upper		Lower	Upper
Total Selenium	9454480		<0.0005	<0.0005	NA	< 0.0005	99%	80%	120%	102%	80%	120%	98%	80%	120%
Total Silver	9454480		0.0003	0.0002	NA	< 0.0001	89%	80%	120%	74%	80%	120%	98%	80%	120%
Total Sodium	9459395		36.8	38.0	3.2%	< 0.6	94%	80%	120%	102%	80%	120%	NA	80%	120%
Total Thallium	9454480		<0.0001	<0.0001	NA	< 0.0001	99%	80%	120%	100%	80%	120%	102%	80%	120%
Total Titanium	9454480		0.001	0.001	NA	< 0.001	95%	80%	120%	91%	80%	120%	99%	80%	120%
Total Uranium	9454480		<0.001	<0.001	NA	< 0.001	103%	80%	120%	101%	80%	120%	105%	80%	120%
Total Vanadium	9454480		0.001	0.002	NA	< 0.001	96%	80%	120%	102%	80%	120%	105%	80%	120%
Total Zinc	9454480		0.029	0.025	14.8%	< 0.001	96%	80%	120%	98%	80%	120%	92%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

With multi element scans a maximum of 10%, including non-reported elements, for each QC criteria may fail to an absolute maximum of 10%.

Water Analysis - TSS

Total Suspended Solids 9460032 <2 <2 NA <2 102% 80% 120% 100% 80% 120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

QA Violation

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

RPT Date: Aug 14, 2018			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
			Value	Lower	Upper		Lower	Upper	,	Lower	Upper
British Columbia CSR - Schedule 6 Total	Metals										,

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

With multi element scans a maximum of 10%, including non-reported elements, for each QC criteria may fail to an absolute maximum of 10%.

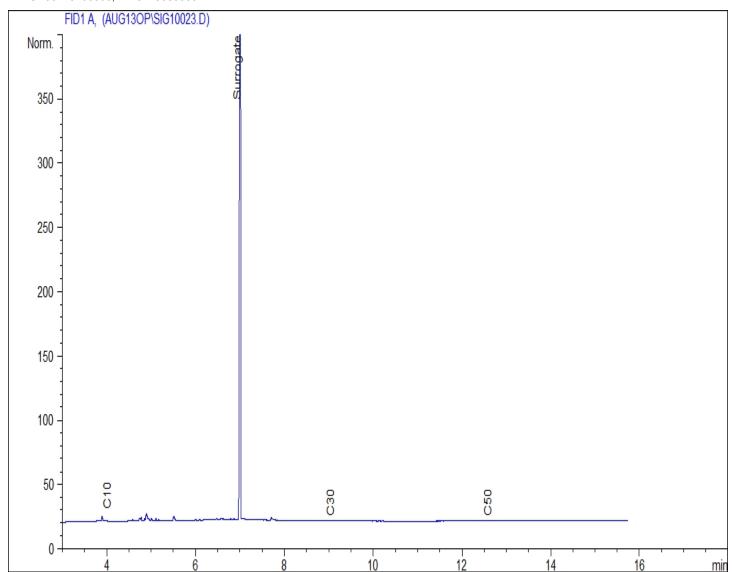
Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

SAMPLING SITE.		SAMPLED D1.							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Trace Organics Analysis	·	·	•						
Benzene	TO-0542	EPA SW-846 5021/8260 & B.C. ENVIRONMENT	GC/MS						
Toluene TO-0542		EPA SW-846 5021/8260 & B.C. ENVIRONMENT	GC/MS						
Ethylbenzene	zene TO-0542 EPA SW-846 5021/8260 & B.C ENVIRONMENT		GC/MS						
Xylenes	TO-0542	EPA SW-846 5021/8260 & B.C. ENVIRONMENT	GC/MS						
Styrene	TO-0542	EPA SW-846 5021/8260 & B.C. ENVIRONMENT	GC/MS						
VH W6-10	TO-0542	EPA SW-846 5021 & B.C. ENVIRONMENT	GC/FID						
VPH	TO-0542	EPA SW-846 5021 & B.C. ENVIRONMENT	GC/MS/FID						
EPH (WC10-C19)	TO 0511	B.C. ENVIRONMENT	GC/FID						
EPH (WC19-C32)	TO 0511	B.C. ENVIRONMENT	GC/FID						
LEPH (WC10-C19 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID						
HEPH (WC19-C32 - PAH)	TO 0511	B.C. ENVIRONMENT	GC/FID						
Acenaphthene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Acridine	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Chrysene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Fluorene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Naphthalene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Phenanthrene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Benzo[a]anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Benzo[a]pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Fluoranthene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Quinoline	TO 0200	EPA SW846 3511 & 8270	GC/MS						
Toluene-d8 (BTEX)	TO-0543	EPA SW-846 5021/8260 & B.C. ENVIRONMENT	GC/MS						
o-Terphenyl (EPH)	TO 0511	B.C. ENVIRONMENT	GC/FID						
2-Fluorobiphenyl (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS						
p-Terphenyl-d14 (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS						
Oil Content, Infrared	TO-2200	Method 5520C	FTIR						

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable


SAMPLING SITE.		SAMPLED BY.	_					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis								
Total Aluminum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS					
Total Antimony	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Arsenic	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Barium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Beryllium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Boron	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Cadmium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Calcium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES					
Total Chromium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Cobalt	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Copper	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Iron	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES					
Total Lead	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Lithium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS					
Total Magnesium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES					
Total Manganese	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES					
Total Mercury	WATR 0200; INST 0160	SM 3030 E; SM 3112 B TW	CV/AA					
Total Molybdenum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS					
Total Nickel	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Selenium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Silver	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Sodium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES					
Total Thallium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Titanium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Uranium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Vanadium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
Total Zinc	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS					
pH	INST 0101	SM 4500 H+	pH METER					
p - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION					
T - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION					
Bicarbonate	INST 0101	SM 2320 B	PC TITRATE					
Carbonate	INST 0101	SM 2320 B	PC TITRATE					
Hydroxide	INST 0101	SM 2320 B	TITRATION					
Electrical Conductivity	INST 0101	SM 2510 B	CONDUCTIVITY METER					
Chloride	INST 0150	SM 4110 B	ION CHROMATOGRAPH					
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH					
	INST 0150	SM 4110 B	ION CHROMATOGRAPH					
Nitrate Nitrate-N	INST 0150	SM 4110 B	CALCULATION					
Nitrite	INST 0150	SM 4110 B	ION CHROMATOGRAPH					
Nitrite-N Sulfate	INST 0150	SM 4110 B	CALCULATION					
	INST 0150 INST 0140	SM 4110 B	ION CHROMATOGRAPH					
Dissolved Calcium		SM 3120 B	ICP/OES					
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES					
Dissolved Sodium	INST 0140	SM 3120 B	ICP/OES					
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES					
Dissolved Iron	INST 0140	SM 3120 B	ICP/OES					
Dissolved Manganese	INST 0140	SM 3120 B	ICP/OES					
Ion Balance	WATE COOL	SM 1030E	ODAN WASTEN					
Total Suspended Solids	WATR 0600	SM 2540 D	GRAVIMETRIC					

Chromatogram Image

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E372699
PROJECT: 21784-546 / Aklavik Water Treatment ATTENTION TO: Accounts Payable

IMAGE001: 9466000, 21784180805001

ENVIRONMENT & ENGINEED Invoice to: Require Report: Y: N:				Сору	Copy of Report to:					Lab Agreement No.: 18E37244												
	Matrix Solutions I	nc			Solutions - Environmenta		rvices (EDS)	r				70 4 F I	_								
tact Name:	Accounts Payable			1000100-000	00, 214 - 11th Avenue SV	V					ject#:		784-54		FOO.51 A.L.		_					
iress:					y Alberta Canada				Matrix Proj. Name: Aklavik Water Treatment Location: Aklavik, NT													
/ 4.	701		PC:	T2R Ok	3-237-0606	C-11402	263-2493	-			Vame:		le Mey	nok.		_						
one/Fax #:	Ph		Fax.	Ph: 40	3-237-0000	rax.403-4	(03-2433		Samp	iei s i	varrie.	Ky	ic ivicy	301					_			
#: 21784-5	46											F	nalysis	Requ	ired						9 .	7 = E
SULATORY RE	QUIREMENTS: (che	ck):	SERVICE REQUE	STED: (check):					1 1		- 1						9	4.0	AHI	o ak	-	271-25
Alberta Tier	. 1		RUSH (PI	ease ensure vou co	ntact the lab): Due Date:													10	AU(2 번	2 4	9:6
Alberta SWI				Turnaround	(mmm dd				1 1	- 1	- 1											
			-		,																	
Canadian Di	rinking Water				s send to eds@matrix-so	lutions.co	m		1 1										- 1			
CCME FAL				smcIntyre@matrix	solutions.com								,							Lab Sampie Number		
SPIGEC			Emails									Oil and Grease	5							Fig.		
SEQG	BC CSF	₹						27			<u>s</u>	E GS						- 1		<u>e</u>		
Other.									_ n	- 1	let:	5	2							윤		
Fami	ple Number	Sample Point			Date/Time Sampled	0	uantity# c	.f	ξ		=		2					- 1		Sa	او	
The second of th	eruzinieto vinaconi	Name	Depth (m)	Sample Type	(mmm dd yyyy)	Jars		Bottles	Routine	155	Total Metals	Oil and Grease	₹							- G	HOLD	- 0
	only) yr-mth-day	Name	-	141-4		0	0	9				25						0	IZI	00	100	(2)
	4050818001			Water	5-Aug-18	0	U	9	\wedge	\hookrightarrow	\sim	~	-	-		_		-1		7		
										-	-	-				-	-	-		-	-	ĺ
									-	_	_		_	-	_	_	_	-	\rightarrow	_	-	
																			\perp	_	_	
																						į.
1																						
			-									_										ĺ
			-					t	\vdash	-	_	+	_	-				-				Ė
								-	+	-			-		-	-	-	-		\rightarrow		Ė
								ļ	\vdash			-	_	-	_	_		-	_	\rightarrow	_	
												_								_		
2																						1
3																						
																						1
;			1									_										ĺ
	tor commiss in dis-	o if you want Tata	I/T) or Discolused	N ac part of Analy	ric Pormirod*		Preserved,	Elltered		1	1	/	//	1	/	/	/	1				î.
	iter samples indica	te ii you want Tota	i(i) or Dissolvea(i	as part of Analy	sis kequirea		rieserveu	rintered				/				/					_	Į.
r metals in wa								agan					Date					3	1901	- 1		

C 32728

SAMPLE INTEGRITY RECEIPT **FORM**

AGAT Laboratories

	
RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A it only Soil Bags Received
Company/Consultant: Matrix	FROZEN (Please Circle if samples received Frozen)
Courier: Canadian North Cargo Prepaid : Collect	1(Bottle/Jar) + + + = - °C 2(Bottle/Jar) + + = - °C
	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++_=°C
Waybill# 518 - YEV - 3230 5254	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C
Branch EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++_=°C
If multiple sites were submitted at once: Yes	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Rep Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 18# 372699
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
	No Bubble Wrap Frozen Courier '18 AUG 09 10:03
ALREADY EXCEEDED HOLD TIME? Yes (No)	Other:
Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity ,	Account Project Manager:have they been notified of the above issues: Yes No
Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*, Chloroamines*	Whom spoken to: Date/Time:
Earliest Every Aug 17 726	CPM Initial
Earliest Expiry: Aug. 17208	
Hydrocarbons: Earliest Expiry	General Comments:
SAMPLE INTEGRITY - Shipping	
Hazardous Samples: YES NO Precaution Taken:	
Legal Samples: Yes No	
International Samples: Yes (No	
Tape Sealed: Yes No	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

AGAT Laboratories

SAMPLE INTEGRITY RECEIPT FORM

The second secon	
RECEIVING BASICS - Shipping	Temperature (Sottles) Jars only) N/A if only Soil Bags Received
Company/Consultant:	FROZEN (Please Circle if samples received Frozen)
Courier: Prepaid Collect	1 (Bottle/Jar) <u>3.9</u> + <u>3.9</u> + = <u>5.9</u> °C 2(Bottle/Jar)++=°C
	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++_=°C
	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C
Branch: DM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C
If multiple sites were submitted at once: (Yes) No	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++_=°C
Custody Seal Intact: Yes No (NA)	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 12E 37Z 699
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? (Yes) No	Other:
Inorganic Tests (Please Circle): Mibi, BOD Nitrate/Nitrite Turbidity, Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
Earliest Expiry: 8 - NOG - 18	CPM Initial
Hydrocarbons: Earliest Expiry	General Comments:
SAMPLE INTEGRITY - Shipping	
Hazardous Samples: YES 😡 Precaution Taken:	
Legal Samples: Yes	
International Samples: Yes 😡	
Tape Sealed: Yes No	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

CLIENT NAME: MATRIX SOLUTIONS INC. SUITE 600, 214 11 AVE SW CALGARY, AB T2R0K1 (403) 237-0606

ATTENTION TO: Accounts Payable

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

TRACE ORGANICS REVIEWED BY: Violet Yu, Lab Coordinator WATER ANALYSIS REVIEWED BY: Violet Yu, Lab Coordinator

DATE REPORTED: Sep 26, 2018

PAGES (INCLUDING COVER): 13

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

<u>*NOTES</u>

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 13

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Oil and Grease in Water (FTIR) SAMPLE ID: 9565735 SAMPLE TYPE: Water DATE RECEIVED: Sep 20, 2018 DATE SAMPLED: Sep 01, 2018 DATE REPORTED: Sep 26, 2018 SAMPLE DESCRIPTION: 21784180901001 **PARAMETER RESULT** G/S DATE PREPARED UNIT **RDL** DATE ANALYZED INITIAL 0.2 Oil Content, Infrared Sep 24, 2018 FΚ mg/L 0.6 Sep 24, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Matrix Total Metals Scan in Water SAMPLE TYPE: Water SAMPLE ID: 9565735 DATE RECEIVED: Sep 20, 2018 DATE REPORTED: Sep 26, 2018 DATE SAMPLED: Sep 01, 2018 SAMPLE DESCRIPTION: 21784180901001 DATE PREPARED **PARAMETER** UNIT RESULT G/S **RDL** DATE ANALYZED INITIAL 0.1 0.004 Sep 24, 2018 Total Aluminum mg/L 0.031 LK Sep 24, 2018 **Total Antimony** mg/L < 0.001 0.006 0.001 Sep 24, 2018 LK Sep 24, 2018 Total Arsenic mg/L < 0.001 0.005 0.001 Sep 24, 2018 LK Sep 24, 2018 **Total Barium** Sep 24, 2018 LK Sep 24, 2018 mg/L < 0.05 1 0.05 Total Beryllium mg/L < 0.001 0.001 Sep 24, 2018 LK Sep 24, 2018 Sep 24, 2018 **Total Boron** mg/L 0.33 0.01 Sep 24, 2018 LK 0.00009 **Total Cadmium** mg/L 0.000021 0.000016 Sep 24, 2018 LK Sep 24, 2018 **Total Chromium** < 0.001 Sep 24, 2018 Sep 24, 2018 mg/L 0.001 LK **Total Cobalt** mg/L < 0.001 0.001 Sep 24, 2018 LK Sep 24, 2018 **Total Copper** mg/L 0.008 0.007 0.001 Sep 24, 2018 LK Sep 24, 2018 0.3 Sep 24, 2018 ΖY Sep 24, 2018 Total Iron mg/L 1.6 0.1 0.0019 0.010 0.0005 LK Total Lead Sep 24, 2018 Sep 24, 2018 mg/L LK Sep 24, 2018 Total Lithium mg/L 0.008 0.001 Sep 24, 2018 **Total Manganese** mg/L 0.059 0.05 0.005 Sep 24, 2018 ZY Sep 24, 2018 Total Molybdenum mg/L 0.002 0.001 Sep 24, 2018 LK Sep 24, 2018 Total Nickel mg/L < 0.003 **VARIABLE** 0.003 Sep 24, 2018 LK Sep 24, 2018 Total Selenium Sep 24, 2018 Sep 24, 2018 < 0.0005 0.001 0.0005 LK mg/L Total Silicon 0.032 Sep 24, 2018 ZY Sep 24, 2018 mg/L 1.75 Total Silver mg/L 0.00005 0.0001 0.00005 Sep 24, 2018 ΙK Sep 24, 2018 **Total Strontium** Sep 24, 2018 Sep 24, 2018 mg/L 0.391 0.001 ZY Total Thallium mg/L < 0.0005 0.0005 Sep 24, 2018 ΙK Sep 24, 2018 Total Tin mg/L < 0.003 0.003 Sep 24, 2018 LK Sep 24, 2018 **Total Titanium** mg/L < 0.03 0.03 Sep 24, 2018 LK Sep 24, 2018 **Total Uranium** mg/L 0.003 0.01 0.001 Sep 24, 2018 LK Sep 24, 2018 Total Vanadium <0.001 0.001 Sep 24, 2018 Sep 24, 2018 mg/L LK 0.32 0.03 Total Zinc mg/L 0.01 Sep 24, 2018 ΙK Sep 24, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Alberta Tier 1 - Groundwater - Agricultural - Coarse Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

< - Values refer to Method Detection Limit.

Value verified with repeat analysis

Certificate of Analysis

Routine Chemistry Water Analysis

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E388142

PROJECT: 21784-546 / Aklavik NT

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

SAMPLE TYPE: Water SAMPLE ID: 9565735	DATE RECEIVED: Sep 20, 2018

DATE SAMPLED: Sep 01, 2018			DATE REPORTED: Sep 26, 2018								
SAMPLE DESCRIPTION: 2178418	30901001										
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED				
pH	pH Units	7.98		NA	Sep 22, 2018	VD	Sep 22, 2018				
p - Alkalinity (as CaCO3)	mg/L	<5		5	Sep 22, 2018	VD	Sep 22, 2018				
T - Alkalinity (as CaCO3)	mg/L	139		5	Sep 22, 2018	VD	Sep 22, 2018				
Bicarbonate	mg/L	170		5	Sep 22, 2018	VD	Sep 22, 2018				
Carbonate	mg/L	<5		5	Sep 22, 2018	VD	Sep 22, 2018				
Hydroxide	mg/L	<5		5	Sep 22, 2018	VD	Sep 22, 2018				
Electrical Conductivity	uS/cm	898		1	Sep 22, 2018	VD	Sep 22, 2018				
Fluoride	mg/L	< 0.05		0.05	Sep 22, 2018	RA	Sep 22, 2018				
Chloride	mg/L	3		1	Sep 22, 2018	RA	Sep 22, 2018				
Nitrite	mg/L	<0.05		0.05	Sep 22, 2018	RA	Sep 22, 2018				
Nitrite-N	mg/L	<0.02		0.02	Sep 22, 2018	SYS	Sep 22, 2018				
Nitrate	mg/L	<0.5		0.5	Sep 22, 2018	RA	Sep 22, 2018				
Nitrate-N	mg/L	< 0.02		0.02	Sep 22, 2018	SYS	Sep 22, 2018				
Nitrate+Nitrite - Nitrogen	mg/L	< 0.02		0.02	Sep 22, 2018	SYS	Sep 22, 2018				
Sulfate	mg/L	335		1	Sep 22, 2018	RA	Sep 22, 2018				
Dissolved Calcium	mg/L	138		0.3	Sep 22, 2018	РВ	Sep 22, 2018				
Dissolved Magnesium	mg/L	37.4		0.2	Sep 22, 2018	PB	Sep 22, 2018				
Dissolved Sodium	mg/L	6.6		0.6	Sep 22, 2018	PB	Sep 22, 2018				
Dissolved Potassium	mg/L	3.9		0.6	Sep 22, 2018	PB	Sep 22, 2018				
Dissolved Iron	mg/L	<0.1		0.1	Sep 22, 2018	PB	Sep 22, 2018				
Dissolved Manganese	mg/L	0.009		0.005	Sep 22, 2018	РВ	Sep 22, 2018				
Calculated TDS	mg/L	608		0.6	Sep 22, 2018	SYS	Sep 22, 2018				
Sodium Adsorption Ratio	N/A	0.129			Sep 22, 2018	SYS	Sep 22, 2018				
Hardness	mg CaCO3/L	499		1	Sep 22, 2018	SYS	Sep 22, 2018				
Ion Balance	%	105		1	Sep 22, 2018	SYS	Sep 22, 2018				

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

If sodium results in mg/L are less than detection, SAR is non-calculable and is reported as 0.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis															
RPT Date: Sep 26, 2018				DUPLICATE			REFEREN	ICE MAT	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPII	ΚE
PARAMETER	Method AMETER Batch Sample Dup #1 Dup #2 RPD Blank		Measured	Acceptable Limits		Recovery	Acceptab Limits		Recovery	Lin	ptable nits				
		ld	Bup "1	Dup #2	"		Value	Lower	Upper		Lower	Upper	,		Upper

Oil and Grease in Water (FTIR)

Oil Content, Infrared 557 LS < 0.2 < 0.2 NA < 0.2 102% 80% 120% 100% 70% 130% 104% 70% 130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E388142
PROJECT: 21784-546 / Aklavik NT ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

				Wate	er An	alysi	S								
RPT Date: Sep 26, 2018			С	UPLICATI			REFEREN	NCE MA	TERIAL	METHOD BLANK SPIKE			MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lie	ptable nits	Recovery		ptable nits
		lu lu	·				Value	Lower	Upper		Lower	Upper	,	Lower	Upper
Routine Chemistry Water Analysi	s														
pH	152	9565735	7.98	7.98	0.0%		100%	90%	110%	NA			NA		
p - Alkalinity (as CaCO3)	152	9565735	<5	<5	NA	< 5	NA			NA			NA		
T - Alkalinity (as CaCO3)	152	9565735	139	138	0.5%	< 5	95%	80%	120%	NA			NA		
Bicarbonate	152	9565735	170	169	0.5%	< 5	NA			NA			NA		
Carbonate	152	9565735	<5	<5	NA	< 5	NA			NA			NA		
Hydroxide	152	9565735	<5	<5	NA	< 5	NA			NA			NA		
Electrical Conductivity	152	9565735	898	937	4.3%	< 1	99%	80%	120%	NA			NA		
Fluoride	1696	9565497	< 0.05	< 0.05	NA	< 0.05	99%	80%	120%	95%	80%	120%	101%	80%	120%
Chloride	1696	9565497	26	26	2.4%	< 1	98%	80%	120%	98%	80%	120%	105%	80%	120%
Nitrite	1696	9565497	<0.05	< 0.05	NA	< 0.05	98%	80%	120%	98%	80%	120%	100%	80%	120%
Nitrate	1696	9565497	<0.5	<0.5	NA	< 0.5	98%	80%	120%	98%	80%	120%	101%	80%	120%
Sulfate	1696	9565497	<1	<1	NA	< 1	100%	80%	120%	98%	80%	120%	102%	80%	120%
Dissolved Calcium	265	9565476	150	150	0.0%	< 0.3	97%	80%	120%				84%	80%	120%
Dissolved Magnesium	265	9565476	42.6	43.1	1.0%	< 0.2	95%	80%	120%				105%	80%	120%
Dissolved Sodium	265	9565476	118	118	0.2%	< 0.6	94%	80%	120%				97%	80%	120%
Dissolved Potassium	265	9565476	2.3	2.4	NA	< 0.6	95%	80%	120%				96%	80%	120%
Dissolved Iron	265	9565476	1.1	1.1	1.5%	< 0.1	108%	80%	120%				104%	80%	120%
Dissolved Manganese	265	9565476	2.85	2.86	0.4%	< 0.005	105%	80%	120%				101%	80%	120%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

pH has been analyzed past the recommended holding time of 15 minutes from sampling (field measurement ideal if more accurate data required)

Nitrate and Nitrite: The regulatory hold time for the analysis of nitrate and/or nitrite in water is 48 hours in Alberta and 72 hours in British Columbia.

Matrix Total Metals Scan in Water												
Total Aluminum	267	9565735	0.031	0.036	14.9%	< 0.004	103%	80%	120%	116%	80%	120%
Total Antimony	267	9565735	< 0.001	< 0.001	NA	< 0.001	100%	80%	120%	116%	80%	120%
Total Arsenic	267	9565735	< 0.001	< 0.001	NA	< 0.001	92%	80%	120%	111%	80%	120%
Total Barium	267	9565735	< 0.05	< 0.05	NA	< 0.05	100%	80%	120%	119%	80%	120%
Total Beryllium	267	9565735	< 0.001	< 0.001	NA	< 0.001	99%	80%	120%	116%	80%	120%
Total Boron	267	9565735	0.33	0.34	3.0%	< 0.01	99%	80%	120%	120%	80%	120%
Total Cadmium	267	9565735	0.000021	0.000024	NA	< 0.000016	98%	80%	120%	117%	80%	120%
Total Chromium	267	9565735	< 0.001	< 0.001	NA	< 0.001	98%	80%	120%	112%	80%	120%
Total Cobalt	267	9565735	< 0.001	< 0.001	NA	< 0.001	94%	80%	120%	110%	80%	120%
Total Copper	267	9565735	0.008	0.008	0.0%	< 0.001	95%	80%	120%	109%	80%	120%
Total Iron	267	9565735	1.6	1.6	0.0%	< 0.1	99%	80%	120%	102%	80%	120%
Total Lead	267	9565735	0.0019	0.0018	NA	< 0.0005	99%	80%	120%	119%	80%	120%
Total Lithium	267	9565735	0.008	0.008	0.0%	< 0.001	97%	80%	120%	119%	80%	120%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 6 of 13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

		\	Nate	r Anal	ysis	(Cor	ntinu	ed)							
RPT Date: Sep 26, 2018				DUPLICATE		REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1:-	ptable	Recovery	1 1 1 1 1	ptable nits
		lu					value	Lower	Upper		Lower	Upper		Lower	Upper
Total Manganese	267	9565735	0.059	0.061	3.3%	< 0.005	97%	80%	120%				100%	80%	120%
Total Molybdenum	267	9565735	0.002	0.002	NA	< 0.001	96%	80%	120%				118%	80%	120%
Total Nickel	267	9565735	<0.003	0.004	NA	< 0.003	94%	80%	120%				108%	80%	120%
Total Selenium	267	9565735	<0.0005	0.0011	NA	< 0.0005	101%	80%	120%				107%	80%	120%
Total Silicon	267	9565735	1.75	1.71	2.3%	< 0.032	100%	80%	120%				99%	80%	120%
Total Silver	267	9565735	0.00011	<0.00005	NA	< 0.00005	5 98%	80%	120%				110%	80%	120%
Total Strontium	267	9565735	0.391	0.386	1.3%	< 0.001	99%	80%	120%				101%	80%	120%
Total Thallium	267	9565735	<0.0005	<0.0005	NA	< 0.0005	98%	80%	120%				120%	80%	120%
Total Tin	267	9565735	< 0.003	< 0.003	NA	< 0.001	95%	80%	120%				113%	80%	120%
Total Titanium	267	9565735	< 0.03	< 0.03	NA	< 0.001	107%	80%	120%				100%	80%	120%
Total Uranium	267	9565735	0.003	0.003	NA	< 0.001	98%	80%	120%				123%	80%	120%
Total Vanadium	267	9565735	<0.001	<0.001	NA	< 0.001	96%	80%	120%				112%	80%	120%
Total Zinc	267	9565735	0.32	0.33	3.1%	< 0.01	97%	80%	120%				114%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

With multi element runs, a maximum of 10% for each QC parameter may fail to an absolute maximum of 10%

Certified By:

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E388142

PROJECT: 21784-546 / Aklavik NT

ATTENTION TO: Accounts Payable

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Oil Content, Infrared	ORG-170-5200	Method 5520C	FTIR

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E388142
PROJECT: 21784-546 / Aklavik NT ATTENTION TO: Accounts Payable

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Aluminum	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Antimony	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Beryllium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Boron	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Cadmium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP/MS
Total Chromium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Cobalt	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Copper	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Iron	INOR-171-6100, 171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Lead	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Lithium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Manganese	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Molybdenum	INOR-171-6202	SM 3030 E; SM 3125 B	ICP/MS
Total Nickel	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Selenium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Silicon	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Silver	INO-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Strontium	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
Total Thallium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Tin	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Titanium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP/MS
Total Uranium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Vanadium	INORG-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Zinc	INORG-171-6202	SM 3030 E; SM 3125 B	ICP-MS
pH	INOR-171-6205	SM 4500 H+	PH METER
p - Alkalinity (as CaCO3)	INOR-171-6205	SM 2320 B	TITRATION
T - Alkalinity (as CaCO3)	INOR-171-6205	SM 2320 B	TITRATION
Bicarbonate	INOR-171-6205	SM 2320 B	PC TITRATE
Carbonate	INOR-171-6205	SM 2320 B	PC TITRATE
Hydroxide	INOR-171-6205	SM 2320 B	TITRATION
Electrical Conductivity	INOR-171-6205	SM 2510 B	CONDUCTIVITY METER
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Chloride	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Nitrite	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrite-N	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Nitrate-N	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate+Nitrite - Nitrogen	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Sulfate	INOR-171-6200	SM 4110 B	ION CHROMATOGRAPH
Dissolved Calcium	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES
Dissolved Sodium	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES
Dissolved Iron	INOR-171-6201	SM 3120 B	ICP/OES
Dissolved Manganese	INOR-171-6201	SM 3120 B	ICP/OES
	2 		

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

PROJECT: 21784-546 / Aklavik NT

AGAT WORK ORDER: 18E388142

ATTENTION TO: Accounts Payable

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Calculated TDS		SM 1030E	CALCULATION
Sodium Adsorption Ratio		CARTER & GREGORICH 2007	ICP/OES
Hardness		SM 3120 B	ICP/OES
Ion Balance		SM 1030E	CALCULATION

	Matrix ENVIRONA				COC # 2178401091800)1			Lab Si Lab A			25	AGAT		Page) -	1 of:			
		Require Report:			of Report to:				Job ID		nent		ZE. 3	881	42			11.70	1)	
Company Name					x Solutions - Environmenta	al Data Se	rvices (EDS)		-					-			-	_	
Contact Name:	Accounts Payable			Suite	600, 214 - 11th Avenue SV	/		3.	Matri				21784							
Address:				Calga	ry Alberta Canada								and the first state of the last	k Water	Treati	ment				
			PC:	T2R 0				-	Locati				ik, NT							
Phone/Fax #:	Ph		Fax.	Ph: 40	03-237-0606	Fax:403-	263-2493		Samp	ler's l	Name	e:	Kyle N	1eyook						
AFE #: 21784-5	546							0					Anal	ysis Rec	uired					
REGULATORY RE	EQUIREMENTS: (chec	:k):	SERVICE REQUE	STED: (check):																
Alberta Tie	r 1		RUSH (Ple	ease ensure you co	ontact the lab): Due Date:				1 1											
Alberta SW	/FAL		X REGULAR	Turnaround	(mmm dd	уууу)														
Canadian D	Prinking Water		REPORT DISTRIE	UTION: Alwa	ys send to eds@matrix-sol	utions.co	m		1 1											
CCME FAL			X Add'l	smcintyre@matrix	x-solutions.com						- 1		- 1						þer	
SPIGEC			Emails						1 1	- 1	- 1	_ ,	S			1 1		1 1	٤l	
SEQG	BC CSR	l .						-	1 1	- 1	<u>د</u>	sase	arp					1 1	S	- 1
Other									اها	- 1	Total Metals	Oil and Grease	BC Hydrocarbons						Lab Sample Number	- 1
Sam	iple Number	Sample Point			Date/Time Sampled	0	uantity # o	of	† <u>€</u>	- 1	=	and	ξĺ					1 1	Sa	의
V	s only) yr-mth-day	Name	Depth (m)	Sample Type	(mmm dd yyyy)	Jars		Bottle	Routine	TSS	Tot	ē	B						曺	HOLD
	84010918001			Water	1-Sep-18	0	0	9	\times	\leq	\times	\times	\times						5	135
2			i																	_
3																		\Box	_	
4																			_	
5												- 1					_		_	_
6										_	_		_	_	_	\vdash	_	\vdash	-	_
7									\vdash	_	_	_	-	_	-	\vdash	_	\vdash	_	-
8									-	-	_	_	-		+			\vdash	-	-
9									\vdash	-	-	-	-	-	-		-	\vdash	-	
10									+	\dashv	-	-	-	_	-	-	_	+	\rightarrow	\dashv
11									+	-	-	_	\rightarrow	_	_		-	+	\rightarrow	-
12									+	-	_	-	\rightarrow	_	+		_	\vdash	-	-
13								-	+	\dashv	-		\dashv	-	+		_	\vdash	-	
15					_				+				\neg	_	_			\vdash		
*For metals in w	ater samples indicat	te if you want Tota	I(T) or Dissolved(I	D) as part of 'Anal	ysis Required'		l Preserved,	/Filtereg	1				\rightarrow				//			
L. St. Hills Sails He to	The second secon							1	1	1/	7									
Relinquished by:	: Scott McIntyre		⇒ 0:	1/9/2018 3:30:00	PM	Received		0) 5	1	4		۷_ ا	Date/Tli	1					
Signature:	CIAL INSTRUCTIONS	X				Signatur	e: <u> </u>	11	2/1	-	1	~	_		E	12	614			
COMMITTED 13/3FE	CIVE HAT LOCHONS						/			-/-	1						- ' '			

18 SEP 20 13:45

AGAT Laboratories

SAMPLE INTEGRITY RECEIPT FORM

RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A it only Soil Bags Received
Company/Consultant: MATRIX	FROZEN (Please Circle if samples received Frozen)
Courier: Prepaid Collect	Bottle/Jary/12+/2./+/!.9=//.7°C 2(Bottle/Jar)++_=°C
Waybill# 5[8-YCV-32308323	3 (Bottle/Jar) + + = OC 4 (Bottle/Jar) + + = OC
	5 (Bottle/Jar) + + = °C 6 (Bottle/Jar) + + = °C
Branch EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++_=°C
If multiple sites were submitted at once: Yes	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++_=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr (Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 18638142
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? (Yes)	Other:
Inorganic Tests (Please Circle): Mibi, BOD, Nitrate/Nitrite, Turbidity, Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
	CPM Initial
Earliest Expiry:	General Comments: MISSING Samples 5735HI.
Hydrocarbons: Earliest Expiry 1550018	
SAMPLE INTEGRITY - Shipping	Assign only Rpot, OG & T-M+ as per
Hazardous Samples: YES NO Precaution Taken:	cpm.
Legal Samples: Yes (No)	
International Samples: Yes (No)	
Tape Sealed: Yes (No)	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

No. of Pieces Nombre do cols	HFPU FRAGILE KEEP COOL		Airport of De	YEG E	Airport of De Aeroport de	Agent's IAT/	Issuing Carr	AGAT Laborator 6310 Roper Roa Edmonton Alberta, Canada T6B 3P9 780 9 Attn: Scot	Consignee's Nom et adre	867-6	Inuvik Northwest Terr	Shipper's N. Nom et adre
Gross Weight Poids brut	nformation / F	1	Affport of Destination / Aeroport de destination	By first carrier / Par premier transport CANADIAN NOR	aparlure (Addres départ (Adresse	Agent's IATA Code / Code IATA de l'agent	ier's Agent Nam	AGAT Laboratories Ltd 6310 Roper Road Edmonton Alberta, Canada 76B 3P9 780 935 2525 Attn: Scot	Consignee's Name and Address Nom el adresse du destinaire	867-678-2749	Northwright air Inuvik Northwest Territories Canada	Shipper's Name and Address Nom et adresse de l'expedileur
₽Ã	Rensei		Aéroport de destina	ar pren	ss of Fi	ATA de	le and C	Ltd 2525	ress		Ω Ω	leur
Chargeable Weight Poids de laxation	Handling Information / Renseignements pour le traitement de l'expedition HFPU FRAGILE KEEP COOL		destination	arrier / Par premier transport CANADIAN NORTH	Airport of Departure (Addresss of Frist Carrier) and Requested Routing Aeroport de départ (Adresse du premier transporteur) et linieraire demandé Inuvik	l'agent	Issuing Carrier's Agent Name and City / Nom et ville de l'agent du transporteur émetter				D D D D D	
Rate / Chargo Tarif / Montant	traitement de l		Flight Date - For Carrier Use Only Vol. Date - Réservé au Transporteur	To/à	d Requested Routing our) et itinéraire demands nuvik	Account Number / Numéro de compte	l'agent du transpor					
	'expedit		e - For Ca -Réservé	by / par	tp.	Numero	teur émet					
Interline	n		arrier Use au Trans	To/à		de compt	ter					
C			Only			a						
-				by / par								
<u>0</u>		Amount of Insurance Montant de lássurance	CDN	Currency Monneie	T2E 7J2 PO:	AGAT La 2905 - 13 Calgary	Accounting	APPROPRIATE il est convenu (sauf annotati MARCHANDIS TRANSPORTEL L'ATTENTION	It is agreed th SUBJECT TO T INCLUDING RO	Copies 1, 2 Les exempl	Canadian North; Edmonton Interna Canada, T9E0V4	Not negoti Air Wa Issued by /
Commodity Item No. No. No. d'larticle de		isurance dessurance	PX	CHGS Code Frans	Š	AGAT Laboratories Ltd 2905 - 12th St NE Calgary AR Canada	Accounting Information / Renseignements complables	"THE SHIPPER" que les march on contraire) e ES PEUVENT É ES PEUVENT É JR À MOINS QI DE L'EXPÉDITE	At the goods of HE CONDITION DAD OR AMY O	3 & 4 of this aires 1, 2, 3 a	Canadian North; 101 3731 52 Ave E Edmonton International Airport, AB, Canada, T9E0V4	Not negotiable / Non négociable Air Waybill / Lettre de transport aérien tasued by / Emise par
/ Item		Dened. A	×Paye	WT / Pnds-Val		s Ltd	Renseign	'S ATTENTI andises dé et que le tra tre TRANS UE DES INS UR EST AT	EXCIDENT IN	Air Wayb	3731 5: nal Airpo	ettre d
		dicate amo	D.	3 %			ements co	ON IS DRA icrites dan ansport es PORTÉÉS I FTRUCTION TIRÉE SUR	Erein are a FRACT ON RIER UNILE	ill are orig te lettre d	2 Ave E	le trar
		uni to be ins	×	Other/Autres			omplables	WN TO TH s le présen t SOUMIS. PAR TOUT IS CONTRA L'AVIS COI	CCEPTED TO THE REVEI SS SPECIFIC ARRIED VIJ	inals and e transpo		подел
2 D =		urance, an propose ur in a muniur	P	3			o,	E NOTICE t docume AUX CONI AUTRE MI IRES PRÉC	SE HEREC CONTRA	have the		t aérie
Description of Goods (inc. Dimensions or Volume) Description des marchandises	SCI	INSUPANCE of artest offer insulation, and south insulation is equipment in accordance with the conduc- tered, includes amount to be insulated in figures but marked "Amount of Insulations". SSSUPANCE: at a transporting propose are assurance for thoughdature at this to detained conformé sur présentes conditions, indiquer le montain à assurare en chilles dans le case "Montain de Fasturance"	NDV	Declared Value for Carriage Valeur déclarée pour la transmont			AG	APPADRALT, I'HE SHIPERES ATTENTION IS DRAWN TO THE MOTTEC CONCERNING CARRIERS UNITATION OF LIABILTY. FIRST COMPART UP HE STANTAINGERS CHETERE STAN LE MOTTEC CONCERNING CARRIERS UNITATION OF LIABILTY. FIRST COMPART OF THE THE STANTAINGERS CHETERE STANTAINGERS CHETERE STANTAINGERS PAR ROUTE OF PART OUT AUTRE MOTENY COMPART OUT FOR TRANSPORTED A MONTE OF COMPART OUT AUTRE MOTENY COMPARTS PAR ROUTE ON PART OUT AUTRE FOR THANSPORTED A MONTE OUT PART TO THE THANSPORTED A MONTE OUT PART OUT AUTRE FOR THANSPORTED A MONTE OUT PART THAN STANTAINGERS STANTAINGERS OUT FOR THE	IT IS agreed that the goods described herein are accepted for carriage in apparent good order and condition (except as noted subject to the conditions) of contract on the express hereof. All goods may be carried by any other means the means including road for any other carrier unless specific contract instructions are given hereof by the superpease. The thipper when subjects that the superment which the carrier delayer.	Copies 1, 2, 3 & 4 of this Air Waybill are originals and have the same validity. Les examplaires 1, 2, 3 et 4 de cetta lettra de transport aérien sont origineaux et ont la meme validité		ň
3) 88 88		INSTRUCTE: Il sarrest offers insurroca, and south insurroca a implement in accordance with the containors threed, includes amount to be insured in figure box marked "Anouncia" of insurroca to the insurance of ASSIPANCE - il a transportur proposa une assurance et que trapplement mi tata la elemente conformiement par placesens conformie, cel dopar et a mounte i a survey en chiferia con les lorges "Mounte de Tissantance,"	NCV	Declared value for Customs Valeur déclarée pour la douane			AGA100CW	APROPARLE THE SHPEREY ATTENTION IS DRAWN TO THE MOTICE CONCERNING CARREREYS UNITATION OF LABILITY. If EX COMMUNI QUE LES MATCHANDES CAN BE RECOMMENDED FOR AN ACCOMMENDATION OF THE TENSOR OF AN ORD ACT SAME AND ACCOMMENDATION CONTRACT OF THE STANDARD FOR THE SAME OF TH	IT IS agreed that the goods described herein are accepted for carriage in apparent good order and condition (except as noted) and SUBJECT OF THE CONDITIONS OF CONTRACT ON THE REFERS HERDY. ALL GOODS MAY BE CARRIED BY ANY OTHER MEANS INCLUDING ROAD OR ANY OTHER CARRIER UNLESS SPECIFIC CONTRACY INSTRUCTIONS ARE GIVEN HEREON BY THE SHIPPER, AND SHIPPER AGREES THAT THE SHIPMENT MAY BE CARRIER ON IN INTERNACIANTE STORPING PLACES WHICH THE CARRIER DEBAG.	neme validité.		

1 7

 $\vec{\Rightarrow}$

5.67

\$62.37

GEN

Water Samples 58cm x 34cm x 34cm

518-YEV-32308323	Total Collect Charges / Total Du	Charges at Destination / Frais à l'arrivée	For Carrier's User only at Destination Reserve au transporteur à destination
(Place) Signature of issuing Carrier or its Agent (Lieu) Signature du Transporteur émetteur ou de son Agent	Executed on (Date) at Fait le (Date) á		
	09 Sep 2018		\$93.01
		Total collect / Total port dū	Total Prepaid / Total port payé
Signature of Shipper or his Agent / Signature de l'expéditeur ou de son Agent	Signature of Shipper		
		Total des autres frais düs au	Total other Charges Due Carrier \$26.21
Goods Regulations. Expediture certile que les indications portées sur le présent doutent not actualle y ou accounting un titre approvant control de la cont	Goods Regulations. Capacita Regulations de las indications portées sur le présent document sont le capacitaux certifie que les indications portées sur le présent document sont au quiellomque de l'aspédition contient des marchandises dangereuses, cette participation pour le transport par air conformament à la réglamentation applicable prépartée pour le transport par air conformament à la réglamentation applicable.	Total des autres frais dûs à l'agent	Total other Charges Due Agent
Shipper certifies that the particulars on the face hereof are correct and the insofar as any part of the consignment contains dangerous goods, such part is appeared to the consignment contains dangerous	Shipper cortifies that the particulars on the far		\$4.43
		Taxe	Тах
	= 7.30, G31/H31 = 4.43	Taxation à la valeur	Valuation Charge
Other Charges / Autres frais T Fuel Surcharge = 15.59, 5T Nav Can Surcharge = 3.12, ACS Screening Fee	Other Charges / Autres frais 5T Fuel Surcharge = 15.59,	Taxation au poids Collect / Port dū	Weight Charge Prepaid / Porte payé \$62.37
	\$62.37	=======================================	-1

CLIENT NAME: MATRIX SOLUTIONS INC. SUITE 600, 214 11 AVE SW CALGARY, AB T2R0K1 (403) 237-0606

ATTENTION TO: Accounts

PROJECT: 21784-546

AGAT WORK ORDER: 18E393857

TRACE ORGANICS REVIEWED BY: Elena Gorobets, Report Writer WATER ANALYSIS REVIEWED BY: Krystyna Krauze, Senior Analyst

DATE REPORTED: Oct 11, 2018

PAGES (INCLUDING COVER): 16

VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

*NOTES
VERSION 2:Version 2 replaces Version 1 issued October 11, 2018.
Sample ID updated from 21784230918001 to 21784180923001. Oct 11/18 CR

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V2)

age i oi io

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Weeter Fourier Agricultural Leberatory Association (WEALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

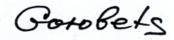
Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY: British Columbia CSR - Extended Site Remediation Analysis - Water SAMPLE TYPE: Water SAMPLE ID: 9603418 DATE RECEIVED: Oct 04, 2018 DATE SAMPLED: Sep 23, 2018 DATE REPORTED: Oct 11, 2018 SAMPLE DESCRIPTION: 21784180923001 **PARAMETER** G/S DATE ANALYZED INITIAL UNIT **RESULT RDL** DATE PREPARED 0.0005 Oct 06, 2018 CR Benzene mg/L < 0.0005 Oct 06, 2018 Toluene mg/L <0.0003 0.0003 Oct 06, 2018 CR Oct 06, 2018 Ethylbenzene mg/L < 0.0005 0.0005 Oct 06, 2018 CR Oct 06, 2018 **Xylenes** < 0.0005 0.0005 Oct 06, 2018 CR Oct 06, 2018 mg/L Oct 06, 2018 Oct 06, 2018 Styrene mg/L < 0.0005 0.0005 CR VH W6-10 Oct 06, 2018 mg/L < 0.1 0.1 CR Oct 06, 2018 Oct 06, 2018 VPH mg/L < 0.1 0.1 Oct 06, 2018 CR EPH (WC10-C19) Oct 09, 2018 OP Oct 07, 2018 mg/L 0.1 0.1 EPH (WC19-C32) mg/L < 0.1 0.1 Oct 09, 2018 OP Oct 07, 2018 LEPH (WC10-C19 - PAH) mg/L 0.1 0.1 Oct 09, 2018 SYS Oct 09, 2018 HEPH (WC19-C32 - PAH) < 0.1 Oct 09, 2018 SYS Oct 09, 2018 mg/L 0.1 < 0.00001 Oct 07, 2018 Oct 07, 2018 Acenaphthene 0.00001 TD mg/L < 0.00005 Oct 07, 2018 TD Acridine mg/L 0.00005 Oct 07, 2018 Anthracene mg/L < 0.00001 0.00001 Oct 07, 2018 TD Oct 07, 2018 Chrysene Oct 07, 2018 mg/L < 0.00001 0.00001 Oct 07, 2018 TD Fluorene mg/L < 0.00001 0.00001 Oct 07, 2018 TD Oct 07, 2018 Oct 07, 2018 Oct 07, 2018 Naphthalene < 0.00001 0.00001 TD mg/L Phenanthrene < 0.00001 0.00001 Oct 07, 2018 TD Oct 07, 2018 mg/L Benzo[a]anthracene < 0.00001 Oct 07, 2018 mg/L 0.00001 Oct 07, 2018 TD Benzo[a]pyrene < 0.000007 Oct 07, 2018 Oct 07, 2018 mg/L 0.000007 TD < 0.00001 TD Fluoranthene mg/L 0.00001 Oct 07, 2018 Oct 07, 2018 Pyrene mg/L < 0.00001 0.00001 Oct 07, 2018 TD Oct 07, 2018 Quinoline mg/L < 0.00004 0.00004 Oct 07, 2018 TD Oct 07, 2018 **SURROGATE** UNIT **RESULT ACCEPTABLE LIMITS** DATE ANALYZED INITIAL DATE PREPARED Toluene-d8 (BTEX) % 112 50-150 Oct 06, 2018 CR Oct 06, 2018 o-Terphenyl (EPH) % 95 50-150 Oct 09, 2018 OP Oct 07, 2018 % TD Oct 07, 2018 2-Fluorobiphenyl (PAH) 105 50-150 Oct 07, 2018

Certified By:


116

%

Oct 07, 2018

50-150

TD

p-Terphenyl-d14 (PAH)

Page 2 of 16

Oct 07, 2018

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Extended Site Remediation Analysis - Water

SAMPLE TYPE: Water SAMPLE ID: 9603418 DATE RECEIVED: Oct 04, 2018

DATE SAMPLED: Sep 23, 2018 DATE REPORTED: Oct 11, 2018

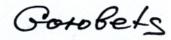
SAMPLE DESCRIPTION: 21784180923001

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

VPH results have been corrected for BTEX contributions.


LEPH & HEPH results have been corrected for PAH contributions.

VPH: Volatile Petroleum Hydrocarbons (n-C6 - n-C10); all volatile compounds in the n-C6 to n-C10 range quantified based on toluene response. LEPH: Light Extractable Petroleum Hydrocarbons (n-C10 - n-C19); all extractable compounds in the n-C10 to n-C19 range quantified based on n-eicosane response.

HEPH: Heavy Extractable Petroleum Hydrocarbons (n-C19 - n-C32); all extractable compounds in the n-C19 to n-C32 range quantified based on n-eicosane response.

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

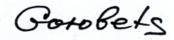
SAMPLING SITE: SAMPLED BY:

Oil and Grease in Water (FTIR)

SAMPLE TYPE: Water SAMPLE ID: 9603418 DATE RECEIVED: Oct 04, 2018

DATE SAMPLED: Sep 23, 2018 DATE REPORTED: Oct 11, 2018

SAMPLE DESCRIPTION: 21784180923001


PARAMETER UNIT RESULT G/S RDL DATE ANALYZED INITIAL DATE PREPARED
Oil Content, Infrared mg/L 0.5 0.2 Oct 06, 2018 AR Oct 06, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

British Columbia CSR - Schedule 6 Total Metals SAMPLE TYPE: Water SAMPLE ID: 9603418 DATE RECEIVED: Oct 04, 2018 DATE REPORTED: Oct 11, 2018 DATE SAMPLED: Sep 23, 2018 SAMPLE DESCRIPTION: 21784180923001 **PARAMETER** G/S UNIT RESULT **RDL** DATE ANALYZED INITIAL DATE PREPARED Oct 09, 2018 ΕВ Total Aluminum mg/L 0.022 0.004 Oct 09, 2018 **Total Antimony** mg/L < 0.001 0.001 Oct 09, 2018 EΒ Oct 09, 2018 Total Arsenic mg/L < 0.001 0.001 Oct 09, 2018 EΒ Oct 09, 2018 Total Barium Oct 09, 2018 EΒ Oct 09, 2018 mg/L < 0.05 0.05 Total Beryllium mg/L < 0.0005 0.0005 Oct 09, 2018 EΒ Oct 09, 2018 **Total Boron** mg/L 0.31 0.01 Oct 09, 2018 EB Oct 09, 2018 **Total Cadmium** mg/L < 0.000016 0.000016 Oct 09, 2018 FB Oct 09, 2018 Oct 09, 2018 Oct 09, 2018 Total Calcium mg/L 157 0.3 KD **Total Chromium** mg/L 0.0006 0.0005 Oct 09, 2018 EΒ Oct 09, 2018 **Total Cobalt** mg/L < 0.0009 0.0009 Oct 09, 2018 EΒ Oct 09, 2018 **Total Copper** 0.0033 0.0008 Oct 09, 2018 EΒ Oct 09, 2018 mg/L KD Total Iron 0.8 0.1 Oct 09, 2018 Oct 09, 2018 mg/L EΒ Total Lead mg/L 0.0006 0.0005 Oct 09, 2018 Oct 09, 2018 Total Lithium 0.007 0.001 Oct 09, 2018 EΒ Oct 09, 2018 mg/L **Total Magnesium** 42.9 0.2 Oct 09, 2018 ΚD Oct 09, 2018 mg/L **Total Manganese** mg/L 0.013 0.005 Oct 09, 2018 KD Oct 09, 2018 **Total Mercury** < 0.000025 0.000025 Oct 10, 2018 RT Oct 10, 2018 mg/L Total Molybdenum 0.002 Oct 09, 2018 EΒ Oct 09, 2018 mg/L 0.001 Total Nickel mg/L 0.003 0.003 Oct 09, 2018 FR Oct 09, 2018 **Total Selenium** Oct 09, 2018 EΒ Oct 09, 2018 mg/L 0.0007 0.0005 Total Silver < 0.0001 0.0001 Oct 09, 2018 FB Oct 09, 2018 mg/L **Total Sodium** mg/L 7.9 0.6 Oct 09, 2018 KD Oct 09, 2018 **Total Thallium** mg/L < 0.0001 0.0001 Oct 09, 2018 EΒ Oct 09, 2018

COMMENTS:

Total Zinc

Total Titanium

Total Uranium

Total Vanadium

RDL - Reported Detection Limit; G / S - Guideline / Standard

mg/L

mg/L

mg/L

mg/L

< - Values refer to Method Detection Limit.

Certified By:

0.001

0.003

< 0.001

0.214

0.001

0.001

0.001

0.001

Oct 09, 2018

Oct 09, 2018

Oct 09, 2018

Oct 09, 2018

FB

EΒ

FB

EΒ

Oct 09, 2018

Oct 09, 2018

Oct 09, 2018

Oct 09, 2018

Certificate of Analysis

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

Matrix Solutions Routine Chemistry Water Analysis + TSS

SAMPLE TYPE: Water SAMPLE ID: 9603418 DATE RECEIVED: Oct 04, 2018

DATE SAMPLE D: Sep 23, 2018

DATE SAMPLED: Sep 23, 2018				DATE	REPORTED: Oct 1	1, 2018	
SAMPLE DESCRIPTION: 21784	180923001						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
рН	pH Units	7.80		N/A	Oct 09, 2018	KT	Oct 09, 2018
p - Alkalinity (as CaCO3)	mg/L	<5		5	Oct 09, 2018	KT	Oct 09, 2018
T - Alkalinity (as CaCO3)	mg/L	161		5	Oct 09, 2018	KT	Oct 09, 2018
Bicarbonate	mg/L	196		5	Oct 09, 2018	KT	Oct 09, 2018
Carbonate	mg/L	<5		5	Oct 09, 2018	KT	Oct 09, 2018
Hydroxide	mg/L	<5		5	Oct 09, 2018	KT	Oct 09, 2018
Electrical Conductivity	uS/cm	947		5	Oct 09, 2018	KT	Oct 09, 2018
Chloride	mg/L	3.8		0.6	Oct 05, 2018	JM	Oct 05, 2018
Fluoride	mg/L	0.20		0.01	Oct 05, 2018	JM	Oct 05, 2018
Nitrate	mg/L	<0.08		0.08	Oct 05, 2018	JM	Oct 05, 2018
Nitrate-N	mg/L	<0.02		0.02	Oct 05, 2018	SYS	Oct 05, 2018
Nitrite	mg/L	< 0.03		0.03	Oct 05, 2018	JM	Oct 05, 2018
Nitrite-N	mg/L	<0.01		0.01	Oct 05, 2018	SYS	Oct 05, 2018
Sulfate	mg/L	377		0.6	Oct 05, 2018	JM	Oct 05, 2018
Dissolved Calcium	mg/L	154		0.3	Oct 07, 2018	AJ	Oct 07, 2018
Dissolved Magnesium	mg/L	46.2		0.2	Oct 07, 2018	AJ	Oct 07, 2018
Dissolved Sodium	mg/L	7.8		0.6	Oct 07, 2018	AJ	Oct 07, 2018
Dissolved Potassium	mg/L	4.2		0.6	Oct 07, 2018	AJ	Oct 07, 2018
Dissolved Iron	mg/L	<0.1		0.1	Oct 07, 2018	AJ	Oct 07, 2018
Dissolved Manganese	mg/L	<0.005		0.005	Oct 07, 2018	AJ	Oct 07, 2018
Ion Balance	%	107		1	Oct 09, 2018	SYS	Oct 09, 2018
Total Suspended Solids	mg/L	3		2	Oct 09, 2018	KT	Oct 09, 2018
Hardness	mg CaCO3/L	575		0.5		SYS	
Nitrate + Nitrite - Nitrogen	mg/L	< 0.02		0.02		SYS	
Calculated TDS	mg/L	689		1		SYS	

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

< - Values refer to Report Detection Limits.

Certified By:

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis																	
RPT Date: Oct 11, 2018				DUPLICATE			REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Measured Limits		Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper		
British Columbia CSR - Extended	Site Ren	nediation A	nalysis - \	Water													
Benzene	3226	9603418	< 0.0005	< 0.0005	NA	< 0.0005	83%	80%	120%	111%	80%	120%	86%	70%	130%		
Toluene	3226	9603418	< 0.0003	< 0.0003	NA	< 0.0003	84%	80%	120%	95%	80%	120%	92%	70%	130%		
Ethylbenzene	3226	9603418	< 0.0005	< 0.0005	NA	< 0.0005	84%	80%	120%	94%	80%	120%	89%	70%	130%		
Xylenes	3226	9603418	< 0.0005	< 0.0005	NA	< 0.0005	80%	80%	120%	94%	80%	120%	101%	70%	130%		
Styrene	3226	9603418	< 0.0005	< 0.0005	NA	< 0.0005	93%	80%	120%	93%	80%	120%	98%	70%	130%		
VH W6-10	3226	9603418	< 0.1	< 0.1	NA	< 0.1	95%	80%	120%	116%	80%	120%	94%	70%	130%		
EPH (WC10-C19)	286	9603677	<0.1	0.1	NA	< 0.1	111%	80%	120%	99%	80%	120%	105%	70%	130%		
EPH (WC19-C32)	286	9603677	<0.1	<0.1	NA	< 0.1	111%	80%	120%	98%	80%	120%	105%	70%	130%		
Acenaphthene	355	9603677	<0.00001	<0.00001	NA	< 0.0000	1 98%	70%	130%	93%	70%	130%	95%	70%	130%		
Acridine	355	9603677	<0.00005	<0.00005	NA	< 0.0000	5 95%	70%	130%	93%	70%	130%	106%	70%	130%		
Anthracene	355	9603677	<0.00001	<0.00001	NA	< 0.00001	96%	70%	130%	90%	70%	130%	96%	70%	130%		
Chrysene	355	9603677	<0.00001	<0.00001	NA	< 0.0000	1 98%	70%	130%	94%	70%	130%	97%	70%	130%		
Fluorene	355	9603677	<0.00001	<0.00001	NA	< 0.0000	1 103%	70%	130%	94%	70%	130%	95%	70%	130%		
Naphthalene	355	9603677	0.00002	0.00002	NA	< 0.0000	1 104%	70%	130%	94%	70%	130%	100%	70%	130%		
Phenanthrene	355	9603677	0.00002	0.00002	NA	< 0.0000	1 98%	70%	130%	92%	70%	130%	94%	70%	130%		
Benzo[a]anthracene	355	9603677	<0.00001	<0.00001	NA	< 0.0000	1 103%	70%	130%	97%	70%	130%	105%	70%	130%		
Benzo[a]pyrene	355	9603677	< 0.000007	< 0.000007	NA	< 0.00000	7 86%	70%	130%	87%	70%	130%	85%	70%	130%		
Fluoranthene	355	9603677	<0.00001	<0.00001	NA	< 0.0000	1 97%	70%	130%	90%	70%	130%	98%	70%	130%		
Pyrene	355	9603677	<0.00001	< 0.00001	NA	< 0.0000	1 102%	70%	130%	93%	70%	130%	98%	70%	130%		
Quinoline	355	9603677	<0.0004	<0.00004	NA	< 0.00004	4 95%	70%	130%	96%	70%	130%	105%	70%	130%		
Comments: Detection limits elevated	Comments: Detection limits elevated due to matrix interferences																
Oil and Grease in Water (FTIR)																	
Oil Content, Infrared	357	9603820	6.6	7.2	8.7%	< 0.2	109%	70%	130%	112%	70%	130%	107%	70%	130%		

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Elena

Gorobets

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

			Wate	er Ar	alys	is									
		С	UPLICATE	<u> </u>		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	MATRIX SPIKE		
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank				Recovery	1 :		Recovery		eptable mits	
	iu					value	Lower	Upper		Lower	Upper		Lower	Upper	
ry Water A	nalysis +	TSS													
9603820		6.78	6.80	0.3%	N/A	100%	90%	110%							
9603820		119	118	0.8%	< 5	106%	80%	120%							
9603820		8220	8220	0.0%	< 5	101%	80%	120%							
9604653		2.8	2.8	NA	< 0.6	108%	80%	120%	105%	80%	120%	112%	80%	120%	
9604653		<0.06	<0.06	NA	< 0.01	97%	80%	120%	86%	80%	120%	102%	80%	120%	
9604653		5.88	5.28	10.8%	< 0.08	99%	80%	120%	98%	80%	120%	100%	80%	120%	
9604653		<0.20	<0.20	NA	< 0.03	92%	80%	120%	90%	80%	120%	102%	80%	120%	
9604653		71.0	70.6	0.6%	< 0.6	97%	80%	120%	97%	80%	120%	NA	80%	120%	
9605564		<0.3	< 0.3	NA	< 0.3	118%	80%	120%	114%	80%	120%	111%	80%	120%	
9605564		<0.2	<0.2	NA	< 0.2	108%	80%	120%	103%	80%	120%	103%	80%	120%	
9605564		<0.6	<0.6	NA	< 0.6	107%	80%	120%	101%	80%	120%	102%	80%	120%	
9605564		<0.6	<0.6	NA	< 0.6	97%	80%	120%	95%	80%	120%	96%	80%	120%	
9605564		<0.1	<0.1	NA	< 0.1	106%	80%	120%	100%	80%	120%	96%	80%	120%	
9605564		<0.005	< 0.005	NA	< 0.005	105%	80%	120%	97%	80%	120%	95%	80%	120%	
9584128		12	13	8.0%	< 2	101%	80%	120%				101%	80%	120%	
	ry Water A 9603820 9603820 9603820 9604653 9604653 9604653 9604653 9605564 9605564 9605564 9605564	ry Water Analysis + 9603820 9603820 9603820 9604653 9604653 9604653 9604653 9604653 9604654 9605564 9605564 9605564	Batch Sample Id Dup #1 ry Water Analysis + TSS 9603820 6.78 9603820 119 9603820 8220 9604653 2.8 9604653 5.88 9604653 71.0 9604653 71.0 9605564 <0.3	DUPLICATE Batch Sample Dup #1 Dup #2	DUPLICATE	DUPLICATE Method Blank Dup #1 Dup #2 RPD Method Blank RPD RPD	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value ry Water Analysis + TSS 9603820 6.78 6.80 0.3% N/A 100% 9603820 119 118 0.8% < 5	DUPLICATE REFERENCE MA Batch Sample Id Dup #1 Dup #2 RPD RPD Method Blank Measured Value Lir	DUPLICATE REFERENCE MATERIAL Repuired Acceptable Limits Limits	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Recovery	DUPLICATE Batch Sample Id Dup #1 Dup #2 RPD RPD Method Blank Measured Value Acceptable Limits Lower Upper Lower Upper Lower Upper Lower Upper Up	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Limits Lower Upper Dup #3 Dup #4 Dup #4 Dup #4 RPD Method Blank Measured Value Limits Lower Upper Dup #4 Dup #4 Dup #4 Dup #4 Recovery Acceptable Limits Lower Upper Dup #4 Dup #4	Batch Sample Dup #1 Dup #2 RPD Method Blank Measured Limits Lower Upper Dup #2 RPD Method Blank Measured Lower Upper Dup #2 Recovery R	Batch Sample Dup #1 Dup #2 RPD Method Blank Mesaured Value Limits Limit	

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

pH has been analyzed past the recommended holding time of 15 minutes from sampling (field measurement ideal if more accurate data required)

Nitrate and Nitrite: The regulatory hold time for the analysis of nitrate and/or nitrite in water is 72 hours.

British Columbia CSR - Schedule 6 Total Metals 0.306 0.308 < 0.004 83% 80% 120% 105% 80% 120% 80% 120% Total Aluminum 9600781 0.7% NA **Total Antimony** 9600781 < 0.001 < 0.001 NA < 0.001 107% 80% 120% 101% 80% 120% 116% 80% 120% Total Arsenic 9600781 0.001 < 0.001 NA < 0.001 109% 80% 120% 100% 80% 120% 114% 80% 120% **Total Barium** 120% 9600781 NA < 0.05 93% 80% 88% 80% 120% 110% 80% 0.17 0.17 120% Total Beryllium < 0.0005 < 0.0005 104% 80% 120% 9600781 < 0.0005 NA 120% 115% 80% 120% 122% 80% Total Boron < 0.01 < 0.01 107% 96% 9600781 NA < 0.01 80% 120% 80% 120% 116% 80% 120% 9600781 0.000038 0.000037 101% Total Cadmium NA < 0.000016 107% 80% 120% 80% 120% 113% 80% 120% Total Calcium 9600781 86.6 85.9 0.8% < 0.3 111% 80% 120% 111% 80% 120% NA 80% 120% Total Chromium 9600781 < 0.0005 < 0.0005 NA < 0.0005 96% 80% 120% 96% 80% 120% 110% 80% 120% **Total Cobalt** 9600781 < 0.0009 < 0.0009 < 0.0009 99% 80% 98% 120% 80% 120% NA 120% 80% 112% **Total Copper** 9600781 <0.0008 <0.0008 < 0.0008 99% 80% 120% 100% 80% 120% 108% 80% 120% NA Total Iron 9600781 < 0.1 < 0.1 NA < 0.1 105% 80% 120% 99% 80% 120% 96% 80% 120% Total Lead 9600781 < 0.0005 <0.0005 NA < 0.0005 100% 80% 120% 96% 80% 120% 104% 80% 120% Total Lithium 9600781 0.013 0.013 0.0% < 0.001 103% 80% 120% 106% 80% 120% 111% 80% 120% Total Magnesium 9600781 100% 120% 32.2 31.9 0.9% < 0.2 99% 80% 120% 80% 120% NA 80% Total Manganese 9600781 < 0.005 < 0.005 NA < 0.005 103% 80% 120% 95% 80% 120% 94% 80% 120% Total Mercury 9603418 9603418 <0 <0 NA < 0.000025 103% 90% 110% 96% 90% 110% 107% 80% 120% Total Molybdenum 80% 120% 9600781 0.003 0.003 NA < 0.001 101% 80% 120% 99% 80% 120% 115%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 8 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Quality Assurance

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857

PROJECT: 21784-546 ATTENTION TO: Accounts

SAMPLING SITE: SAMPLED BY:

	Water Analysis (Continued)														
RPT Date: Oct 11, 2018			С	UPLICATE			REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	KE	
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	Acceptable Limits		Recovery	منا أ	ptable nits
		Iu	·	·			value	Lower	Upper		Lower	Upper	,	Lower	Upper
Total Nickel	9600781		<0.003	<0.003	NA	< 0.003	96%	80%	120%	98%	80%	120%	109%	80%	120%
Total Selenium	9600781		<0.0005	<0.0005	NA	< 0.0005	103%	80%	120%	101%	80%	120%	106%	80%	120%
Total Silver	9600781		0.0002	<0.0001	NA	< 0.0001	89%	80%	120%	81%	80%	120%	106%	80%	120%
Total Sodium	9600781		38.3	37.9	1.0%	< 0.6	97%	80%	120%	108%	80%	120%	NA	80%	120%
Total Thallium	9600781		<0.0001	<0.0001	NA	< 0.0001	99%	80%	120%	99%	80%	120%	109%	80%	120%
Total Titanium	9600781		< 0.001	< 0.001	NA	< 0.001	98%	80%	120%	101%	80%	120%	117%	80%	120%
Total Uranium	9600781		<0.001	<0.001	NA	< 0.001	107%	80%	120%	106%	80%	120%	115%	80%	120%
Total Vanadium	9600781		<0.001	<0.001	NA	< 0.001	96%	80%	120%	99%	80%	120%	114%	80%	120%
Total Zinc	9600781		0.002	0.003	NA	< 0.001	102%	80%	120%	95%	80%	120%	105%	80%	120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

With multi element scans a maximum of 10%, including non-reported elements, for each QC criteria may fail to an absolute maximum of 10%.

Certified By:

QA Violation

CLIENT NAME: MATRIX SOLUTIONS INC. AGAT WORK ORDER: 18E393857
PROJECT: 21784-546 ATTENTION TO: Accounts

RPT Date: Oct 11, 2018			REFEREN	ICE MAT	ERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured	Accept Limi	ite	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
. ,			Value	Lower		,		Upper	,		Upper

British Columbia CSR - Schedule 6 Total Metals

Total Beryllium 21784180923001 104% 80% 120% 115% 80% 120% 122% 80% 120%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

With multi element scans a maximum of 10%, including non-reported elements, for each QC criteria may fail to an absolute maximum of 10%.

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E393857

PROJECT: 21784-546

ATTENTION TO: Accounts

	T	T.	1
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	TO-0542	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
Toluene	TO-0542	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
Ethylbenzene	TO-0542	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
Xylenes	TO-0542	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
Styrene	TO-0542	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
VH W6-10	TO-0542	EPA SW-846 5021, B.C. ENVIRONMENT	GC/FID
VPH	TO-0542	EPA SW-846 5021, B.C. ENVIRONMENT	GC/MS/FID
EPH (WC10-C19)	TO 0511	EPA SW-846 3511, B.C. ENVIRONMENT	GC/FID
EPH (WC19-C32)	TO 0511	EPA SW-846 3511, B.C. ENVIRONMENT	GC/FID
LEPH (WC10-C19 - PAH)	TO 0511	EPA SW-846 3511, B.C. ENVIRONMENT	GC/FID
HEPH (WC19-C32 - PAH)	TO 0511	EPA SW-846 3511, B.C. ENVIRONMENT	GC/FID
Acenaphthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Acridine	TO 0200	EPA SW846 3511 & 8270	GC/MS
Anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Chrysene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluorene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Naphthalene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Phenanthrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]anthracene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Benzo[a]pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Fluoranthene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Pyrene	TO 0200	EPA SW846 3511 & 8270	GC/MS
Quinoline	TO 0200	EPA SW846 3511 & 8270	GC/MS
Toluene-d8 (BTEX)	TO-0543	EPA SW-846 5021/8260, B.C. ENVIRONMENT	GC/MS
o-Terphenyl (EPH)	TO 0511	EPA SW-846 3511, B.C. ENVIRONMENT	GC/FID
2-Fluorobiphenyl (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
p-Terphenyl-d14 (PAH)	TO 0200	EPA SW846 3510C & 8270	GC/MS
Oil Content, Infrared	TO-2200	Method 5520C	FTIR

Method Summary

CLIENT NAME: MATRIX SOLUTIONS INC.

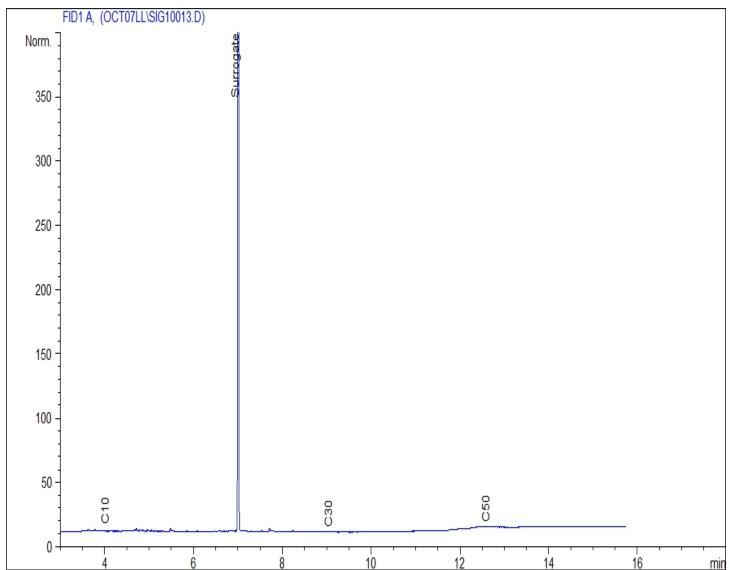
AGAT WORK ORDER: 18E393857

PROJECT: 21784-546

ATTENTION TO: Accounts

SAMPLING SITE.		SAMPLED BY.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Total Aluminum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS
Total Antimony	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Arsenic	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Barium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Beryllium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Boron	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Cadmium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Calcium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES
Total Chromium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Cobalt	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Copper	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Iron	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES
Total Lead	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Lithium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS
Total Magnesium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES
Total Manganese	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES
Total Mercury	WATR 0200; INST 0160	SM 3030 E; SM 3112 B TW	CV/AA
Total Molybdenum	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP/MS
Total Nickel	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Selenium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Silver	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Sodium	WATR 0200; INST 0140	SM 3030 E; SM 3120 B-T	ICP/OES
Total Thallium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Titanium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Uranium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Vanadium	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
Total Zinc	WATR 0200; INST 0141	SM 3030 E; SM 3125 B-T	ICP-MS
pH	INST 0101, INST 0104	SM 4500 H+	pH METER
p - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
T - Alkalinity (as CaCO3)	INST 0101	SM 2320 B	TITRATION
Bicarbonate	INST 0101	SM 2320 B	PC TITRATE
Carbonate	INST 0101	SM 2320 B	PC TITRATE
Hydroxide	INST 0101	SM 2320 B	TITRATION
Electrical Conductivity	INST 0101, INST 0120	SM 2510 B	CONDUCTIVITY METER
Chloride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Fluoride	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrate-N	INST 0150	SM 4110 B	CALCULATION
Nitrite	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Nitrite-N	INST 0150	SM 4110 B	CALCULATION
Sulfate	INST 0150	SM 4110 B	ION CHROMATOGRAPH
Dissolved Calcium	INST 0140	SM 3120 B	ICP/OES
Dissolved Magnesium	INST 0140	SM 3120 B	ICP/OES
Dissolved Sodium	INST 0140	SM 3120 B	ICP/OES
Dissolved Potassium	INST 0140	SM 3120 B	ICP/OES
Dissolved Foldssluff	INST 0140	SM 3120 B	ICP/OES
Dissolved Manganese	INST 0140	SM 3120 B	ICP/OES
Ion Balance	1101 0170	SM 1030E	, 323
Total Suspended Solids	WATR 0600	SM 2540 D	GRAVIMETRIC
Total Guoporiada Golias	***************************************	5.11 Z070 D	OLO WINE LINE

Chromatogram Image


CLIENT NAME: MATRIX SOLUTIONS INC.

AGAT WORK ORDER: 18E393857

PROJECT: 21784-546

ATTENTION TO: Accounts

IMAGE001: 9603418, 21784180923001

			Solut				COC # 2178423091800	01							3°		Pa	ge:	1	l of:	1	Đ.		
		Invoice to:	MENT & E Require Report:			Copy of	Report to:				Lab /	_	ment	No.:		XF	3	9	&J	5/		ŧ.:		
•	any Name: ct Name:	Matrix Solutions I	nc				olutions - Environmenta 0, 214 - 11th Avenue SW		rvices (EDS)	Mat	rix Pr	olect	#:	21784	546		4 .			_	£		
Addres		Accounts r dyable				Calgary	Alberta Canada			2	Mat	rix Pr	oj. Na	me:	Aklavil	Water	r Trea	tment				51 		
Phone	/Fax #:	Ph		PC: Fax.		T2R 0K1 Ph: 403-		Fax:403-	263-2493	ti.		tion: pler's		7 1 1 1 1 1 1 1 1 1 1 1	ik, NT Kyle IV	eyook								
VEE #	21784-5	16									\equiv	_			Analy	sis Rec	uirec	1				1		
		QUIREMENTS: (che	eck):	SERVICE REQUE	STED: (check):									1									
	Iberta Tiei	•	,		,		act the lab): Due Date:			_						-11				140	OC.	T a	4 4	0.17
Α	lberta SW	FAL		X REGULAR	Turnaround		(mmm dd	үүүу)		*									h	119	UU	1 04	1	0:35
Ci	anadian D	rinking Water		REPORT DISTRI	BUTION:	Always :	send to eds@matrix-sol	lutions.co	m															
	CME FAL			1000	smcintyre@	matrix-si	olutions.com			4					2					1		Number		
	PIGEC EQG	BC CS	R	Emails			ar.						۱,	Se	noqu					1		2		
	ther.	<u> </u>								• :			Total Metals	Oil and Grease	BC Hydrocarbons							Lab Sample		
	Sam	ple Number	Sample Point				Date/Time Sampled	0	uantity # o	of	Routine		<u>_</u> <u>_</u>	and	Hyd	1						Sar		
		only) yr-mth-day	Name	Depth (m)	Sample	Туре	(mmm dd yyyy)	Jars		Bottle	Roc	TSS	Tot	ō	S S				0	1	1		НОГР	
1	2178	34230918001			Wat	er	23-Sep-18	. 0	0	9	\geq	\times	\times	\times	\times		_		17	60)	241	X	
2											_	_			-		+		155	655.50	-		0	
3											\vdash	_	_		-	-	+	-	\vdash	+-	_			
4							-		-		\vdash	-		\vdash	-	-	+	-	-	+	-			
5							-		-		\vdash		-		-	-	+	+	1	+	\vdash			
7							<u> </u>				1					-1-								
8											\vdash							1						
9																								
10																								
11																								
12																	_		<u> </u>	1	_	\square		
13											-	_			<u></u> -	-	+	-	_	-	-			
14											_	-	_				+	-	\vdash	\vdash	-	\vdash	-	
15 *For m	otale la ve	ater samples indica	to if you want Tata	(T) or Dissolved	D) as part of	Analyel	Required'		 Preserved/	Filteres			-		\rightarrow		+	1	-	+	-	-	_	
Relinqu Signatu	ilshed by: ire:			Date/Time:				Received Signature	by: (KW	OG Val		0	1	0;8	ate/Ti	me:							
								Arit	homy	607	r, C	9	2	7						С	33	729)	

Page 14 of 16

SAMPLE INTEGRITY RECEIPT FORM

	0.0101100
RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A if only Soil Bags Received
Company/Consultant: Matrix	FROZEN (Please Circle if samples received Frozen)
Courier: Prepaid Collect	(0) 10(1)
Waybill# 58 - YeV - 3230735	1 (Bottle/Jar) + 1/46 + 0 C 2(Bottle/Jar) + + = °C 3 (Bottle/Jar) + + + = °C 4 (Bottle/Jar) + + + = °C
	5 (Bottle/Jar)++=°C 6 (Bottle/Jar) ++ =°C
Branch EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar) + + = OC 8 (Bottle/Jar) + + = OC
If multiple sites were submitted at once: Yes (No)	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No (NA)	(If more than 10 coolers are received use another sheet of paper and
TAT: <24hr 24-48hr 48-72hr (eg) Other	accachy
Cooler Quantity:	LOGISTICS USE ONLY
	Workorder No:
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
ALREADY EXCEEDED HOLD TIME? (Yes)	No Bubble Wrap Frozen Courier '18 OCT 03 112
Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity ,	Other:
Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*	Account Project Manager:have they been notified of the
Chloroamines* TSS	Whom spoken to: Date/Time:
Earliest Expiry: 30Scol8	CPM Initial
Hydrocarbons: Earliest Expiry	
	General Comments: Samples rec'd 030ct180
SAMPLE INTEGRITY - Shipping	11:25, COC recid via email from CPM
Hazardous Samples: YES NO Precaution Taken:	040ct 18 @ 10:35
Legal Samples: Yes No	0.55
International Samples: Yes No.	
Tape Sealed: Yes (No)	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

AGAT Laboratories

SAMPLE INTEGRITY RECEIPT FORM

RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A if only Soil Bags Received
Company/Consultant: Matrix Solutions	FROZEN (Please Circle if samples received Frozen)
Courier: Prepaid Collect	1 (Bottle/Jar) 3 + 3 + 3 = 3 °C 2(Bottle/Jar) + + = _ °C
Waybill#	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++=°C
	5 (Bottle/Jar) + + = °C 6 (Bottle/Jar) + + = °C
Branch: EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++_=°C
If multiple sites were submitted at once: Yes No	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr (Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 8E393857
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
THE SENSITIVE ISSUES - SHIPPING	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? Yes No	Other:
Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* ,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
Earliest Expiry: TSS past holding time (30 sep 207	CPM Initial
Hydrocarbons: Earliest Expiry	General Comments:
SAMPLE INTEGRITY - Shipping	
Hazardous Samples: YES NO Precaution Taken:	
Legal Samples: Yes No	
International Samples: Yes No	
Tape Sealed: Yes No	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. PO BOX 1490

INUVIK, NT X0E0T0

ATTENTION TO: Accounts Payable

PROJECT: 21784-546

AGAT WORK ORDER: 18E394688

TRACE ORGANICS REVIEWED BY: Jarrod Roberts, Operations Manager

DATE REPORTED: Oct 12, 2018

PAGES (INCLUDING COVER): 37

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

NOTES

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

*NOTE O

Member of: Association of Professional Engineers and Geoscientists of Alberta

(APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608898 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181002001

SAMPLE DESCRIPTION: 217841810	02001						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.010		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.09		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.23		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	40		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	40		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	2960		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	5830		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	410		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	18		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	101	50-15	60	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	89	50-15	0	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	111	50-15	0	Oct 10, 2018	MS	Oct 09, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jartha

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608899 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	002002					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.017	0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.61	0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	1.19	0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	590	10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	590	10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	4980	10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	6970	10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	540	10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	18	1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	108	50-150	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	129	50-150	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	123	50-150	Oct 10, 2018	MS	Oct 09, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarol d

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608900 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181	002003					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.011	0.00	5 Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.15	0.0	1 Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.22	0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	10	10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	10	10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	1320	10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	5080	10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	410	10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	24	1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMI	TS DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	105	50-150	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	104	50-150	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	109	50-150	Oct 10, 2018	MS	Oct 09, 2018
0 101p1101131 (1 2 1 1)	70	.00	30 100	331 10, 2010	0	

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarthe

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608901 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181002004								
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED	
Benzene	mg/kg	0.009		0.005	Oct 10, 2018	RA	Oct 09, 2018	
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018	
Ethylbenzene	mg/kg	0.08		0.01	Oct 10, 2018	RA	Oct 09, 2018	
Xylenes	mg/kg	0.14		0.05	Oct 10, 2018	RA	Oct 09, 2018	
C6 - C10 (F1)	mg/kg	50		10	Oct 10, 2018	RA	Oct 09, 2018	
C6 - C10 (F1 minus BTEX)	mg/kg	50		10	Oct 10, 2018	SYS	Oct 10, 2018	
C10 - C16 (F2)	mg/kg	2800		10	Oct 10, 2018	MS	Oct 09, 2018	
C16 - C34 (F3)	mg/kg	5890		10	Oct 10, 2018	MS	Oct 09, 2018	
C34 - C50 (F4)	mg/kg	460		10	Oct 10, 2018	MS	Oct 09, 2018	
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018	
Moisture Content	%	19		1	Oct 10, 2018	MS	Oct 09, 2018	
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED	
Toluene-d8 (BTEX)	%	100	50-15	50	Oct 10, 2018	RA	Oct 09, 2018	
Ethylbenzene-d10 (BTEX)	%	87	50-15	50	Oct 10, 2018	RA	Oct 09, 2018	
o-Terphenyl (F2-F4)	%	115	50-15	50	Oct 10, 2018	MS	Oct 09, 2018	

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jartha

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608902 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181	002005					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.024	0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	1.76	0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	3.35	0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	700	10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	690	10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	5460	10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	6670	10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	340	10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	17	1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	116	50-150	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	147	50-150	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	110	50-150	Oct 10, 2018	MS	Oct 09, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Josh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 6 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608903 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181	002006					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.033	0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	2.84	0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	3.92	0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	800	10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	790	10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	5240	10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	6100	10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	270	10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	18	1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	117	50-150	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	141	50-150	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	105	50-150	Oct 10, 2018	MS	Oct 09, 2018
-						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroch d

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608904 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	02007						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.007		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.10		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.15		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	90		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	90		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	2150		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	4230		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	310		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	19		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLI	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	101	50-150	0	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	96	50-150	0	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	109	50-150	0	Oct 10, 2018	MS	Oct 09, 2018
00141451450							

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarothod

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608905 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

02008						
UNIT	RESULT	G/S RE	DL	DATE ANALYZED	INITIAL	DATE PREPARED
mg/kg	0.020	0.0	05	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	< 0.05	0.0	05	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	1.47	0.0	01	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	2.17	0.0	05	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	490	10	0	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	490	10	0	Oct 10, 2018	SYS	Oct 10, 2018
mg/kg	3520	10	0	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	4770	10	0	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	340	10	0	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	N/A	100	00	Oct 10, 2018	MS	Oct 09, 2018
%	17	1	I	Oct 10, 2018	MS	Oct 09, 2018
UNIT	RESULT	ACCEPTABLE LIM	1ITS	DATE ANALYZED	INITIAL	DATE PREPARED
%	110	50-150		Oct 10, 2018	RA	Oct 09, 2018
%	128	50-150		Oct 10, 2018	RA	Oct 09, 2018
%	100	50-150		Oct 10, 2018	MS	Oct 09, 2018
	mg/kg	UNIT RESULT mg/kg 0.020 mg/kg <0.05 mg/kg 1.47 mg/kg 2.17 mg/kg 490 mg/kg 3520 mg/kg 3770 mg/kg 340 mg/kg 340 mg/kg N/A % 17 UNIT RESULT % 110 % 128	UNIT RESULT G / S RESULT mg/kg 0.020 0.00 mg/kg <0.05	UNIT RESULT G / S RDL mg/kg 0.020 0.005 mg/kg <0.05	UNIT RESULT G / S RDL DATE ANALYZED mg/kg 0.020 0.005 Oct 10, 2018 mg/kg <0.05	UNIT RESULT G/S RDL DATE ANALYZED INITIAL mg/kg 0.020 0.005 Oct 10, 2018 RA mg/kg <0.05

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 9 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608906 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018	DATE REPORTED:							
SAMPLE DESCRIPTION: 21784181	002009							
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED		
Benzene	mg/kg	0.028	0.005	Oct 10, 2018	RA	Oct 09, 2018		
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018		
Ethylbenzene	mg/kg	1.67	0.01	Oct 10, 2018	RA	Oct 09, 2018		
Xylenes	mg/kg	2.26	0.05	Oct 10, 2018	RA	Oct 09, 2018		
C6 - C10 (F1)	mg/kg	500	10	Oct 10, 2018	RA	Oct 09, 2018		
C6 - C10 (F1 minus BTEX)	mg/kg	500	10	Oct 10, 2018	SYS	Oct 10, 2018		
C10 - C16 (F2)	mg/kg	4810	10	Oct 10, 2018	MS	Oct 09, 2018		
C16 - C34 (F3)	mg/kg	6690	10	Oct 10, 2018	MS	Oct 09, 2018		
C34 - C50 (F4)	mg/kg	440	10	Oct 10, 2018	MS	Oct 09, 2018		
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018		
Moisture Content	%	17	1	Oct 10, 2018	MS	Oct 09, 2018		
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED		
Toluene-d8 (BTEX)	%	111	50-150	Oct 10, 2018	RA	Oct 09, 2018		
Ethylbenzene-d10 (BTEX)	%	118	50-150	Oct 10, 2018	RA	Oct 09, 2018		
o-Terphenyl (F2-F4)	%	122	50-150	Oct 10, 2018	MS	Oct 09, 2018		
00141451450	-	-		-		-		

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarthe

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 10 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608907 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

BATE REI GRIEB.								
02010								
UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
mg/kg	0.007	0.005	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	0.11	0.01	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	0.16	0.05	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	70	10	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	70	10	Oct 10, 2018	SYS	Oct 10, 2018			
mg/kg	3240	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	5960	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	480	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018			
%	18	1	Oct 10, 2018	MS	Oct 09, 2018			
UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
%	102	50-150	Oct 10, 2018	RA	Oct 09, 2018			
%	97	50-150	Oct 10, 2018	RA	Oct 09, 2018			
%	107	50-150	Oct 10, 2018	MS	Oct 09, 2018			
	mg/kg mtg/kg	UNIT RESULT mg/kg 0.007 mg/kg <0.05 mg/kg 0.11 mg/kg 0.16 mg/kg 70 mg/kg 70 mg/kg 3240 mg/kg 5960 mg/kg 480 mg/kg N/A % 18 UNIT RESULT % 102 % 97	UNIT RESULT G/S RDL mg/kg 0.007 0.005 mg/kg <0.05	UNIT RESULT G / S RDL DATE ANALYZED mg/kg 0.007 0.005 Oct 10, 2018 mg/kg <0.05	UNIT RESULT G/S RDL DATE ANALYZED INITIAL mg/kg 0.007 0.005 Oct 10, 2018 RA mg/kg <0.05			

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 11 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608908 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181	002011						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.007		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.15		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.30		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	140		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	140		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	2250		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	6080		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	510		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	17		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	104	50-15	0	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	113	50-15	0	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	124	50-15	0	Oct 10, 2018	MS	Oct 09, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroch d

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 12 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608909 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181002012										
PARAMETER	UNIT	RESULT	G/S RE	DL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.016	0.0	005	Oct 10, 2018	RA	Oct 09, 2018			
Toluene	mg/kg	< 0.05	0.0	05	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene	mg/kg	0.39	0.0	01	Oct 10, 2018	RA	Oct 09, 2018			
Xylenes	mg/kg	0.68	0.0	05	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1)	mg/kg	160	10	0	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	160	10	0	Oct 10, 2018	SYS	Oct 10, 2018			
C10 - C16 (F2)	mg/kg	2990	10	0	Oct 10, 2018	MS	Oct 09, 2018			
C16 - C34 (F3)	mg/kg	6400	10	0	Oct 10, 2018	MS	Oct 09, 2018			
C34 - C50 (F4)	mg/kg	530	10	0	Oct 10, 2018	MS	Oct 09, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	100	000	Oct 10, 2018	MS	Oct 09, 2018			
Moisture Content	%	20	1	1	Oct 10, 2018	MS	Oct 09, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIM	/ITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	104	50-150		Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene-d10 (BTEX)	%	123	50-150		Oct 10, 2018	RA	Oct 09, 2018			
o-Terphenyl (F2-F4)	%	114	50-150		Oct 10, 2018	MS	Oct 09, 2018			

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Josh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 13 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608910 DATE RECEIVED: Oct 05, 2018

DATE SAMPLE D: Oct 02, 2018

DATE REPORTED:

DATE SAMPLED: OCT 02, 2018		DATE REPORTED:								
SAMPLE DESCRIPTION: 217841810	002013									
PARAMETER	UNIT	RESULT	G/S F	RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.011	0	.005	Oct 10, 2018	RA	Oct 09, 2018			
Toluene	mg/kg	< 0.05	(0.05	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene	mg/kg	0.41	(0.01	Oct 10, 2018	RA	Oct 09, 2018			
Xylenes	mg/kg	0.78	(0.05	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1)	mg/kg	410		10	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	410		10	Oct 10, 2018	SYS	Oct 10, 2018			
C10 - C16 (F2)	mg/kg	3310		10	Oct 10, 2018	MS	Oct 09, 2018			
C16 - C34 (F3)	mg/kg	4600		10	Oct 10, 2018	MS	Oct 09, 2018			
C34 - C50 (F4)	mg/kg	270		10	Oct 10, 2018	MS	Oct 09, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1	000	Oct 10, 2018	MS	Oct 09, 2018			
Moisture Content	%	18		1	Oct 10, 2018	MS	Oct 09, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LI	IMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	108	50-150		Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene-d10 (BTEX)	%	116	50-150		Oct 10, 2018	RA	Oct 09, 2018			
o-Terphenyl (F2-F4)	%	99	50-150		Oct 10, 2018	MS	Oct 09, 2018			
COMMENTO	·	·			·					

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarthe

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 14 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608911 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018		DATE REPORTED:							
SAMPLE DESCRIPTION: 21784181	002014								
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.007	0.005	Oct 10, 2018	RA	Oct 09, 2018			
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene	mg/kg	0.33	0.01	Oct 10, 2018	RA	Oct 09, 2018			
Xylenes	mg/kg	0.65	0.05	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1)	mg/kg	380	10	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	380	10	Oct 10, 2018	SYS	Oct 10, 2018			
C10 - C16 (F2)	mg/kg	4710	10	Oct 10, 2018	MS	Oct 09, 2018			
C16 - C34 (F3)	mg/kg	6670	10	Oct 10, 2018	MS	Oct 09, 2018			
C34 - C50 (F4)	mg/kg	360	10	Oct 10, 2018	MS	Oct 09, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018			
Moisture Content	%	16	1	Oct 10, 2018	MS	Oct 09, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	106	50-150	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene-d10 (BTEX)	%	107	50-150	Oct 10, 2018	RA	Oct 09, 2018			
o-Terphenyl (F2-F4)	%	115	50-150	Oct 10, 2018	MS	Oct 09, 2018			
00141451450	-	-	·						

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarolf d

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608912 DATE RECEIVED: Oct 05, 2018

DATE SAMPLE D: Oct 02, 2018

DATE REPORTED:

DATE SAMPLED: Oct 02, 2018		DATE REPORTED:							
SAMPLE DESCRIPTION: 21784181	002015								
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.007	0.005	Oct 10, 2018	RA	Oct 09, 2018			
Toluene	mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene	mg/kg	0.12	0.01	Oct 10, 2018	RA	Oct 09, 2018			
Xylenes	mg/kg	0.22	0.05	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1)	mg/kg	70	10	Oct 10, 2018	RA	Oct 09, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	70	10	Oct 10, 2018	SYS	Oct 10, 2018			
C10 - C16 (F2)	mg/kg	1450	10	Oct 10, 2018	MS	Oct 09, 2018			
C16 - C34 (F3)	mg/kg	4040	10	Oct 10, 2018	MS	Oct 09, 2018			
C34 - C50 (F4)	mg/kg	280	10	Oct 10, 2018	MS	Oct 09, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018			
Moisture Content	%	18	1	Oct 10, 2018	MS	Oct 09, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	103	50-150	Oct 10, 2018	RA	Oct 09, 2018			
Ethylbenzene-d10 (BTEX)	%	106	50-150	Oct 10, 2018	RA	Oct 09, 2018			
o-Terphenyl (F2-F4)	%	102	50-150	Oct 10, 2018	MS	Oct 09, 2018			
COMMENTS.									

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarthe

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 16 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608913 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

	Bitte ite. Ottleb.							
002016								
UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
mg/kg	0.006	0.005	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	< 0.05	0.05	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	0.17	0.01	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	0.31	0.05	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	220	10	Oct 10, 2018	RA	Oct 09, 2018			
mg/kg	220	10	Oct 10, 2018	SYS	Oct 10, 2018			
mg/kg	2970	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	5470	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	330	10	Oct 10, 2018	MS	Oct 09, 2018			
mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 09, 2018			
%	16	1	Oct 10, 2018	MS	Oct 09, 2018			
UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
%	104	50-150	Oct 10, 2018	RA	Oct 09, 2018			
%	143	50-150	Oct 10, 2018	RA	Oct 09, 2018			
%	109	50-150	Oct 10, 2018	MS	Oct 09, 2018			
	mg/kg mtg/kg	UNIT RESULT mg/kg 0.006 mg/kg <0.05 mg/kg 0.17 mg/kg 0.31 mg/kg 220 mg/kg 220 mg/kg 2970 mg/kg 330 mg/kg 330 mg/kg N/A % 16 UNIT RESULT % 104 % 143	UNIT RESULT G/S RDL mg/kg 0.006 0.005 mg/kg <0.05	UNIT RESULT G / S RDL DATE ANALYZED mg/kg 0.006 0.005 Oct 10, 2018 mg/kg <0.05	UNIT RESULT G/S RDL DATE ANALYZED INITIAL mg/kg 0.006 0.005 Oct 10, 2018 RA mg/kg <0.05			

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Janthal

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608914 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 2178418100	02017						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	<0.005		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.21		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.42		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	250		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	250		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	4130		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	6670		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	380		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	19		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	105	50-15	50	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	109	50-15	50	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	116	50-15	50	Oct 10, 2018	MS	Oct 09, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 –C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jank

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608915 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

2018						
UNIT	RESULT	G/S F	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
mg/kg	0.006	0	0.005	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	< 0.05	(0.05	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	0.22	(0.01	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	0.49	(0.05	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	280		10	Oct 10, 2018	RA	Oct 09, 2018
mg/kg	280		10	Oct 10, 2018	SYS	Oct 10, 2018
mg/kg	3390		10	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	6180		10	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	430		10	Oct 10, 2018	MS	Oct 09, 2018
mg/kg	N/A	1	1000	Oct 10, 2018	MS	Oct 09, 2018
%	17		1	Oct 10, 2018	MS	Oct 09, 2018
UNIT	RESULT	ACCEPTABLE L	IMITS	DATE ANALYZED	INITIAL	DATE PREPARED
%	106	50-150		Oct 10, 2018	RA	Oct 09, 2018
%	115	50-150		Oct 10, 2018	RA	Oct 09, 2018
%	113	50-150		Oct 10, 2018	MS	Oct 09, 2018
	UNIT mg/kg % UNIT % %	UNIT RESULT mg/kg 0.006 mg/kg <0.05	UNIT RESULT G / S mg/kg 0.006 0 mg/kg <0.05	UNIT RESULT G/S RDL mg/kg 0.006 0.005 mg/kg <0.05	UNIT RESULT G / S RDL DATE ANALYZED mg/kg 0.006 0.005 Oct 10, 2018 mg/kg <0.05	UNIT RESULT G / S RDL DATE ANALYZED INITIAL mg/kg 0.006 0.005 Oct 10, 2018 RA mg/kg <0.05

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jankhal

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 19 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608916 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 217841810	002019						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	<0.005		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.10		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	0.15		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	70		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	70		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	2240		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	5320		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	470		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	20		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLI	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	103	50-150	0	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	101	50-150	0	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	103	50-150	0	Oct 10, 2018	MS	Oct 09, 2018
·	·				· · · · · · · · · · · · · · · · · · ·		·

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 –C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Josh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 20 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608917 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	002020						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.009		0.005	Oct 10, 2018	RA	Oct 09, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene	mg/kg	0.39		0.01	Oct 10, 2018	RA	Oct 09, 2018
Xylenes	mg/kg	1.00		0.05	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1)	mg/kg	570		10	Oct 10, 2018	RA	Oct 09, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	570		10	Oct 10, 2018	SYS	Oct 10, 2018
C10 - C16 (F2)	mg/kg	5150		10	Oct 10, 2018	MS	Oct 09, 2018
C16 - C34 (F3)	mg/kg	7730		10	Oct 10, 2018	MS	Oct 09, 2018
C34 - C50 (F4)	mg/kg	500		10	Oct 10, 2018	MS	Oct 09, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 09, 2018
Moisture Content	%	16		1	Oct 10, 2018	MS	Oct 09, 2018
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	109	50-15	0	Oct 10, 2018	RA	Oct 09, 2018
Ethylbenzene-d10 (BTEX)	%	112	50-15	0	Oct 10, 2018	RA	Oct 09, 2018
o-Terphenyl (F2-F4)	%	127	50-15	0	Oct 10, 2018	MS	Oct 09, 2018
-							

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarol hol

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 21 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE ID: 9608918 ATE OAMBLED O

DATE SAMPLED: Oct 02, 2018	DATE REPORTED:							
SAMPLE DESCRIPTION: 21784181	002021							
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED		
Benzene	mg/kg	0.037	0.005	Oct 11, 2018	ZL	Oct 10, 2018		
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018		
Ethylbenzene	mg/kg	1.05	0.01	Oct 11, 2018	ZL	Oct 10, 2018		
Xylenes	mg/kg	1.90	0.05	Oct 11, 2018	ZL	Oct 10, 2018		
C6 - C10 (F1)	mg/kg	650	10	Oct 11, 2018	ZL	Oct 10, 2018		
C6 - C10 (F1 minus BTEX)	mg/kg	650	10	Oct 11, 2018	SYS	Oct 11, 2018		
C10 - C16 (F2)	mg/kg	6050	10	Oct 10, 2018	MS	Oct 10, 2018		
C16 - C34 (F3)	mg/kg	7420	10	Oct 10, 2018	MS	Oct 10, 2018		
C34 - C50 (F4)	mg/kg	400	10	Oct 10, 2018	MS	Oct 10, 2018		
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018		
Moisture Content	%	16	1	Oct 10, 2018	MS	Oct 10, 2018		
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED		
Toluene-d8 (BTEX)	%	98	50-150	Oct 11, 2018	ZL	Oct 10, 2018		
Ethylbenzene-d10 (BTEX)	%	112	50-150	Oct 11, 2018	ZL	Oct 10, 2018		
o-Terphenyl (F2-F4)	%	100	50-150	Oct 10, 2018	MS	Oct 10, 2018		
·								

COMMENTS:

SAMPLE TYPE: Soil

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroll

DATE RECEIVED: Oct 05, 2018

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 22 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608919 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	02022						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	<0.005		0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	0.12		0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	0.17		0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	130		10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	130		10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	2600		10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	5220		10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	510		10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	14		1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE I	IMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	99	50-150		Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	100	50-150		Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	94	50-150		Oct 10, 2018	MS	Oct 10, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarothod

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 23 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE ID: 9608920 SAMPLE TYPE: Soil DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 217841810	002023						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.013		0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	0.56		0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	0.98		0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	540		10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	540		10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	5380		10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	8220		10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	520		10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	19		1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABL	E LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	98	50-15	0	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	104	50-15	0	Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	109	50-15	0	Oct 10, 2018	MS	Oct 10, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarol hol

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 24 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608921 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	002024					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.014	0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	0.32	0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	0.82	0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	440	10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	440	10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	5620	10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	8490	10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	530	10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	16	1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	98	50-150	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	99	50-150	Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	111	50-150	Oct 10, 2018	MS	Oct 10, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarol hol

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE ID: 9608922 SAMPLE TYPE: Soil DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181	002025					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	<0.005	0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	0.06	0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	0.10	0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	40	10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	40	10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	2570	10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	5010	10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	410	10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	18	1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMIT	S DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	98	50-150	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	101	50-150	Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	107	50-150	Oct 10, 2018	MS	Oct 10, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarol hol

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 26 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP. AGAT WORK ORDER: 18E394688 PROJECT: 21784-546 ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608923 DATE RECEIVED: Oct 05, 2018

DATE REPORTED: DATE SAMPLED: Oct 02, 2018

SAMPLE DESCRIPTION: 217841810	02026						
PARAMETER	UNIT	RESULT	G/S	RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.005		0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05		0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	0.12		0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	0.23		0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	230		10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	230		10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	3920		10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	6650		10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	460		10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A		1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	20		1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE	LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	98	50-150		Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	111	50-150		Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	106	50-150		Oct 10, 2018	MS	Oct 10, 2018
	·	·	·	·	·		· · · · · · · · · · · · · · · · · · ·

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4q) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jarothod

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608924 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018	DATE REPORTED:								
SAMPLE DESCRIPTION: 21784181	002027								
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.033	0.005	Oct 11, 2018	ZL	Oct 10, 2018			
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene	mg/kg	1.22	0.01	Oct 11, 2018	ZL	Oct 10, 2018			
Xylenes	mg/kg	1.99	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1)	mg/kg	620	10	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	620	10	Oct 11, 2018	SYS	Oct 11, 2018			
C10 - C16 (F2)	mg/kg	5730	10	Oct 10, 2018	MS	Oct 10, 2018			
C16 - C34 (F3)	mg/kg	7020	10	Oct 10, 2018	MS	Oct 10, 2018			
C34 - C50 (F4)	mg/kg	310	10	Oct 10, 2018	MS	Oct 10, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018			
Moisture Content	%	16	1	Oct 10, 2018	MS	Oct 10, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	98	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene-d10 (BTEX)	%	105	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
o-Terphenyl (F2-F4)	%	96	50-150	Oct 10, 2018	MS	Oct 10, 2018			
·									

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

faithe

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 28 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608925 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018	DATE REPORTED:								
SAMPLE DESCRIPTION: 21784181	002028								
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	< 0.005	0.005	Oct 11, 2018	ZL	Oct 10, 2018			
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene	mg/kg	0.07	0.01	Oct 11, 2018	ZL	Oct 10, 2018			
Xylenes	mg/kg	0.08	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1)	mg/kg	60	10	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	60	10	Oct 11, 2018	SYS	Oct 11, 2018			
C10 - C16 (F2)	mg/kg	2670	10	Oct 10, 2018	MS	Oct 10, 2018			
C16 - C34 (F3)	mg/kg	5690	10	Oct 10, 2018	MS	Oct 10, 2018			
C34 - C50 (F4)	mg/kg	350	10	Oct 10, 2018	MS	Oct 10, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018			
Moisture Content	%	19	1	Oct 10, 2018	MS	Oct 10, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	97	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene-d10 (BTEX)	%	94	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
o-Terphenyl (F2-F4)	%	108	50-150	Oct 10, 2018	MS	Oct 10, 2018			
·									

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

ATE OAMBLED O

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 29 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608926 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018	DATE REPORTED:								
SAMPLE DESCRIPTION: 21784181	002029								
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED			
Benzene	mg/kg	0.011	0.005	Oct 11, 2018	ZL	Oct 10, 2018			
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene	mg/kg	0.27	0.01	Oct 11, 2018	ZL	Oct 10, 2018			
Xylenes	mg/kg	0.74	0.05	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1)	mg/kg	570	10	Oct 11, 2018	ZL	Oct 10, 2018			
C6 - C10 (F1 minus BTEX)	mg/kg	570	10	Oct 11, 2018	SYS	Oct 11, 2018			
C10 - C16 (F2)	mg/kg	5290	10	Oct 10, 2018	MS	Oct 10, 2018			
C16 - C34 (F3)	mg/kg	6710	10	Oct 10, 2018	MS	Oct 10, 2018			
C34 - C50 (F4)	mg/kg	340	10	Oct 10, 2018	MS	Oct 10, 2018			
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018			
Moisture Content	%	17	1	Oct 10, 2018	MS	Oct 10, 2018			
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED			
Toluene-d8 (BTEX)	%	97	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
Ethylbenzene-d10 (BTEX)	%	92	50-150	Oct 11, 2018	ZL	Oct 10, 2018			
o-Terphenyl (F2-F4)	%	95	50-150	Oct 10, 2018	MS	Oct 10, 2018			
·									

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroh

AGAT CERTIFICATE OF ANALYSIS (V1)

Page 30 of 37

Certificate of Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS) (Non-Methanol Field Stabilized)

SAMPLE TYPE: Soil SAMPLE ID: 9608927 DATE RECEIVED: Oct 05, 2018

DATE SAMPLED: Oct 02, 2018 DATE REPORTED:

SAMPLE DESCRIPTION: 21784181002030

SAMPLE DESCRIPTION: 217841810	002030					
PARAMETER	UNIT	RESULT	G/S RDL	DATE ANALYZED	INITIAL	DATE PREPARED
Benzene	mg/kg	0.027	0.005	Oct 11, 2018	ZL	Oct 10, 2018
Toluene	mg/kg	< 0.05	0.05	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene	mg/kg	1.05	0.01	Oct 11, 2018	ZL	Oct 10, 2018
Xylenes	mg/kg	1.76	0.05	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1)	mg/kg	650	10	Oct 11, 2018	ZL	Oct 10, 2018
C6 - C10 (F1 minus BTEX)	mg/kg	650	10	Oct 11, 2018	SYS	Oct 11, 2018
C10 - C16 (F2)	mg/kg	5450	10	Oct 10, 2018	MS	Oct 10, 2018
C16 - C34 (F3)	mg/kg	6560	10	Oct 10, 2018	MS	Oct 10, 2018
C34 - C50 (F4)	mg/kg	300	10	Oct 10, 2018	MS	Oct 10, 2018
Gravimetric Heavy Hydrocarbons	mg/kg	N/A	1000	Oct 10, 2018	MS	Oct 10, 2018
Moisture Content	%	15	1	Oct 10, 2018	MS	Oct 10, 2018
SURROGATE	UNIT	RESULT	ACCEPTABLE LIMITS	DATE ANALYZED	INITIAL	DATE PREPARED
Toluene-d8 (BTEX)	%	99	50-150	Oct 11, 2018	ZL	Oct 10, 2018
Ethylbenzene-d10 (BTEX)	%	92	50-150	Oct 11, 2018	ZL	Oct 10, 2018
o-Terphenyl (F2-F4)	%	96	50-150	Oct 10, 2018	MS	Oct 10, 2018

COMMENTS:

RDL - Reported Detection Limit; G / S - Guideline / Standard

Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 –C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Jaroha

Quality Assurance

Trace Organics Analysis

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

RPT Date:				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	منا ا	ptable nits	Recovery		ptable
		lu lu	-				Value	Lower	Upper		Lower	Upper	, , ,	Lower	Upper
Petroleum Hydrocarbons (BTEX/	F1-F4) in	Soil (CWS)	(Non-Met	hanol Fie	ld Stabiliz	zed)									
Benzene	1697	9608898	0.010	0.007	NA	< 0.005	95%	80%	120%	89%	80%	120%	103%	60%	140%
Toluene	1697	9608898	< 0.05	< 0.05	NA	< 0.05	86%	80%	120%	81%	80%	120%	88%	60%	140%
Ethylbenzene	1697	9608898	0.09	0.08	11.8%	< 0.01	91%	80%	120%	87%	80%	120%	139%	60%	140%
Xylenes	1697	9608898	0.23	0.19	NA	< 0.05	89%	80%	120%	84%	80%	120%	127%	60%	140%
C6 - C10 (F1)	1697	9608898	40	40	NA	< 10	99%	80%	120%	94%	80%	120%	62%	60%	140%
C10 - C16 (F2)	1159	9608898	2960	3080	4.0%	< 10	104%	80%	120%	96%	80%	120%	99%	60%	140%
C16 - C34 (F3)	1159	9608898	5830	6120	4.9%	< 10	106%	80%	120%	93%	80%	120%	99%	60%	140%
C34 - C50 (F4)	1159	9608898	410	460	11.5%	< 10	103%	80%	120%	93%	80%	120%	94%	60%	140%
Moisture Content	1159	9608898	18	19	5.4%	< 1									
Comments: If the RPD value is NA, t	he results	of the duplic	ates are u	nder 5X th	e RDL and	d will not b	e calculate	ed.							
Petroleum Hydrocarbons (BTEX/I	F1-F4) in	Soil (CWS)	(Non-Met	hanol Fie	ld Stabiliz	zed)									
Benzene	1840	9608918	0.037	0.036	2.7%	< 0.005	91%	80%	120%	89%	80%	120%	84%	60%	140%
Toluene	1840	9608918	< 0.05	< 0.05	NA	< 0.05	91%	80%	120%	86%	80%	120%	83%	60%	140%
Ethylbenzene	1840	9608918	1.05	0.94	11.1%	< 0.01	95%	80%	120%	90%	80%	120%	82%	60%	140%
Xylenes	1840	9608918	1.90	1.72	9.9%	< 0.05	98%	80%	120%	85%	80%	120%	81%	60%	140%
C6 - C10 (F1)	1840	9608918	650	660	1.5%	< 10	97%	80%	120%	90%	80%	120%	86%	60%	140%
C10 - C16 (F2)	996	9608918	6050	7020	14.8%	< 10	103%	80%	120%	89%	80%	120%	83%	60%	140%
C16 - C34 (F3)	996	9608918	7420	8630	15.1%	< 10	106%	80%	120%	80%	80%	120%	75%	60%	140%
C34 - C50 (F4)	996	9608918	400	450	11.8%	< 10	106%	80%	120%	103%	80%	120%	97%	60%	140%
Moisture Content	996	9608918	16	15	6.5%	< 1									

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Jarthe

AGAT QUALITY ASSURANCE REPORT (V1)

Page 32 of 37

Method Summary

CLIENT NAME: NORTHWEST TERRITORIES POWER CORP.

AGAT WORK ORDER: 18E394688

PROJECT: 21784-546

ATTENTION TO: Accounts Payable

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Benzene	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
Toluene	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
Ethylbenzene	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
Xylenes	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
C6 - C10 (F1)	ORG-170- 5110/5140/5430/5440	CCME Tier 1 Method-S L	GC/FID
C6 - C10 (F1 minus BTEX)	ORG-170- 5110/5140/5430/5440	CCME Tier 1 Method-S L	GC/FID
C10 - C16 (F2)	ORG-170-5120/5300	CCME Tier 1 Method-S H	GC/FID
C16 - C34 (F3)	ORG-170-5120/5300	CCME Tier 1 Method-S H	GC/FID
C34 - C50 (F4)	ORG-170-5120/5300	CCME Tier 1 Method-S H	GC/FID
Gravimetric Heavy Hydrocarbons	ORG-170-5120/5300	CCME Tier 1 Method-S H	GC/FID
Moisture Content	LAB-175-4002	CCME Tier 1 Method-S %	GRAVIMETRIC
Toluene-d8 (BTEX)	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
Ethylbenzene-d10 (BTEX)	ORG-170- 5110/5140/5430/5440	EPA SW-846 8260-S	GC/MS
o-Terphenyl (F2-F4)	ORG-170-5120/5300	CCME Tier 1 Method-S H	GC/FID

1		Matrix S ENVIRONMEN	olutions	Inc. Ering		coc# 8744	14	L	.ab Submit .ab Agreen	ited to : A					of .	2
		Invoice to:	Require Report:Y N		Copy of	f Report to:		— — L	ab Job ID:		181	E 3°	1468	8	10	.8°C
Com	pany Name:	Northwest	Require Report: Y N. Territories	Power Cor	Matrix So	olutions - EDS				0.1.53	4					
Cont	act Name:	7	-		Suite 600), 214 - 11th Avenue SW				at#: 2/75			30 114	1		
Addr	ess:	2			Slavety - St.	Alberta, Canada		_ N	latrix Proj. N	Name: Akluu. Akluu.k,	K	owe	r 5+	400	4	
-		Price		PC: Fax:	T2R 0K1	237-0606	Fax: 403-263-2493	_	ocation: ;	me(s): 13 Ha	V 1	1/	la			-
Phon	ne / Fax#:	Ph:		rax.		oices to ap@matrix-solu			ampler 5 No	mels). 14 files	1	2.1	- (ery	2010		-
AFE #										Α Α	nalysis	Requi	red			
	ULATORY RI Alberta Tier	EQUIREMENTS: (check)	SERVICE REQUESTED: BC CSR RUSH (Please ensure you contact the lab) Due Date:													
-	Alberta SW		_BC CSK		R Turnaround	dot the lab) Due Dute.			7-							
		rinking Water				send to eds@matrix-solutio	ons.com					24 0	AAT (اا	
	CCME FAL JACONTON SMCINTYRE MOSTON II 1800 105 08:17															
	ISPIGEC Emails															
	SEQG	Other:	-		Ma reject		Quanity # of Cont		送 							
		gits only) yr-mth-day	Sample Point Name	Depth (m)	Sample Type	Date/Time Sampled		Bottles	W							HOLD
1		118:002 001	Pan X1	0-1	50:1	Oct 2, 2018	1		\times	9608	398					
2		1 002	I	1-2	1		1		X		899					
3		003	1	2-3			1	1.	X		100					
4	1	004	@2-X2	0-1							101					
5		005)	1-2					×		102					
6		006		2 - 3			1	1			103					
7		007	X3	0-1		B	1	>			104					
8		008		1-2			1		X		105					
9		છેળ	1	Z-3			1	2	<		106					
10		010	X4	0-1			1		\times		107					
11		011		1-2			1	>	<	C	80					
12		012	1	2-3			1	3	X	0	109					
13		013	X5	0-1			1)		0	10					
14		014		1-2			1	>		9	U					
15		015	↓	2-3	1		1	7		C	112					
*For metals in water samples indicate if you want Total (T) or Dissolved (D) as part of "Analysis Required" Preserved/Filtered																
Relino	quished by:	BaHart	-	Date/Time:	Oct 2.	2018	Received by:	1	5 -2	8	Date/	Γime:	Of	as	NY	-
Signa		-73 A 1010)				Signature:	1-	5	1						
		CIAL INSTRUCTIONS	email	any a	y vestions	to bhart(a		solution	ous. 9	om						
				(
J = jar	s V = vials															

	Matrix S	olutions . IT & ENGINEE	Inc.		coc# 8744	1-3			ab Submitted ab Agreemen			8E:	Page:	2		
	Involce to;	Require Report:Y_N	_	Copy of	Report to:			La	ab Job ID:				/			
Company Name				Matrix So	lutions - EDS			-		1						_
Contact Name:			1	Suite 600	214 - 11th Avenue SW			Ma	atrix Project#	Y		1	6			
Address:			-	Calgary, A	Alberta, Canada			Ma	atrix Proj. Nam	ne:		_	~	1		_
		/	PC:	* T2R 0K1				Lo	ocation:					V	1	
Phone / Fax#:	Ph:		Fax:	Ph: 403-2	37-0606	Fax: 403-26	63-2493	Sa	ımpler's Name	e(s):						_
				email inv	oices to ap@matrix-solu	utions.com				An	alvala	Requi	rod			7
AFE #:	REQUIREMENTS: (check)		SERVICE REC	UESTED:				-		An	lysis	Kequi	red	T		+
Alberta Tie		BC CSR			act the lab) Due Date:				+-			3. 74	80CT	5 00	217	
Alberta SV			₩/	Turnaround				L	7			42.	.00011	12 40		
Canadian	Drinking Water				end to eds@matrix-solution	ons.com		1.5	<u> </u>							
CCME FAI	L		Additional	see D	. (. '								
SPIGEC			Emails					* }	×							
SEQG	Other:				ī	Overeited	# of Contain	· '	الإ							
	Sample Number ligits only) yr-mth-day	Sample Point Name	Depth (m)	Sample Type	Date/Time Sampled			ottles								HOLD
	84181002016	X6	0-1	50:1	Oct 2, 2018		Dage De	yales	1	96089	13					
2	017	j l	1-2			1			X		14					
3	018	1	Z-3		1	1)	X	9						
4	019	X7	0-1			1		7		9	16					
5	020	ì	1-2			1			X	9	17					
6	021		7-3					×		9	18					
7	022	×8	0-1			1		>	(9	19				1	
8	023		1-2			1		X		9	20					
9	024	1	Z-3			1		X		9	21					
10	025	Xq	0-1					X		9	22					
11	026		1-2			1)		9	23					
12	027	1	2-3			1		X			24					
13	028	X10	0-1			1		7	<		25					
14	029		1-2			1		×			26					
15	V 030	1	2-3	V	V	1		_ /		9	27					
	ater samples indicate if you	want Total (T) or Dissolv				Pr	eserved/Filte	ered					//			
Relinquished by	816+		Date/Time:	Oct 2,	2018	Received by	. /	2	02		Date/1	Time:	OF	50CT	18	
Signature:	Bland)	! 	1		Signature:		1)	XI	~						
-	ECIAL INSTRUCTIONS															
J = jars V = vials													F.*			-

RECEIVING BASIGS - Shipping

Bagged Ice Free Ice Free Water

T Laboratories

SAMPLE INTEGRITY RECEIPT **FORM**

11+00	remperature (bottles/sars only) N/A if only soil bags need wea
Company/Consultant: NTPC /MATIZIX	FROZEN (Please Circle if samples received Frozen)
Courier: CANADIAN N. Prepaid (Collect)	1 (Bottle/Jar) + + + = °C
Waybill# 518-YEV-32307494	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++=°C
	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C
Branch EDM GP FN FM RD VAN LYD FSJ EST Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++_=°C
If multiple sites were submitted at once: Yes	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++_=°C
Custody Seal Intact: Yes No No	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: 18E 394688
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
THVIL SENSITIVE 1330E3 - Shipping	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? Yes No	Other: NO BUBBLE BAGS
Inorganic Tests (Please Circle): Mibi, BOD, Nitrate/Nitrite, Turbidity, Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
Earliest Expiry:	CPM Initial
Hydrocarbons: Earliest Expiry 090ct 18	General Comments: Rec'cl Broken, (samples 8922,8925
SAMPLE INTEGRITY - Shipping	Courier Dopped off @ the
Hazardous Samples: YES (NO) Precaution Taken:	Client Bay. Samples
Legal Samples: Yes (No)	
International Samples: Yes No	are salvageable.
Tape Sealed: Yes No	All samples taken without using MeoH field

* Subcontracted Analysis (See CPM)

None

stabilization

Date issued: October 05, 2015 Document ID: SR-9505.003

Tape Sealed: Yes (No Coolant Used: Icepack

518-YEV-32307494

	ross Weight kg Chargeable Poids brut lb Weight Poids de laxation	Rate / Charge Tarif / Montant		Interline		Total	Commodity No. No. d'Iartic Ia marcha	le de			D	Description of Goods inc. Dimensions or Volume escription des marchandis ompris dimensions ou volu-	es
Please I		e traitement de l	'expeditio	on								SCI	
						Amount of li Montant de	ASSURAN	thereof, indicate amount to be insured in figures bo ASSURANCE - si le transporteur propose une ass			ires box marked "Amount of their ne assurance et que l'expéditeur	uch insurance is requested in accordance with the conditions box transfed "Amount of Injurance" assurance et que l'expéditeur en fait la demande conformément assurar en chiffres dans la case "Montant de l'assurance"	
Alrean of Destination / Aéroport de destination Edmonton			Flight Date - For Carrier Use Only Vol. Date - Réservé au Transporteur		CDN	СХ	Payé	X	Payé	X	NDV	NCV	
YEG By f	first carrier / Par premier transport CANADIAN NORTH	To/à	by / par	To/à	by / par	Currency Monnaie	CHGS Code Frais	WT / Poids		Other/Au	coll	Declared Value for Carriage Valeur déclarée pour la Immsnort	Declared value for Customs Valeur déclarée pour la douant
	rture (Addresss of First Carrier) and Req part (Adresse du premier (ransporteur) ei Inu		é			AB, Can T2E 7J2 PO:							
Agent's IATA Code / Code IATA de l'agent Account Number				mber / Numéro de compte			AGAT Laboratories Ltd 2905 - 12th St NE Calgary						
Attn: Scot					Accounting Information / Renseignements comptables AGA100CW								
6310 Rope Edmonton Alberta, Ca T6B 3P9					If est convenu (sauf annotati MARCHANDIS TRANSPORTE	Il est convenu que les marchandises décrites dans le présent document sont acceptées pour le transport en bon ét (sauf annotation contraire) et que le transport est SOUMIS AUX CONDITIONS DU CONTRAT QUI FIGURENT AU VER MARCHANDESS PEUVENT ETRE TRANSPORTÉES PAR TOUT AUTRE MOVEN Y COMPRIS PAR ROUTE OU PAR TOUT A T TRANSPORTEUR À MOINS QUE DES INSTRUCTIONS CONTRAIRES PRÉCISES, À CE SUIET NE SOIENT DONNÉES PAR L' L'ATTENTION DE L'EXPÉDITEUR EST ATTIRÉE SUR L'AVIS CONCERNANT LA LIMITATION DE RESPONSABILITÉ DU TRA					ansport en bon état apparent IGURENT AU VERSO. LES E OU PAR TOUT AUTRE ' DONNÉES PAR L'EXPÉDITEUR.		
Nom et adresse du destinaire AGAT Laboratories Ltd				SUBJECT TO THE CONDITIONS OF CONTRACT ON THE REVERSE HEREOF, ALL GOODS MAY BE CARRIED BY ANY OTHER MEANS INCLUDING ROAD OR ANY OTHER CARRIER UNLESS SPECIFIC CONTRARY INSTRUCTIONS ARE GUREN HEREON BY THE SHIPPER, AL SHIPPER AGREES THAT THE SHIPPENT MAY BE CARRIED VIA INTERMEDIATE STOPPING PLACES WHICH THE CARRIER DEEMS APPROPRIATE. THE SHIPPERS ATTENTION IS DRAWN TO THE NOTICE CONCERNING CARRIER'S LIMITATION OF LIABILITY.									
867 678 2749 Consignee's Name and Address				Copies 1, 2, 3 & 4 of this Air Waybill are originals and have the same validity. Les exemplaires 1, 2, 3 et 4 de cette lettre de transport aérien sont origineaux et ont la meme validité. It is agreed that the goods described herein are accepted for carriage in apparent good order and condition (except as noted) a									
Inuvik Northwest Territories, Canada				Canadian North; 101 3731 52 Ave E, Edmonton International Airport, AB, Canada, T9E0V4									
Nom et adresse de l'expediteur North-Wright AGAT LAB				Not negotiable / Non négociable Air Waybill / Lettre de transport aérien Issued by / Émise par									

de colis RCP	Poids brut	Poids de laxation	Tarif / Montant		No. d'Iarticle de la marchandise	(inc. Dimensions or Volume) Description des marchandises (y compris dimensions ou volume)
1	15 K	15	7.57	\$113.55	GAD	Water Samples 60cm x 34cm x 35cm

1 15 15 \$113.55

Veight Charge Taxation au poids Prepaid / Porte payé Collect / Port du		Other Charges / Autres frais						
Valuation Charge	\$113.55 Taxation à la valeur	5T Nav Can Surcharge = 5.68, ACS Screening Fee = 7.50, 5T Fuel Surcharge = 29.52, Delivery Charge = 18.00, GST/HST = 8.71						
Tax	Taxe							
	\$8.71	Shipper certifies that the particulars on the face hereof are correct and the insofar as any part of the consignment contains dangerous goods, such part is properly described by name and is in proper condition for carriage by air according to the applicable Dangerous						
Total olher Charges Due Agent Total des autres frais dûs à l'agent		Gooda Regulations. L'expéditeur certifie que les indications portées sur le présent document sont exactes et que dans la mesure ou une partie quelconque de l'expédition contient des marchandises d'angereuses, cette partie de d'expédition est correctement dénommée et bien préparée pour le transport par air conformément à la réglementation applicable.						
Total other Charges Due Carrier	Total des autres frais dûs au \$60.70	,						
		Signature of Shipper or his Agent / Signature de l'expéditeur ou de son Agent						
Total Prepaid / Total port payé	Total collect / Total port dû \$182.96	04 Oct 2018 YEV						
		Executed on (Date) at (Place) Signature of Issuing Carrier or its Agent Fait le (Date) à (Lieu) Signature du Transporteur émetteur ou de son Agent						
For Carrier's User only at Destination	Charges at Destination / Frais à l'arrivée	Total Collect Charges / Total Du						
Réservé au transporteur à destination		518-YEV-32307494						