

# **Shell Canada Energy**

**Camp Farewell** 

Camp Farewell 2016 Remediation Program
Report



May 30, 2017

Inuvialuit Water Board P.O. Box 2531 Inuvik NT X0E 0T0

Mr. Bijaya Adhikari Science and Regulatory Coordinator

Dear Mr. Adhikari:

Camp Farewell
2016 Remediation Program Report

On behalf of Shell Canada Energy, IEG Consultants Ltd. is pleased to submit the 2016 Camp Farewell Site Remediation Report to the Inuvialuit Water Board in accordance with the requirements of the current water licence N7L1-1834.

Please contact Nicole Wills (403-730-6809) with any questions or comments.

Yours truly, **IEG CONSULTANTS LTD.** 

Nicole Wills, P.Ag. Project Manager

NW

# **Shell Canada Energy**

**Camp Farewell** 

Camp Farewell 2016 Remediation Program
Report

#### **EXECUTIVE SUMMARY**

Shell Canada Energy (Shell) retained IEG Consultants Ltd (IEG) to conduct a Remediation Program at the Camp Farewell Lagoon located at 69°12′30.0″ N and longitude 135°06′04.4″ W in the Mackenzie Delta, approximately 125 km northwest of Inuvik and approximately 135 km west of Tuktoyaktuk, Northwest Territories. The field portion of the Remediation Program was conducted between July 12 and August 26, 2016.

The 2016 remediation program entailed the excavation, treatment, risk-based assessment, and backfilling of the impacted soil on-site. The conclusions and key findings of the 2016 remediation program are as follows:

- Soil was excavated from seven excavation zones and stockpiled on-site from July 13 to August 9, 2016. Excavated soil was placed into windrows established on the undisturbed area of the Site and treated with an Allu bucket;
- Treated soil was used to backfill successfully remediated areas. Due to the lack of sufficient treated soil some excavations or portions of excavations meeting GNWT guidelines or riskbased criteria were backfilled with untreated soil;
- A total of approximately 24,000 m³ of soil was excavated from seven excavation zones. Approximately 10,000 m³ was successfully treated on-site and used to fully backfill two excavations. Approximately 14,000 m³ of soil did not meet the GNWT guidelines following soil treatment activities and was used to fully or partially backfill five excavations;
- Approximately 200 m³ of soil was determined to be unsuitable for on-site treatment and was packaged into 1 m³ soil bags for transport off-site via barge to an appropriate disposal facility; and
- Six excavation zones were successfully remediated and do not require further excavation. One zone requires additional excavation between 0.6 and 1.0 m bgs. Fifteen zones were not excavated during 2016 and require remediation during future programs at the Site.



# **TABLE OF CONTENTS**

| EXEC | JTIVE SUN                                               | /IMARY                                                                                       |                                                                                                                                                                              | l                       |
|------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1    | INTROD                                                  | UCTION                                                                                       |                                                                                                                                                                              | 1                       |
| 2    | SCOPE C                                                 | OF WORK                                                                                      |                                                                                                                                                                              | 2                       |
| 3    | SITE HIS<br>3.1<br>3.2<br>3.3<br>3.4                    | Site Cor<br>Spill His<br>Previou                                                             | nstruction Historytorys Environmental Investigationss Environmental Studies                                                                                                  | 3<br>3                  |
| 4    | PROGRA<br>4.1                                           |                                                                                              | ing and Licensing  Environmental Impact Screening Committee  Water Use  Canadian Wildlife Service Migratory Birds Sanctuary Permit                                           | 5<br>5<br>5             |
| 5    | REMEDI<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7 | Camp M<br>Excavat<br>Soil San<br>Backfilli<br>Waste I<br>Risk Ass                            | ROGRAM METHODOLOGY  Mobilization/Demobilization                                                                                                                              | 6<br>6<br>7<br>7        |
| 6    | REGULA<br>6.1                                           |                                                                                              | AMEWORKality                                                                                                                                                                 |                         |
| 7    | 7.1<br>7.2<br>7.3                                       | Risk Ass<br>Windro<br>Confirm<br>7.3.1<br>7.3.2<br>7.3.3<br>7.3.4<br>7.3.5<br>7.3.6<br>7.3.7 | ROGRAM RESULTS  Sessment Results  W Soil Sample Results  Tane 2 Excavation  Zone 3 Excavation  Zone 4 Excavation  Zone 10 Excavation  Zone 11 Excavation  Zone 13 Excavation | 10 10 11 11 12 12 13 13 |
|      | 7.4                                                     | Soil Vol                                                                                     | umes and Remediation Summary                                                                                                                                                 | 13                      |



# **TABLE OF CONTENTS**

(continued)

|                               | 7.5     | Quality Assurance and Quality Control                                                                                                                                                                          | 14 |
|-------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 8                             | CONCLU  | JSIONS                                                                                                                                                                                                         | 15 |
| 9                             | CLARIFI | CATIONS OF THIS REPORT                                                                                                                                                                                         | 16 |
| 10                            | CLOSING | G                                                                                                                                                                                                              | 17 |
| REFERE                        | NCES    |                                                                                                                                                                                                                | 18 |
|                               |         | List of Tables within Text                                                                                                                                                                                     |    |
| Table 7                       | 7-1     | Confirmatory Sample Exceedances – Zone 2                                                                                                                                                                       | 11 |
| Table 7                       | 7-2     | Confirmatory Sample Exceedances – Zone 3                                                                                                                                                                       | 11 |
| Table 7                       | 7-3     | Confirmatory Sample Exceedances – Zone 4                                                                                                                                                                       | 12 |
|                               |         | List of Tables                                                                                                                                                                                                 |    |
| Table 1<br>Table 2<br>Table 3 | 2 '     | Confirmatory Soil Sample Analytical Results for Petroleum Hydrocarbons<br>Windrow Soil Sample Analytical Results for Petroleum Hydrocarbons<br>Summary of Quality Assurance/Quality Control for PHC Parameters |    |

#### **TABLE OF CONTENTS**

(continued)

#### **List of Figures**

| Figure 1 | Camp Farewell Site Location Map                   |
|----------|---------------------------------------------------|
| Figure 2 | Camp Farewell Site Plan                           |
| Figure 3 | Site Plan showing Excavation and Windrow Location |
| Figure 4 | Site Plan showing Sampling Locations              |

# **List of Appendices**

Appendix I Historical Reports

Appendix II Permits and Licenses

Appendix III Site Photographs

Appendix IV Emergency Response Plan

Appendix V GPRA Risk Assessment

Appendix VI Quality Assurance/Quality Control

Appendix VII Laboratory Analytical Reports



#### 1 INTRODUCTION

Shell Canada Energy (Shell) retained IEG Consultants Ltd. (IEG) and Tervita Corporation (Tervita) to conduct a Remediation Program at Camp Farewell (the Site) located at latitude 69°12′30.0″ N and longitude 135°06′04.4″ W in the Mackenzie Delta, approximately 125 km northwest of Inuvik and approximately 135 km west of Tuktoyaktuk, Northwest Territories (Figure 1). This report details the activities and findings of the Remediation Program.

The 2016 Remediation Program entailed the excavation, treatment, risk-based assessment, and backfilling of the impacted soil on-site. Soil that was not successfully treated on-site was backfilled in impacted areas to be excavated and treated again at a later date. Soil that could not be treated within a feasible amount of time (as per the direction of Shell representatives) was packaged and removed from the Site via barge for transport to an appropriate facility. The field portion of the Remediation Program was conducted between July 12 and August 26, 2016.



#### 2 SCOPE OF WORK

IEG conducted a Phase II Site Assessment at Camp Farewell (Site) in 2015, which identified soil impacts across the Site. The objective of the 2016 Remediation Program was to initiate the excavation and on-site treatment of impacted soil.

The scope of work for the 2016 Remediation Program was conducted by Tervita and IEG, and included the following:

- logistics management and permitting;
- dividing the main portion of the Site (excluding the airstrip) into a grid consisting of 22 zones.
   Excavating impacted soil in each zone to varying depths between 0.3 and 1.0 m below ground surface (bgs);
- conducting a risk assessment to evaluate impacted soils identified at depths greater than
   1.0 m bgs;
- windrowing excavated soil and treating with an Allu bucket;
- excavating isolated areas with reported PHC fraction F3 and F4 exceedances and packaging soil for disposal off-site;
- conducting a risk assessment of soils at depths greater than 1.0 m;
- conducting a Global Positioning System (GPS) survey of the Site features and final excavation extents with a Trimble GPS unit;
- collecting confirmatory excavation soil samples prior to backfilling, and from windrows during treatment;
- backfilling of excavated areas; and
- preparation of a 2016 Remediation Program report.

IEG was responsible for conducting the following tasks within the overall scope of work:

- logistics management and permitting;
- supervising the excavation of impacted soil;
- risk assessment of impacted soil;
- collecting confirmatory excavation soil samples;
- collecting confirmatory windrow samples;
- collecting GPS coordinates of excavated areas;
- supervising the backfill of successfully treated soil into excavated areas; and,
- preparing the remediation program report.

#### 3 SITE HISTORY

### 3.1 Site Construction History

Camp Farewell was constructed in the winter of 1970 and summer of 1971, and was operated as a staging and storage site in support of the Shell Mackenzie Delta Drilling Program. The Site consisted of a self-contained camp, providing electrical and heating services and facilities for accommodation, meals, fuel storage, equipment handling, water withdrawal and wastewater storage.

The Site was constructed on permafrost, and based on its history, the preservation of this layer was taken into account during construction. During construction, a layer of polyurethane (either 50 mm foam or pads) was installed, including 450 mm of compacted gravel, to act as a thermal barrier and prevent contamination of underlying soils and groundwater.

## 3.2 Spill History

Approximately 80,000 litres of water impacted with diesel fuel was released from the tank farm in 1981, according to a search of the Government of Northwest Territories (GNWT) Hazardous Spills Database. Investigation suggests the spill was a result of vandalism/theft that occurred in the winter of 1980 to 1981, resulting in the spring release, which was reported to authorities on May 24, 1981. Released fluids overtopped the berm and flowed with Site topography to the southwest, over the steep banks of the Site and onto the frozen Mackenzie River (WorleyParsons 2011).

Additional detail regarding the actual spill and clean-up efforts is provided in the Komex 2001 report titled "Phase I and Phase II Environmental Site Assessment of the Shell Farewell Stockpile and Campsite" (Komex 2001).

# 3.3 Previous Environmental Investigations

Multiple environmental investigation programs, remediation programs, and other investigations have been conducted at the Site since 2001. IEG has reviewed the available reports concerning these programs and have provided summaries of the programs (Appendix I).

- Komex (Komex International Ltd.), 2001. Phase I and Phase II Environmental Site Assessment
  of the Shell Farewell Stockpile and Campsite. Unpublished report prepared for: Shell Canada
  Limited, July, 2001. C52360000.
- WorleyParsons Komex, 2006. 2006 Environmental Site Assessment, Camp Farewell, NT. December, 2006.
- WorleyParsons, 2008. Interim Abandonment and Restoration Program, Camp Farewell, NT.
   Unpublished report prepared for Shell Canada Energy Limited, November, 2008. C52360500.
- WorleyParsons, 2010. 2009 Interim Abandonment and Restoration Program, Camp Farewell,
   NT. Unpublished report prepared for Shell Canada Energy Limited, April, 2010. C52360500.
- WorleyParsons, 2011. 2010 Interim Abandonment and Restoration Program, Camp Farewell,
   NT. Unpublished report prepared for Shell Canada Energy Limited, March, 2011. C52360500



- IEG (IEG Consultants Ltd.), 2010. 2009 Camp Farewell Hydrocarbon Impacted Soil Remediation Report. Prepared for: Shell Canada Energy. February 24th, 2010.
- IEG (IEG Consultants Ltd.), 2012. Summary of 2012 Camp Farewell Activities. Letter report prepared for: Shell Canada Energy and Canadian Wildlife Services in compliance with Kendall Island Bird Sanctuary Permit. December 13, 2012.
- IEG (IEG Consultants Ltd.), 2013b. 2012 Annual Report, Type "B" Water License #N7L1-1834. Prepared for: Shell Canada Energy and the Northwest Territories Water Board. March 28, 2013.
- IEG (IEG Consultants Ltd.), 2014. Camp Farewell Lagoon Remediation. April, 2014.
- IEG (IEG Consultants Ltd.), 2015. Environmental Supervision during 2014 Decommissioning Program – Amended. September 2015.
- IEG (IEG Consultants Ltd.), 2016a. Camp Farewell 2015 Decommissioning and Soil Assessment Program Report. April 2016.

#### 3.4 **Previous Environmental Studies**

There have been no studies requested by the Inuvialuit Water Board that relate to waste disposal, water use, or reclamation. There are no future studies planned at this time.

#### 4 PROGRAM LOGISTICS AND PERMITTING

As part of the scope of work, IEG and Shell conducted several tasks concerning logistics management and permitting for the 2016 Remediation Program. Each of these tasks is described in the following sections as per the requirements of the Inuvialuit Water Board.

#### 4.1 Permitting and Licensing

IEG and Shell obtained permits and licenses prior to commencement of the Remediation Program. The following sections provide information on each permit or license. Copies of permits and licenses are provided in Appendix II.

#### 4.1.1 Environmental Impact Screening Committee

IEG prepared a Project Description (IEG, 2016a) for the remediation activities at the Site. The Project Description was sent to the Environmental Impact Screening Committee (EISC), the Aklavik Hunters and Trappers Committee (AHTC), the Inuvik Hunters and Trappers Committee (IHTC) and the Tuktoyaktuk Hunters and Trappers Committee (THTC) on April 21, 2016. Three agencies responded with comments and/or approval to proceed. Permission to proceed with the Remediation Program was obtained by the EISC.

#### 4.1.2 Water Use

Shell applied for a Type B Water License (N7L1-1834) through the Northwest Territories Water Board (NWTWB) on February 28, 2012. The application was to withdraw up to 150 m³ per day from the McKenzie River to construct an ice road should remedial activities occur during the winter months and to withdraw up to 50 m³ for operation of the on-site camp. Water License N7L1-1834 was granted on July 18, 2012 for the withdrawal of 150 m³ per day for industrial undertakings and associated uses. The permit expires in July 18, 2017.

#### 4.1.3 Canadian Wildlife Service Migratory Birds Sanctuary Permit

A Canadian Wildlife Services (CWS) permit (Migratory Birds Sanctuary Permit) is renewed for the Site each year. The applicable CWS permit (NWT-MBS-16-01) during the Camp Farewell Remediation Program was issued on February 17, 2016 and expired on December 31, 2016.



#### 5 REMEDIATION PROGRAM METHODOLOGY

During the 2016 Remediation Program, Tervita was the prime contractor on-site managing and directing Site activities, as well as coordinating logistical and safety aspects. Tervita contracted Mackenzie Delta Integrated Oilfield Services (MDIOS) to provide personnel for the remediation activities. IEG provided environmental supervision and collected soil samples from excavations and windrows of treated soil. IEG contracted GatePost Risk Analysis (GPRA) to complete the risk assessment of selected soil impacts.

The following sections describe remediation activities conducted by Tervita, MDIOS, IEG, and GPRA. Site photographs are provided in Appendix III. A site plan is shown on Figure 2.

### 5.1 Camp Mobilization/Demobilization

A barge camp was mobilized to the Site from Inuvik on July 10, 2016 via the Mackenzie River. Mobilization of the barge to Site took approximately 24 hours (Appendix III, Photo 1). The barge was anchored to bollards in the boat docking area at the Site (Figure 2). The barge comprises three levels, consisting of a kitchen and dining unit, a common lounge area, sleeping accommodations, shop space, office space, a heli-pad, and heavy machinery. A fuel spill kit, generators, and a wastewater tank were also contained on the barge. Wastewater from the barge was disposed of in Inuvik. The barge was operated and maintained by a barge master for the duration of Site activities. On August 27, 2016 the barge was demobilized from the Site via the Mackenzie River.

#### 5.2 Excavations and Soil Windrows

Soil was excavated from Zones 2, 3, 4, 10, 11, 13, and 14 and stockpiled on-site from July 13 to August 9, 2016. Prior to the excavating, the corner of each zone was located using a handheld GPS and marked with a stake. Excavation activities were started in the northwest section of the Site so that the remainder of the Site could be used for stockpiling, placement of windrows, and soil treatment (Appendix III, photo 2). The depth of the excavation in each zone was based on the location of impacted soil identified during the Phase II ESA preformed in 2015 (IEG 2016b). The excavation zones are shown on Figure 3. Details regarding the excavation in each zone are provided in Section 7.

Excavated soil was placed into one of 19 windrows established on the undisturbed area of the Site from July 13 to August 9, 2016. The windrowed soil was treated with an Allu bucket provided by MDIOS from July 16 to August 22, 2016 (Appendix III, photo 3). Windrow soil samples were collected following the first treatment to characterize remaining impacts or to confirm remediation success.

### 5.3 Soil Sampling

A total of 81 discrete confirmatory soil samples were collected from the excavation bases within each excavation area during the remediation program. The samples were collected in order to confirm remediation success at excavation walls and bases. Soil samples were collected on an approximately 20 m by 20 m grid from each of the excavations and submitted for analysis of BTEX and PHC fractions F1 to F4 concentrations. A total of 172 composite soil samples were collected from the windrows



during the remediation program. Windrow samples were also analyzed for BTEX and PHC fractions F1 to F4 concentrations.

Excavation and windrow soil samples collected were placed directly into sterile plastic bags and glass containers equipped with Teflon-lined lids. Field screening involved measuring the organic vapor concentration in the headspace of sample bags using a RKI Eagle portable gas detector. Field screening results are provided in Table 1.

Standard chain-of-custody protocol was followed for collected samples. Soil samples were stored in sealed coolers with frozen ice packs prior to being submitted to AGAT Laboratories (AGAT) in Edmonton, Alberta. AGAT is accredited by the Canadian Associations for Environmental Analytical Laboratories for the analyses performed.

During the course of the remediation program at Camp Farewell, the coordinates of each excavation soil sample location were measured using a Trimble GPS. The equipment used provides real time measurement of position and elevation with a positional accuracy of less than 1 m (generally less than 0.5 m) and less than 2 m in elevation. The coordinates were recorded in UTM NAD 83 (zone 8N).

#### 5.4 Backfilling

Under the direction of Tervita, from August 16 to August 25, 2016 MDIOS hauled soil from the windrows of treated soil (confirmed as meeting the GNWT guidelines) and used it as backfill in excavations where analytical results confirmed all impacted soil had been successfully removed, or where impacted soil met risk-based criteria. Windrowed soil that was not fully treated was used as backfill in excavations where impacted soil was not completely removed. Due to the lack of available successfully treated soil, some excavations or portions of excavations meeting GNWT guidelines or risk-based criteria were backfilled with unsuccessfully treated windrowed soil that will be removed and further treated during future site activities.

The backfill was placed in 0.3 m lifts and slightly mounded with additional fill to allow for settlement (Appendix III, photograph 4). Following backfilling, the boundaries of impacted excavation zones and those zones backfilled with untreated soil were located via GPS so that the soil can be re-excavated for further treatment and clean excavation limits can be established.

## 5.5 Waste Disposal

Soil from portions of the Zone 3 and 4 excavations that could not be treated on-site within a feasible amount of time as determined by Shell was packed into soil bags provided by Tervita. Each soil bag contained approximately 1 m<sup>3</sup> of impacted soil. Soils bags were packed carefully using the backhoe bucket and placed in the on-site staging area, located east of the shops (Appendix III, photograph 5).

On August 25, 2016, barges were loaded with the soil bags for transport to Hay River. From Hay River the soil bags and crates were transferred to trucks and further transported to the Tervita Rainbow Lake Landfill (approximately 2,800 km from Camp Farewell). Approximately 200 m³ of material was disposed in the landfill in 2016. An additional approximately 100 m³ of potentially untreatable soil remains to be excavated during future remedial activities and shipped to the landfill.



Domestic waste and waste water generated at the barge camp was contained in garbage bins and a waste water holding tank, and disposed at an approved facility by the barge operator.

There were no spills or unauthorized discharges during the 2016 remediation program. An overview of appropriate spill response actions and communications was reviewed at morning tail gate meetings. An Emergency Response Plan which includes the Spill Contingency Plan is provided in Appendix IV.

#### 5.6 Risk Assessment

Risk assessment is a remediation strategy implemented at appropriate sites as an alternative to physical remediation. Risk assessment directly evaluates whether impacted materials *in situ* pose a risk to existing receptors in a given environment. The objective of the risk assessment conducted by GPRA at the Camp Farewell site was to determine via risk-based criteria whether identified soil impacts at depths greater than 1.0 m bgs could be left in place rather than excavated and treated to meet GNWT guidelines. GPRA conducted a qualitative, screening level risk assessment that focused on receptor identification and site-appropriate exposure pathway elimination. The site characteristics of Camp Farewell were evaluated against existing guidelines using a risk assessment approach, and protective contaminant concentration limits were applied from existing sources that were most appropriate for the site (GPRA 2017). The GPRA risk assessment is provided in Appendix V.

# 5.7 Quality Assurance and Quality Control

Quality assurance and quality control measures were implemented while collecting, storing, shipping, and analyzing the samples collected during this investigation, including:

- donning new nitrile and/or latex gloves prior to the collection of each sample and/or subsequent to contact with soil while sampling;
- using both GPS and field measurements to record the sample locations;
- cleaning and decontaminating any sampling tools and/or equipment prior to collecting each sample and/or subsequent to contact with soil while sampling;
- labelling samples with a unique identifier;
- storing samples in clean and appropriate laboratory supplied sample jars;
- storing samples in ice packed coolers where appropriate to maintain samples near the recommended 4°C temperature; and,
- shipping samples to an accredited laboratory for analyses following standard chain-of-custody protocol.

The quality assurance and quality control (QA/QC) protocols are provided in Appendix VI.



#### 6 REGULATORY FRAMEWORK

The guidelines for organic and inorganic parameters in soil, sediment and water are provided by the Canadian Council of Ministers of the Environment (CCME), Canadian Environmental Quality Guidelines (CEQG), 1999 (with updates). The CCME CEQG provides guidelines for four primary land uses; "Agricultural", "Residential/Parkland", "Commercial", and "Industrial", and two soil types; "Fine" and "Coarse" grained soil, defined as having a median grain size of <75  $\mu$ m or >75  $\mu$ m, respectively.

Guidelines for salinity, trace metals, PHC, and PAH parameters in soil are provided by the CCME Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil (2001) as well as by the GNWT, Environmental Guideline for Affected Site Remediation, November 2003. The GNWT Contaminated Site Remediation (CSR) guidelines defines the same land uses and soil textures as CCME CEQG. The GNWT CSR further identifies guidelines for surface soil (0 m to 1.5 m depth) and subsoil (>1.5 m), and site-specific pathways that apply to soil, including "soil ingestion", "nutrient cycling", and "ecological soil contact", among others.

The following information was used to determine the applicable assessment guidelines and exposure pathways for soil at the Site:

- the southern and western edges of the Site are adjacent to the Middle Channel of the Mackenzie River;
- the surface water bodies are capable of sustaining aquatic life;
- there are no domestic water wells on, or within a 1 km radius of the Site;
- soils at the Site consist of a very thin organic layer overlying a coarse-grained, sandy layer;
- the maximum depth of investigation was approximately 7.5 m bgs; and,
- current and likely future land uses for the Site and surrounding properties are "Residential/Parkland", by GNWT Guidelines.

Based on the current land use definitions, the Parkland guidelines are the most applicable for the Site at this time.

# 6.1 Soil Quality

Based on the land use of the Site and the surrounding properties, benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil were compared to the coarse-textured soil guidelines found in the GNWT *Environmental Guideline for Affected Site Remediation* (November 2003), where applicable.

The analytical results for PHC fractions F1 (C<sub>6</sub>-C<sub>10</sub>), F2 (C<sub>10</sub>-C<sub>16</sub>), F3 (C<sub>16</sub>-C<sub>34</sub>) and F4 (C<sub>34</sub>-C<sub>50</sub>) were compared to the GNWT guidelines for coarse-textured subsoil (greater than 1.5 m). The limiting exposure pathway is "ecological soil contact". The "protection of potable groundwater" pathway is excluded based on the depth of permafrost in the region.



#### 7 REMEDIATION PROGRAM RESULTS

#### 7.1 Risk Assessment Results

The screening level risk assessment of soils for the Camp Farewell site was conducted by GPRA in January 2017. The majority of GNWT guidelines are based on exposure pathways protecting groundwater for drinking water or for freshwater aquatic life. The risk assessment resulted in elimination of the following exposure pathways: groundwater to drinking water; groundwater to freshwater aquatic life; direct soil contact or ingestion; and indoor vapour transport. These pathways were eliminated based on the shallow soil active zone where any groundwater would freeze annually, the permafrost barrier near 1.5 m, the distance to surface water bodies, and the remediation of surface soil (above 1.0 m bgs) to GNWT guidelines. For PHCs in the subsoil, the remaining potential exposure pathway was identified as ecological direct contact (GPRA 2017).

The risk assessment determined that leaving impacted soil in place at depths greater than 1.0 m bgs will result in very low risks of PHCs concentrations causing adverse effects for any ecological receptors via the direct contact pathway (GPRA 2017). Therefore, impacted soil at depths greater than 1.0 m bgs could be left in place in all excavation zones across the Site. As a further assurance, concentrations of PHC constituents in confirmatory soil samples were also compared with the PHC parameter concentrations used to complete the risk assessment to confirm that soil concentrations in excavated areas were within the assumptions of the risk assessment.

### 7.2 Windrow Soil Sample Results

Composite soil samples were collected from the 19 windrows of treated soil on-site between July 19 and August 18, 2017. Windrow soil analytical results are summarized in Table 2 and laboratory analytical reports are attached in Appendix VII.

Composite samples from windrows 1 to 5, 16, 17, and 18 contained concentrations of PHCs that were less than the GNWT guidelines and soil from these windrows was used to backfill all or part of the excavations in Zones 2, 10, 11, 13, and 14. Soil samples from the remaining 11 windrows contained concentrations of toluene, F2 and/or F3 that exceeded the GNWT guidelines. Soil from these 11 windrows was used to backfill excavations in Zone 3 and Zone 4, and portions of the Zone 10, 13, and 14 excavations. This soil will be excavated and further treated during future Site work.

# 7.3 Confirmatory Soil Sample Results

Seven zones were excavated during the 2016 remediation program. Confirmatory excavation limit samples were collected once the excavations had been expanded laterally and vertically to anticipated clean limits or to a depth of 1.0 m (Figure 3). Excavation soil sample results exceeding the GNWT guidelines and collected from depths of 1.0 m or greater were evaluated via the established risk assessment criteria. Detailed excavation and soil sampling results from each zone are provided in the following sections.



Confirmatory soil analytical results are summarized in Table 1 and laboratory analytical reports are attached in Appendix VI. Locations of all confirmatory excavation sample points are shown on Figure 4, along with the boundaries of each excavation and the composition of backfill material.

#### 7.3.1 Zone 2 Excavation

Remedial excavation activities in Zone 2 were conducted from July 14, 2016 to July 21, 2016. The excavation was located in the northwest corner of the Site and measured approximately 75 m by 75 m. The maximum depth of the excavation was 1.0 m bgs.

A total of 17 soil samples, including one duplicate sample, were taken from the base of the Zone 2 excavation. Concentrations of toluene, xylenes, and hydrocarbon fractions F2 and F3 that exceeded the GNWT guidelines were detected in five Zone 2 excavation base samples. Confirmatory sample exceedances in Zone 2 are summarized in Table 7-1.

Table 7-1 Confirmatory Sample Exceedances – Zone 2

| Sample Location | Parameters Exceeding GNWT Guidelines |
|-----------------|--------------------------------------|
| GS16-002        | Toluene, F3                          |
| GS16-006        | F3                                   |
| GS16-007        | F2, F3                               |
| GS16-008        | Toluene                              |
| GS16-016        | Xylenes, F2, F3                      |

Each of the five locations of PHCs exceedances in Zone 2 were evaluated according to the risk-based criteria. The sample results met the criteria to remain in place, and no further excavation is required in Zone 2. The Zone 2 excavation was fully backfilled with successfully treated windrowed soil.

#### 7.3.2 Zone 3 Excavation

Remedial excavation activities in Zone 3 were conducted from July 21, 2016 to August 10, 2016. The excavation was located along the northern boundary of the Site. The dimensions of the excavation were approximately 85 m by 85 m. The maximum depth of the excavation was 1.0 m bgs.

A total of 16 confirmatory samples, including 1 duplicate sample, were taken from the base of the Zone 3 excavation. Concentrations of toluene, xylenes, and hydrocarbon fractions F2 and F3 that exceeded the GNWT guidelines were detected in nine of the Zone 3 excavation base samples. Confirmatory sample exceedances in Zone 3 are summarized in Table 7-2.

Table 7-2 Confirmatory Sample Exceedances – Zone 3

| Sample Location | Parameters Exceeding GNWT Guidelines |
|-----------------|--------------------------------------|
| GS16-110        | Toluene                              |
| GS16-111        | Toluene, Xylenes, F2, F3             |
| GS16-112        | F3                                   |
| GS16-115        | Toluene, F2, F3                      |
| GS16-116        | Toluene, Xylenes, F2, F3             |
| GS16-117        | F3                                   |
| GS16-118        | Toluene, F2, F3                      |

| Sample Location | Parameters Exceeding GNWT Guidelines |
|-----------------|--------------------------------------|
| GS16-119        | Toluene, F2, F3                      |
| GS16-120        | Toluene, Xylenes, F2, F3             |

Each of the nine locations of PHCs exceedances in Zone 3 were evaluated according to the risk-based criteria. The sample results met the criteria to remain in place, and no further excavation is required in Zone 3. The Zone 3 excavation was backfilled with impacted windrowed soil.

#### 7.3.3 Zone 4 Excavation

Remedial excavation activities in Zone 4 were conducted from July 21, 2016 to August 2, 2016. The excavation was located along the north boundary of the Site. The dimensions of the excavation were approximately 40 m by 75 m. The maximum depth of the excavation was approximately 0.6 m bgs.

A total of eight soil samples were taken from the Zone 4 excavation. Concentrations of toluene, xylenes, and hydrocarbon fractions F1, F2 and F3 that exceeded the GNWT guidelines were detected each of the Zone 4 excavation base samples. Confirmatory sample exceedances in Zone 4 are summarized in Table 7-3.

Table 7-3 Confirmatory Sample Exceedances – Zone 4

| Sample Location | Parameters Exceeding GNWT Guidelines |  |  |  |  |  |  |  |
|-----------------|--------------------------------------|--|--|--|--|--|--|--|
| GS16-121        | Xylenes, F1, F2, F3                  |  |  |  |  |  |  |  |
| GS16-122        | F2, F3                               |  |  |  |  |  |  |  |
| GS16-123        | F2                                   |  |  |  |  |  |  |  |
| GS16-124        | Xylenes, F3                          |  |  |  |  |  |  |  |
| GS16-125        | Xylenes, F1, F2                      |  |  |  |  |  |  |  |
| GS16-126        | Toluene, Xylenes, F1, F2             |  |  |  |  |  |  |  |
| GS16-127        | Toluene, Xylenes, F1, F2             |  |  |  |  |  |  |  |
| GS16-128        | Toluene, Xylenes, F2, F3             |  |  |  |  |  |  |  |

Because the eight locations of PHCs exceedances in Zone 4 were at depths less than 1.0 m bgs, they were not evaluated according to the risk-based criteria. Further excavation of impacted soil is required in Zone 4, and the Zone 4 excavation was backfilled with impacted windrowed soil.

#### 7.3.4 Zone 10 Excavation

Remedial excavation activities in Zone 10 were conducted from July 21, 2016 to August 10, 2016. The excavation was located in the center of the Site. The dimensions of the excavation were approximately 25 m by 75 m. The maximum depth of the excavation was approximately 1.0 m bgs.

A total of 12 soil samples, including one duplicate, were taken from the Zone 10 excavation. Each of the soil samples collected from the base of the Zone 10 excavation contained PHC concentrations that were less than the GNWT guidelines, and no further excavation is required in Zone 10. The majority of the Zone 10 excavation was backfilled with successfully treated windrowed soil, while an area along the northern boundary of the excavation was backfilled with impacted windrowed soil.

#### 7.3.5 Zone 11 Excavation

Remedial excavation activities in Zone 11 were conducted from July 14, 2016 to July 21, 2016. The excavation was located along the western boundary of the Site. The dimensions of the excavation were approximately 75 m by 75 m. The maximum depth of the excavation was approximately 1.0 m bgs.

A total of 16 soil samples, including two duplicates, were taken from the Zone 11 excavation. Confirmatory sample GS16-017 (1.0 m bgs) contained toluene that exceeded the GNWT guideline. This sample was evaluated according to the risk-based criteria. The sample results met the criteria to remain in place, and no further excavation is required in Zone 11. The Zone 11 excavation was fully backfilled with successfully treated windrowed soil. The boundaries of the Zone 11 excavation and the location of backfill material are shown on Figure 4.

#### 7.3.6 Zone 13 Excavation

Remedial excavation activities in Zone 13 were conducted from July 21, 2016 to August 2, 2016. The excavation was located on the southwest zone of the Site. The dimensions of the excavation were approximately 75 m by 60 m. The maximum depth of the excavation was approximately 0.6 m bgs.

A total of 8 soil samples were taken from the base of the Zone 13 excavation. Each of the soil samples collected from the Zone 13 excavation contained PHC concentrations that were less than the GNWT guidelines, and no further excavation is required in Zone 13. The majority of the Zone 13 excavation was backfilled with successfully treated windrowed soil, while an area along the southern boundary of the excavation was backfilled with impacted windrowed soil.

#### 7.3.7 Zone 14 Excavation

Remedial excavation activities in Zone 14 were conducted from July 21, 2016 to August 2, 2016. The excavation was located on the southwest zone of the Site. The dimensions of the excavation were approximately 20 m by 60 m. The maximum depth of the excavation was approximately 0.6 m bgs.

A total of 10 soil samples, including one duplicate, were taken from the Zone 14 excavation. Each of the soil samples collected from the base of the Zone 14 excavation contained PHC concentrations that were less than the GNWT guidelines, and no further excavation is required in Zone 14. The majority of the Zone 14 excavation was backfilled with successfully treated windrowed soil, while an area along the southern boundary of the excavation was backfilled with impacted windrowed soil.

### 7.4 Soil Volumes and Remediation Summary

A total of approximately 24,000 m³ of soil was excavated from seven excavation zones during the 2016 Remediation Program. Approximately 10,000 m³ was successfully treated on-site and used to fully backfill two excavations. Approximately 14,000 m³ of soil did not meet the GNWT guidelines following soil treatment activities and was used to fully or partially backfill five excavations. This volume of soil requires additional on-site treatment during the 2017 remediation program.

Approximately 200 m<sup>3</sup> of soil was determined to be unsuitable for on-site treatment and was packaged into 1 m<sup>3</sup> soil bags for transport off-site via barge to an appropriate disposal facility.



Based on the results of confirmatory sampling, six excavation zones were successfully remediated during the 2016 program and do not require further excavation, other than removal of impacted windrowed soil for additional treatment. One zone requires additional excavation between 0.6 and 1.0 m bgs. Fifteen zones were not excavated during 2016 and require remediation during future programs at the Site.

### 7.5 Quality Assurance and Quality Control

For quality assurance purposes 24 replicate samples were collected for analysis of petroleum hydrocarbon parameters. The samples were submitted to the laboratory as blind replicates.

The laboratory results for the replicate and original samples were compared and evaluated for quality on the basis of either relative percent difference (RPD) or absolute difference (AD). Three parameters (F2 to F4) were identified above the Zeiner (1994) criteria in the QA/QC review for results received under AGAT work orders 16E117223, 16E119478, 16E123918, 16E126254, 16E128870, and 16E131607 and are considered estimates only. The remainder of the analytical program is considered to be precise.

The quality assurance and quality control (QA/QC) program included laboratory QA/QC protocols which are provided in Appendix V. QA/QC results are presented in Table 3. Laboratory quality assurance reports and analytical methods are presented in Appendix VI.



Page 15

#### 8 **CONCLUSIONS**

Shell retained IEG and Tervita to conduct the remediation program at the Site in July and August 2016. The 2016 remediation program entailed the excavation, treatment, risk-based assessment, and backfilling of the impacted soil on-site. The conclusions and key findings of the 2016 remediation program are as follows:

- Soil was excavated from seven excavation zones and stockpiled on-site from July 13 to August 9, 2016. Excavated soil was placed into windrows established on the undisturbed area of the Site and treated with an Allu bucket;
- Treated soil was used to backfill successfully remediated areas. Due to the lack of sufficient treated soil, some excavations or portions of excavations meeting GNWT guidelines or riskbased criteria were backfilled with unsuccessfully treated windrowed soil;
- A total of approximately 24,000 m<sup>3</sup> of soil was excavated from seven excavation zones. Approximately 10,000 m<sup>3</sup> was successfully treated on-site and used to fully backfill two excavations. Approximately 14,000 m<sup>3</sup> of soil did not meet the GNWT guidelines following soil treatment activities and was used to fully or partially backfill five excavations;
- Approximately 200 m<sup>3</sup> of soil was determined to be unsuitable for on-site treatment and was packaged into 1 m<sup>3</sup> soil bags for transport off-site via barge to an appropriate disposal facility; and
- Six excavation zones were successfully remediated and do not require further excavation other than removal and further treatment of impacted windrowed soil. One zone requires additional excavation between 0.6 and 1.0 m bgs. Fifteen zones were not excavated during 2016 and require remediation during future programs at the Site.



#### 9 CLARIFICATIONS OF THIS REPORT

This report was prepared by IEG Consultants Ltd. for the account of Shell Canada Energy. The material in it reflects IEG's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. IEG Consultants Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The report's findings are based on conditions that existed at the time of IEG Consultants Ltd.'s site visit and should not be relied upon to precisely represent conditions at any other time. The conclusions in the report are based on IEG Consultant Ltd.'s observation of existing site conditions and on limited soil sampling and chemical testing. The concentrations of contaminants measured may not be representative of conditions between locations sampled. Be aware that conditions may change with time. Conclusions about site conditions under no circumstances comprise a warranty that conditions in all areas within the site and beneath structures are of the same quality as those sampled. Note also that changes in environmental regulations and interpretations may occur at any time and such changes could affect the extent of remediation required. Any additional information about the site that becomes available should be provided to IEG Consultants Ltd. for review and modification of its recommendations as necessary.

This report is an instrument of service of IEG Consultants Ltd. The report has been prepared for the exclusive use of Shell Canada Energy (Shell) for the specific application to the Camp Farewell Remediation Program. The report's contents may not be relied upon by any party other than Shell without the express written permission of IEG Consultants Ltd. In this report, IEG Consultants Ltd. has endeavoured to comply with generally-accepted professional practice common to the local area. IEG Consultants Ltd. makes no warranty, express or implied.



#### 10 CLOSING

If you have any questions or comments regarding the above information, please contact the undersigned in our Calgary office at (403) 730-6809.

#### **IEG CONSULTANTS LTD.**



Liza Flemming, P. Geol. Senior Environmental Scientist

#### **REFERENCES**

- Alberta Environment (AENV) 2009. Soil Remediation Guidelines for Barite: Environmental Health and Human Health. Alberta Government, February 2009.
- Alberta Environment 2001. Salt Contamination and Assessment Remediation Guidelines (SCARG). May, 2001.
- Alberta Environment (AENV) 1999. Surface Water Quality Guidelines for Use in Alberta. November, 1999.
- Canadian Council of Ministers of the Environment (CCME) 1999. Canadian Environmental Quality Guidelines, Update 7.0, September 2007.
- Canadian Council of Ministers of the Environment (CCME) 2001. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) in Soil, Table 1 Revised January 2008.
- Ecological Stratification Working Group (ESWG) 1996. A National Ecological Framework for Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, State of the Environment Directorate, Environment Conservation Service, and Environment Canada, Ottawa/Hull.

  Website: <a href="http://www.sis.agr.gc.ca/cansis/publications/ecostrat/cad">http://www.sis.agr.gc.ca/cansis/publications/ecostrat/cad</a> report.pdf
- Environment Canada 2002. Canadian Climate Normals 1931 2000 for Inuvik A, Northwest Territories. Website: http://www.climate.weatheroffice.gc.ca/climate\_normals/index\_e.html
- Gate Post Risk Analysis 2017. Risk-Based remediation for Camp Farewell, Mackenzie Delta, Northwest Territories. January 2017.
- Government of the Northwest Territories (GNWT) 2003. Environmental Guideline for Affected Site Remediation.
- Heginbottom, J.A. 1998. Permafrost Distribution and Ground Ice in Surficial Materials. In the Physical Environment of the Mackenzie Valley: Baseline for the Assessment of Environmental Change. Geological Survey of Canada, (eds) L.D. Dyke and G.R. Brooks.
- IEG Consultants Ltd. (IEG) 2006. Project Description Camp Farewell Environmental Site Assessment Updates. March 2006.
- IEG Consultants Ltd. (IEG) 2010. 2009 Camp Farewell Hydrocarbon Impacted Soil Remediation Report. Prepared for: Shell Canada Energy. February 24th, 2010.
- IEG Consultants Ltd. (IEG) 2012. Summary of 2012 Camp Farewell Activities. Letter report prepared for: Shell Canada Energy and Canadian Wildlife Services in compliance with Kendall Island Bird Sanctuary Permit. December 13, 2012.
- IEG Consultants Ltd. (IEG) 2013a. 2012 Aklavik Hunters and Trappers Committee Consultation Letter. Letter report prepared for: Shell Canada Energy and Aklavik Hunters and Trappers Committee. March 26, 2013.
- IEG Consultants Ltd. (IEG) 2013b. 2012 Annual Report, Type "B" Water License #N7L1-1834. Prepared for: Shell Canada Energy and the Northwest Territories Water Board. March 28, 2013.
- IEG Consultants Ltd. (IEG) 2014. 2013 Annual Report, Type "B" Water License #N7L1-1834. Prepared for: Shell Canada Energy and the Northwest Territories Water Board. March 28, 2013.
- IEG Consultants Ltd. (IEG) 2015. 2014 Annual Report, Type "B" Water License #N7L1-1834. Prepared for: Shell Canada Energy and the Northwest Territories Water Board. March 28, 2013.
- IEG Consultants Ltd. (IEG) 2016a. Camp Farewell Project Description 2016 Decommissioning and Remediation Program at Camp Farewell. April 2016.

170530 Rem Report\_Shell.docx
A04012A08

Page 18
March 2017

- IEG Consultants Ltd. (IEG) 2016b. 2015 Annual Report, Type "B" Water License #N7L1-1834. Prepared for: Shell Canada Energy and the Northwest Territories Water Board. March 28, 2013.
- Komex International Ltd. (Komex) 2001. Phase I and Phase II Environmental Site Assessment of the Shell Farewell Stockpile and Campsite. Unpublished report prepared for: Shell Canada Limited, July, 2001. C52360000.
- Mackenzie River Basin Committee (MRBC) 1981. *Mackenzie River Basin Study Report*. A Report under the 1978-1981 Federal-Provincial Study Agreement Respecting the Water and Related Resources of the Mackenzie River Basin.
- WorleyParsons Komex 2006. 2006 Environmental Site Assessment, Camp Farewell, NT. December, 2006.
- WorleyParsons 2008. Interim Abandonment and Restoration Program, Camp Farewell, NT. Unpublished report prepared for Shell Canada Energy Limited, November, 2008. C52360500.
- WorleyParsons 2010. 2009 Interim Abandonment and Restoration Program, Camp Farewell, NT. Unpublished report prepared for Shell Canada Energy Limited, April, 2010. C52360500.
- WorleyParsons 2011. 2010 Interim Abandonment and Restoration Program, Camp Farewell, NT. Unpublished report prepared for Shell Canada Energy Limited, March, 2011. C52360500.
- Zeiner, S.T., 1994. Realistic Criteria for the Evaluation of Field Duplicate Sample Results. Reported from the Proceeding of Superfund XV November 29-December 1, 1994 Sheraton Washington Hotel, Washington D.C.

**TABLES** 



Table 1: Confirmatory Soil Sample Analytical Results for Petroleum Hydrocarbons

|                                            | GENERAL              |                         |                             |                       |                  |                                                                                                             |               |                |             |               |                  |            |
|--------------------------------------------|----------------------|-------------------------|-----------------------------|-----------------------|------------------|-------------------------------------------------------------------------------------------------------------|---------------|----------------|-------------|---------------|------------------|------------|
|                                            |                      |                         |                             |                       |                  |                                                                                                             |               |                |             |               |                  |            |
| Location                                   | Sample Designation   | Sample Depth<br>(m bgs) | Sample Date<br>(yyyy-mm-dd) | OVA (Field Screening) |                  |                                                                                                             |               |                |             |               |                  |            |
|                                            |                      |                         |                             | d Scr                 |                  |                                                                                                             | ene           |                |             |               |                  |            |
|                                            |                      |                         |                             | (Field                | ane              | ne                                                                                                          | benz          | es             |             |               |                  |            |
|                                            |                      |                         |                             | AVC                   | Benzene          | Foluene                                                                                                     | Ethylbenzene  | Xylenes        | F1          | F2            | Ε                | F4         |
|                                            |                      |                         | Units                       |                       | mg/kg            | mg/kg                                                                                                       | mg/kg         | mg/kg          | mg/kg       | mg/kg         | mg/kg            | mg/kg      |
| GUIDELINES CNIMT 2002 Pasidontial / Dark   | land.                | Confess (O. 1. F. as he |                             |                       | 0.5              | 0.8                                                                                                         | 1.2           | 1              | 130         | 150           | 400              | 2800       |
| GNWT 2003 Residential/Park Excavation Zone | aanu                 | Surface (0-1.5 m b      | 35)                         |                       | 0.5              | 0.8                                                                                                         | 1.2           |                | 130         | 130           | 400              | 2800       |
|                                            | GS16-001             | 1.0 m bgs               | 2016-07-19                  | 10                    | <0.005           | 0.62                                                                                                        | <0.01         | <0.05          | <10         | <10           | 16               | 10         |
|                                            | GS16-002             | 1.0 m bgs               | 2016-07-19                  | 150                   | <0.005           | 5.03                                                                                                        | <0.01         | <0.05          | <10         | <10           | 450              | 205        |
|                                            | GS16-003<br>GS16-004 | 1.0 m bgs<br>1.0 m bgs  | 2016-07-19<br>2016-07-19    | 10<br>5               | <0.005<br><0.005 | 0.28<br><0.05                                                                                               | <0.01         | <0.05<br><0.05 | <10<br><10  | <10<br><10    | 27<br><10        | 12<br><10  |
|                                            | GS16-005             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | 0.31                                                                                                        | <0.01         | <0.05          | <10         | <10           | 34               | 14         |
|                                            | GS16-006             | 1.0 m bgs               | 2016-07-19                  | 120                   | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | 426              | 159        |
|                                            | GS16-007<br>GS16-008 | 1.0 m bgs<br>1.0 m bgs  | 2016-07-19<br>2016-07-19    | 430<br>35             | <0.005<br><0.005 | 0.32<br>1.33                                                                                                | <0.01         | <0.05<br><0.05 | <10<br><10  | 769<br>13     | <b>729</b><br>81 | 73<br>29   |
| Zone 2                                     | GS16-008<br>GS16-009 | 1.0 m bgs               | 2016-07-19                  | 10                    | <0.005           | 0.19                                                                                                        | <0.01         | <0.05          | <10         | <10           | 11               | <10        |
|                                            | GS16-010             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | 0.27                                                                                                        | <0.01         | <0.05          | <10         | <10           | 14               | <10        |
|                                            | GS16-011             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | 0.14                                                                                                        | <0.01         | <0.05          | <10         | <10           | 25               | 18         |
|                                            | Dup 1<br>GS16-012    | 1.0 m bgs<br>1.0 m bgs  | 2016-07-19<br>2016-07-19    | 10<br>5               | <0.005<br><0.005 | 0.18<br><0.05                                                                                               | 0.02<br><0.01 | 0.15<br><0.05  | <10<br><10  | 14<br><10     | 77<br><10        | 18<br><10  |
|                                            | GS16-013             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | 11               | <10        |
|                                            | GS16-014             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | <10              | <10        |
|                                            | GS16-015             | 1.0 m bgs               | 2016-07-19                  | 5                     | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | 20               | 10         |
|                                            | GS16-016<br>GS16-106 | 1.0 m bgs<br>0.6 m bgs  | 2016-07-19<br>2016-08-04    | 870<br>10             | <0.005           | <0.05<br>0.78                                                                                               | 0.39<br><0.01 | 1.89<br><0.05  | 98<br><10   | 3060<br><10   | 2130<br>95       | 22<br>35   |
|                                            | GS16-107             | 0.6 m bgs               | 2016-08-04                  | 10                    | <0.005           | 0.20                                                                                                        | <0.01         | <0.05          | <10         | 94            | 115              | 45         |
|                                            | GS16-108             | 0.6 m bgs               | 2016-08-04                  | 10                    | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | 46            | 321              | 33         |
|                                            | GS16-109<br>DUP - 10 | 1.0 m bgs<br>1.0 m bgs  | 2016-08-09<br>2016-08-09    | 15<br>50              | <0.005<br><0.005 | 0.66                                                                                                        | <0.01         | <0.05<br><0.05 | <10<br><10  | 103<br>335    | 929<br>523       | 452<br>63  |
|                                            | GS16-110             | 1.0 m bgs               | 2016-08-09                  | 180                   | <0.005           | 6.82                                                                                                        | <0.01         | 0.15           | <10         | 112           | 2710             | 1310       |
|                                            | GS16-111             | 1.0 m bgs               | 2016-08-09                  | 780                   | <0.005           | 2.51                                                                                                        | 0.96          | 4.15           | 22          | 2400          | 3000             | 580        |
| Zone 3                                     | GS16-112<br>GS16-113 | 1.0 m bgs               | 2016-08-09                  | 110<br>10             | <0.005<br><0.005 | 0.12<br><0.05                                                                                               | <0.01         | <0.05<br><0.05 | <10<br><10  | 55<br><10     | 492<br><10       | 280<br>40  |
|                                            | GS16-113<br>GS16-114 | 1.0 m bgs<br>1.0 m bgs  | 2016-08-09<br>2016-08-09    | 15                    | <0.005           | 0.06                                                                                                        | <0.01         | <0.05          | <10         | 32            | 59               | 70         |
|                                            | GS16-115             | 1.0 m bgs               | 2016-08-09                  | 240                   | <0.005           | 1.04                                                                                                        | 0.15          | 0.69           | 21          | 881           | 1350             | 469        |
|                                            | GS16-116             | 1.0 m bgs               | 2016-08-09                  | 210                   | 0.444            | 5.26                                                                                                        | 1.11          | 6.22           | 73          | 621           | 1190             | 538        |
|                                            | GS16-117<br>GS16-118 | 1.0 m bgs<br>1.0 m bgs  | 2016-08-09<br>2016-08-09    | 70<br>80              | <0.005<br><0.005 | 0.18<br>1.49                                                                                                | <0.01         | <0.05<br><0.05 | <10<br><10  | 108<br>155    | 2350<br>783      | <10<br>401 |
|                                            | GS16-119             | 1.0 m bgs               | 2016-08-09                  | 200                   | <0.005           | 2.02                                                                                                        | <0.01         | <0.05          | <10         | 226           | 1260             | 664        |
|                                            | GS16-120             | 1.0 m bgs               | 2016-08-09                  | 90                    | 0.471            | 2.36                                                                                                        | 0.56          | 2.51           | 11          | 242           | 550              | 176        |
|                                            | GS16-121<br>GS16-122 | 0.6 m bgs<br>0.6 m bgs  | 2016-08-04<br>2016-08-04    | 580<br>240            | <0.005<br>0.021  | <0.05                                                                                                       | 0.08          | 1.31<br>0.71   | 160<br><10  | 2110<br>164   | 890<br>496       | <10<br>208 |
|                                            | GS16-122<br>GS16-123 | 0.6 m bgs               | 2016-08-04                  | 80                    | 0.021            | <0.05                                                                                                       | 0.12          | <0.05          | 10          | 157           | 185              | 84         |
| Zone 4                                     | GS16-124             | 0.6 m bgs               | 2016-08-04                  | 65                    | 0.015            | 0.13                                                                                                        | 0.21          | 1.29           | 110         | 890           | 242              | 17         |
| 20.10 4                                    | GS16-125             | 0.6 m bgs               | 2016-08-04                  | 670                   | 0.015            | 0.48                                                                                                        | 0.21          | 2.33           | 220         | 1700          | 146              | 38         |
|                                            | GS16-126<br>GS16-127 | 0.6 m bgs<br>0.6 m bgs  | 2016-08-04<br>2016-08-04    | 1300<br>410           | 0.405            | 20.2<br>1.86                                                                                                | 6.16<br>0.42  | 46.3<br>3.92   | 1920<br>470 | 10400<br>2670 | 955<br>950       | 152<br>260 |
|                                            | GS16-128             | 0.6 m bgs               | 2016-08-04                  | 205                   | 0.207            | 3.75                                                                                                        | 0.57          | 4.09           | 120         | 682           | 1020             | 467        |
|                                            | GS16-095             | 0.6 m bgs               | 2016-08-04                  | 10                    | <0.005           | 0.23                                                                                                        | <0.01         | <0.05          | <10         | <10           | 239              | 63         |
|                                            | GS16-096<br>GS16-097 | 0.6 m bgs<br>0.6 m bgs  | 2016-08-04<br>2016-08-04    | 5<br>40               | <0.005<br><0.005 | <0.05<br><0.05                                                                                              | <0.01         | <0.05<br><0.05 | <10<br><10  | <10<br><10    | 61<br>49         | 29<br>25   |
|                                            | GS16-097<br>GS16-098 | 0.6 m bgs               | 2016-08-04                  | 35                    | <0.005           | 0.25                                                                                                        | <0.01         | <0.05          | <10         | <10           | 247              | 92         |
|                                            | DUP - 9              | 0.6 m bgs               | 2016-08-04                  | 60                    | <0.005           | 0.24                                                                                                        | <0.01         | <0.05          | <10         | <10           | 774              | 525        |
| Zone 10                                    | GS16-099             | 0.6 m bgs               | 2016-08-04                  | 40                    | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | 91               | 45         |
|                                            | GS16-100<br>GS16-101 | 0.6 m bgs<br>0.6 m bgs  | 2016-08-04<br>2016-08-04    | 10<br>25              | <0.005<br><0.005 | 0.10                                                                                                        | <0.01         | <0.05<br><0.05 | <10<br><10  | <10<br><10    | 61<br>255        | 23<br>105  |
|                                            | GS16-102             | 0.6 m bgs               | 2016-08-04                  | 35                    | <0.005           | 0.11                                                                                                        | <0.01         | <0.05          | <10         | <10           | 277              | 141        |
|                                            | GS16-103             | 0.6 m bgs               | 2016-08-04                  | 10                    | <0.005           | <0.05                                                                                                       | <0.01         | <0.05          | <10         | <10           | 78               | 37         |
|                                            | GS16-104             | 0.6 m bgs               | 2016-08-04                  | 5<br>5                | <0.005           | 0.10<br><0.05                                                                                               | <0.01         | <0.05<br><0.05 | <10<br><10  | <10<br><10    | 75<br>74         | 22<br>38   |
| Notes:                                     | GS16-105             | 0.6 m bgs               | 2016-08-04                  | 5                     | <0.005           | <u.u5< td=""><td>&lt;0.01</td><td>&lt;0.05</td><td>&lt;10</td><td>&lt;10</td><td>74</td><td>38</td></u.u5<> | <0.01         | <0.05          | <10         | <10           | 74               | 38         |

#### Notes:



<sup>1.</sup> m bgs = metres below ground surface

<sup>2.</sup> Current and/or applicable guidelines are bolded

<sup>(</sup>yellow highlight) = Exceeds applicable guidelines

<sup>3.</sup> View analytical report for more comprehensive results
4. Government of Northwest Territories (GNWT), 2003. Environmental Guideline for Contaminated Site Remediation. November 2003.

Table 1: Confirmatory Soil Sample Analytical Results for Petroleum Hydrocarbons

|                            | OFFICE CO.         |                         |                                      |                       |         |               |                   |         |       |             |                   |       |
|----------------------------|--------------------|-------------------------|--------------------------------------|-----------------------|---------|---------------|-------------------|---------|-------|-------------|-------------------|-------|
|                            | GENERAL            |                         |                                      |                       |         |               | 1                 | 1       |       | 1           |                   |       |
| Location                   | Sample Designation | Sample Depth<br>(m bgs) | Sample Date<br>(yyyy-mm-dd)<br>Units | OVA (Field Screening) | Benzene | Toluene mg/kg | 문thylbenzene<br>ማ | xylenes | mg/kg | EZ<br>mg/kg | <u>ε</u><br>mg/kg | mg/kg |
| GUIDELINES                 |                    |                         |                                      |                       |         |               |                   |         |       |             |                   |       |
| GNWT 2003 Residential/Park | land               |                         | 0.5                                  | 0.8                   | 1.2     | 1             | 130               | 150     | 400   | 2800        |                   |       |
|                            | GS16-017           | 1.0 m bgs               | 2016-07-19                           | 10                    | < 0.005 | 0.81          | < 0.01            | < 0.05  | <10   | <10         | 73                | 32    |
|                            | GS16-018           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | < 0.05  | <10   | <10         | <10               | <10   |
|                            | GS16-019           | 1.0 m bgs               | 2016-07-19                           | 10                    | < 0.005 | < 0.05        | < 0.01            | < 0.05  | <10   | 11          | 56                | 18    |
|                            | GS16-020           | 1.0 m bgs               | 2016-07-19                           | 0                     | <0.005  | <0.05         | < 0.01            | < 0.05  | <10   | <10         | 10                | 15    |
|                            | GS16-021           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | 12                | <10   |
|                            | Dup 2              | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | GS16-022           | 1.0 m bgs               | 2016-07-19                           | 5                     | < 0.005 | < 0.05        | < 0.01            | < 0.05  | <10   | <10         | <10               | <10   |
| Zone 11                    | GS16-023           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | 0.06          | < 0.01            | < 0.05  | <10   | <10         | <10               | <10   |
| Zone 11                    | GS16-024           | 1.0 m bgs               | 2016-07-19                           | 5                     | < 0.005 | 0.08          | < 0.01            | < 0.05  | <10   | <10         | <10               | <10   |
|                            | GS16-025           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | 0.07          | < 0.01            | <0.05   | <10   | <10         | 36                | 19    |
|                            | GS16-026           | 1.0 m bgs               | 2016-07-19                           | 10                    | < 0.005 | < 0.05        | < 0.01            | < 0.05  | <10   | <10         | <10               | <10   |
|                            | GS16-027           | 1.0 m bgs               | 2016-07-19                           | 15                    | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | GS16-028           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | Dup 3              | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | GS16-029           | 1.0 m bgs               | 2016-07-19                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | GS16-030           | 1.0 m bgs               | 2016-07-19                           | 10                    | < 0.005 | < 0.05        | < 0.01            | < 0.05  | <10   | <10         | 89                | 29    |
|                            | GS16-078           | 0.6 m bgs               | 2016-08-04                           | 5                     | < 0.005 | < 0.05        | < 0.01            | < 0.05  | <10   | <10         | 201               | 88    |
|                            | GS16-079           | 0.6 m bgs               | 2016-08-04                           | 0                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
|                            | GS16-080           | 0.6 m bgs               | 2016-08-04                           | 0                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | <10               | <10   |
| Zone 13                    | GS16-081           | 0.6 m bgs               | 2016-08-04                           | 15                    | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | 90          | 139               | 35    |
| 20116 13                   | GS16-082           | 0.6 m bgs               | 2016-08-04                           | 10                    | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | 31                | 14    |
|                            | GS16-083           | 0.6 m bgs               | 2016-08-04                           | 10                    | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | 95                | 42    |
|                            | GS16-084           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | <0.05         | < 0.01            | <0.05   | <10   | <10         | 57                | <10   |
|                            | GS16-085           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | 0.26          | < 0.01            | <0.05   | <10   | <10         | 62                | 13    |
|                            | GS16-086           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | <0.05         | < 0.01            | < 0.05  | <10   | <10         | 66                | 14    |
|                            | DUP - 8            | 0.6 m bgs               | 2016-08-04                           | 15                    | <0.005  | <0.05         | <0.01             | <0.05   | <10   | <10         | 105               | 52    |
|                            | GS16-087           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | 0.07          | < 0.01            | <0.05   | <10   | <10         | 92                | 40    |
|                            | GS16-088           | 0.6 m bgs               | 2016-08-04                           | 10                    | <0.005  | 0.12          | <0.01             | <0.05   | <10   | <10         | 121               | 40    |
| Zone 14                    | GS16-089           | 0.6 m bgs               | 2016-08-04                           | 15                    | <0.005  | <0.05         | <0.01             | <0.05   | <10   | <10         | 22                | <10   |
| 20110 14                   | GS16-090           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | 0.16          | <0.01             | <0.05   | <10   | <10         | 78                | 22    |
|                            | GS16-091           | 0.6 m bgs               | 2016-08-04                           | 15                    | <0.005  | <0.05         | <0.01             | <0.05   | <10   | <10         | 175               | 88    |
|                            | GS16-092           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | 0.09          | <0.01             | <0.05   | <10   | <10         | 30                | 15    |
|                            | GS16-093           | 0.6 m bgs               | 2016-08-04                           | 10                    | <0.005  | <0.05         | <0.01             | <0.05   | <10   | <10         | 82                | 26    |
|                            | GS16-094           | 0.6 m bgs               | 2016-08-04                           | 5                     | <0.005  | <0.05         | <0.01             | <0.05   | <10   | <10         | <10               | <10   |

#### Notes

- 1. m bgs = metres below ground surface
- 2. Current and/or applicable guidelines are bolded
  - (yellow highlight) = Exceeds applicable guidelines
- 3. View analytical report for more comprehensive results
- 4. Government of Northwest Territories (GNWT), 2003. Environmental Guideline for Contaminated Site Remediation. November 2003.



Table 2: Windrow Soil Sample Analytical Results for Petroleum Hydrocarbons

|                           | GENERAL                                    |                         |                             |                       |         |         |             |                |            |            |            |           |
|---------------------------|--------------------------------------------|-------------------------|-----------------------------|-----------------------|---------|---------|-------------|----------------|------------|------------|------------|-----------|
|                           | GENERAL                                    |                         |                             |                       | T T     |         |             |                |            |            |            |           |
| Location                  | Sample Designation                         | Sample Depth<br>(m bgs) | Sample Date<br>(yyyy-mm-dd) | OVA (Field Screening) | 3enzene | roluene | thylbenzene | kylenes        | :1         | .2         | .3         | -4        |
|                           | ı                                          |                         | Units                       |                       | mg/kg   | mg/kg   | mg/kg       | mg/kg          | mg/kg      | mg/kg      | mg/kg      | mg/kg     |
| GUIDELINES                |                                            |                         |                             |                       |         |         |             |                |            |            |            |           |
| GNWT 2003 Residential/Par | kland                                      | Surface (0-1.5 m b      | gs)                         |                       | 0.5     | 0.8     | 1.2         | 1              | 130        | 150        | 400        | 2800      |
| WINDROW                   | GS16-030                                   | _                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 89         | 29        |
|                           | GS16-031                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 31         | 17        |
| Windrow 1                 | GS16-032                                   | -                       | 2016-07-19                  | 10                    | <0.005  | 0.08    | <0.01       | <0.05          | <10        | 18         | 162        | 72        |
| Willatow 1                | GS16-033                                   | -                       | 2016-07-19                  | 15                    | < 0.005 | <0.05   | < 0.01      | <0.05          | <10        | 14         | 166        | 80        |
|                           | GS16-034                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 26         | 77         | 32        |
| -                         | GS16-035                                   | -                       | 2016-07-19                  | 5<br>5                | <0.005  | <0.05   | <0.01       | <0.05          | <10<br><10 | 20         | 68<br>47   | 32<br>28  |
|                           | GS16-036<br>GS16-037                       | -                       | 2016-07-19<br>2016-07-19    | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10<br>19  | 73         | 28        |
|                           | GS16-037<br>GS16-038                       | -                       | 2016-07-19                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 126        | 219        | 23        |
|                           | GS16-039                                   | -                       | 2016-07-19                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 134        | 243        | 30        |
| Windrow 2                 | GS16-040                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | < 0.01      | <0.05          | <10        | 13         | 68         | 38        |
|                           | GS16-041                                   | -                       | 2016-07-19                  | 15                    | < 0.005 | <0.05   | <0.01       | <0.05          | <10        | 12         | 109        | 29        |
|                           | GS16-042                                   | -                       | 2016-07-19                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 47         | 105        | 21        |
|                           | Dup 4                                      | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 36         | 98         | <10       |
|                           | GS16-043<br>GS16-044                       | -                       | 2016-07-19<br>2016-07-19    | 5<br>10               | <0.005  | <0.05   | <0.01       | <0.05          | <10<br><10 | 22<br><10  | 91<br>34   | 13<br>15  |
|                           | GS16-045                                   | -                       | 2016-07-19                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 116        | 184        | 45        |
|                           | GS16-046                                   | -                       | 2016-07-19                  | 15                    | < 0.005 | <0.05   | <0.01       | <0.05          | <10        | 10         | 35         | 15        |
| Windrow 3                 | GS16-047                                   | -                       | 2016-07-19                  | 10                    | < 0.005 | < 0.05  | < 0.01      | < 0.05         | <10        | 36         | 63         | 32        |
|                           | GS16-048                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 42         | 24        |
|                           | GS16-049                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 30         | 24        |
|                           | GS16-050                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 11         | 41         | 18        |
|                           | GS16-051<br>GS16-052                       | -                       | 2016-07-19<br>2016-07-19    | 5<br>15               | <0.005  | <0.05   | <0.01       | <0.05          | <10<br><10 | <10<br>23  | 82<br>370  | 48<br>188 |
|                           | GS16-053                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 48         | 24        |
|                           | GS16-054                                   | -                       | 2016-07-19                  | 35                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 172        | 316        | 44        |
|                           | GS16-055                                   | -                       | 2016-07-19                  | 30                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 165        | 60        |
|                           | Dup 5                                      | -                       | 2016-07-19                  | 15                    | < 0.005 | <0.05   | < 0.01      | <0.05          | <10        | 10         | 176        | 16        |
| Windrow 4                 | GS16-056                                   | -                       | 2016-07-19                  | 15                    | < 0.005 | <0.05   | <0.01       | <0.05          | <10        | <10        | 47         | 26        |
| 1                         | GS16-057                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 38         | 26        |
| 1                         | GS16-058<br>GS16-073                       | -                       | 2016-07-19<br>2016-07-19    | 20<br>15              | <0.005  | <0.05   | <0.01       | <0.05          | <10<br><10 | <10<br>42  | 112<br>82  | 77<br>16  |
|                           | GS16-073<br>GS16-074                       | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 25         | 40         | 12        |
|                           | GS16-075                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 23         | 45         | 11        |
|                           | GS16-076                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 14         | 34         | <10       |
|                           | GS16-077                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 28         | 46         | 16        |
|                           | Dup 7                                      | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 14         | 40         | <10       |
|                           | GS16-067                                   | -                       | 2016-07-19                  | 20                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 778        | 535        | 46        |
|                           | GS16-167 retest 067<br>GS16-231 retest 167 | -                       | 2016-08-04<br>2016-08-18    | 15<br>15              | <0.005  | <0.05   | <0.01       | <0.05<br><0.05 | <10<br><10 | 919<br>85  | 718<br>157 | 35<br>27  |
| 1                         | Dup-22                                     | -                       | 2016-08-18                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 45         | 67         | <10       |
| 1                         | GS16-068                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 10         | 118        | 59        |
| 1                         | GS16-069                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 14         | 98         | 53        |
| 1                         | GS16-070                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | < 0.01      | <0.05          | <10        | 14         | 57         | 26        |
| Windrow 5                 | GS16-071                                   | -                       | 2016-07-19                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 24         | 68         | 28        |
| 1                         | GS16-072                                   | -                       | 2016-07-19                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 11         | 64         | 22        |
|                           | GS16-162                                   | -                       | 2016-08-04                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05<br><0.05 | <10        | <10        | 81<br>70   | 37<br>12  |
|                           | Dup - 14<br>GS16-163                       | -                       | 2016-08-04<br>2016-08-04    | 5<br>5                | <0.005  | <0.05   | <0.01       | <0.05          | <10<br><10 | <10<br><10 | 65         | 38        |
|                           | GS16-164                                   | -                       | 2016-08-04                  | 15                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 10         | 144        | 72        |
| 1                         | GS16-165                                   | -                       | 2016-08-04                  | 5                     | <0.005  | <0.05   | <0.01       | <0.05          | <10        | 15         | 97         | 59        |
| 1                         | GS16-166                                   | -                       | 2016-08-04                  | 10                    | <0.005  | <0.05   | <0.01       | <0.05          | <10        | <10        | 93         | 44        |
|                           | Dup 6                                      | -                       | 2016-07-21                  | 10                    | < 0.005 | <0.05   | < 0.01      | < 0.05         | <10        | <10        | 43         | <10       |

Notes:

1. m bgs = metres below ground surface

2. Current and/or applicable guidelines are bolded

(yellow highlight) = Exceeds applicable guidelines

3. View analytical report for more comprehensive results

4. Government of Northwest Territories (GNWT), 2003. Environmental Guideline for Contaminated Site Remediation. November 2003.

Table 2: Windrow Soil Sample Analytical Results for Petroleum Hydrocarbons

|                          | GENERAL                |                         |                             |                       |         |               |               |                |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|--------------------------|------------------------|-------------------------|-----------------------------|-----------------------|---------|---------------|---------------|----------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Location                 | Sample Designation     | Sample Depth<br>(m bgs) | Sample Date<br>(yyyy-mm-dd) | OVA (Field Screening) | Benzene | Toluene       | Ethylbenzene  | Xylenes        | F1         | F2           | F3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F4         |
|                          |                        |                         | Units                       |                       | mg/kg   | mg/kg         | mg/kg         | mg/kg          | mg/kg      | mg/kg        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg      |
| GUIDELINES               | ul-la-a-d              | Confere (O.1.5 mg/s     |                             |                       | 0.5     | 0.8           | 1.2           | 1              | 130        | 150          | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2800       |
| GNWT 2003 Residential/Pa | GS16-060               | Surface (0-1.5 m b      | 2016-07-21                  | 5                     | <0.005  | <0.05         | <0.01         | <0.05          | <10        | <10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10        |
|                          | GS16-061               | -                       | 2016-07-21                  | 180                   | <0.005  | <0.05         | <0.01         | 0.11           | <10        | 1030         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36         |
|                          | GS16-062               | -                       | 2016-07-21                  | 5                     | <0.005  | <0.05         | < 0.01        | <0.05          | <10        | <10          | 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 423        |
|                          | GS16-063               | -                       | 2016-07-19                  | 310                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 1790         | 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42         |
|                          | GS16-064<br>GS16-065   | -                       | 2016-07-19<br>2016-07-19    | 510<br>280            | <0.005  | <0.05         | 0.02          | 0.2            | 15<br>17   | 3250<br>1750 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38<br>39   |
|                          | GS16-066               | -                       | 2016-07-19                  | 540                   | <0.005  | <0.05         | <0.01         | < 0.05         | <10        | 1340         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46         |
|                          | GS16-168               | -                       | 2016-08-09                  | 615                   | < 0.005 | <0.05         | <0.01         | <0.05          | <10        | 548          | 916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42         |
|                          | GS16-169               | -                       | 2016-08-09                  | 810                   | <0.005  | <0.05         | <0.01         | 0.36           | <10        | 3040         | 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48         |
| Windrow 6                | GS16-170               | -                       | 2016-08-09                  | 650<br>410            | <0.005  | <0.05         | <0.01         | 0.38<br><0.05  | <10<br><10 | 2970<br>2080 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 37<br>47   |
|                          | GS16-171<br>GS16-172   | -                       | 2016-08-09<br>2016-08-09    | 380                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 487          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41         |
|                          | GS16-173               | -                       | 2016-08-09                  | 240                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 226          | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25         |
|                          | GS16-234               | -                       | 2016-08-18                  | 15                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 46           | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41         |
|                          | GS16-235               | -                       | 2016-08-18                  | 840                   | <0.005  | <0.05         | 0.03          | 0.39           | <10        | 2150         | 1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25         |
|                          | GS16-236<br>GS16-237   | -                       | 2016-08-18<br>2016-08-18    | 780<br>610            | <0.005  | <0.05         | <0.01         | 0.36           | <10<br><10 | 3100<br>1890 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>30   |
|                          | GS16-238               | -                       | 2016-08-18                  | 210                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 340          | 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19         |
|                          | GS16-239               | -                       | 2016-08-18                  | 15                    | <0.005  | <0.05         | < 0.01        | <0.05          | <10        | <10          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <10        |
|                          | GS16-174               | -                       | 2106-08-09                  | 20                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 35           | 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 208        |
|                          | Dup - 15<br>GS16-175   | -                       | 2106-08-09                  | 10                    | <0.005  | <0.05         | <0.01         | <0.05<br><0.05 | <10        | 18<br>173    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128        |
|                          | GS16-175               | -                       | 2106-08-09<br>2106-08-09    | 65<br>180             | <0.005  | <0.05         | <0.01         | <0.05          | <10<br><10 | 656          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225<br>66  |
|                          | GS16-177               | -                       | 2106-08-09                  | 65                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 45           | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137        |
|                          | GS16-178               | -                       | 2106-08-09                  | 180                   | <0.005  | <0.05         | < 0.01        | <0.05          | <10        | 35           | 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 240        |
| Windrow 7                | GS16-179               | -                       | 2106-08-09                  | 195                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 126          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 185        |
|                          | GS16-240<br>GS16-241   | -                       | 2016-08-18<br>2016-08-18    | 220<br>210            | <0.005  | <0.05         | <0.01         | 0.12<br><0.05  | <10<br><10 | 719<br>668   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23<br>35   |
|                          | GS16-242               | -                       | 2016-08-18                  | 180                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 322          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 78         |
|                          | GS16-243               | -                       | 2016-08-18                  | 90                    | <0.005  | <0.05         | < 0.01        | <0.05          | <10        | 81           | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 116        |
|                          | GS16-244               | -                       | 2016-08-18                  | 75                    | <0.005  | 0.06          | <0.01         | <0.05          | <10        | 16           | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68         |
|                          | GS16-245<br>GS16-180   | -                       | 2016-08-18<br>2106-08-09    | 15<br>185             | <0.005  | <0.05         | <0.01         | <0.05          | <10<br><10 | 54<br>22     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67<br>240  |
|                          | retest 180             | -                       | 2016-08-18                  | 75                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 13           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 145        |
|                          | GS16-182               | -                       | 2106-08-09                  | 40                    | < 0.005 | <0.05         | <0.01         | <0.05          | <10        | 17           | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 132        |
| Windrow 8                | GS16-183               | -                       | 2106-08-09                  | 35                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 16           | 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119        |
|                          | GS16-184               | -                       | 2106-08-09                  | 15                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 13           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88         |
|                          | GS16-185<br>Retest 185 | -                       | 2106-08-09<br>2016-08-18    | 135<br>110            | <0.005  | <0.05<br>0.05 | <0.01         | <0.05          | <10<br><10 | 242<br>213   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140<br>97  |
|                          | GS16-181               | -                       | 2106-08-09                  | 15                    | < 0.005 | <0.05         | <0.01         | <0.05          | <10        | 19           | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 146        |
|                          | GS16-144               | -                       | 2016-08-04                  | 230                   | <0.005  | 0.17          | < 0.01        | <0.05          | <10        | 94           | 558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 282        |
|                          | GS16-145               | -                       | 2016-08-04                  | 165                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 32           | 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 354        |
| Windrow 9                | GS16-146<br>GS16-147   | -                       | 2016-08-04<br>2016-08-04    | 165<br>245            | <0.005  | 0.08          | <0.01         | <0.05<br><0.05 | <10<br><10 | 47<br>32     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 322<br>466 |
|                          | GS16-148               | -                       | 2016-08-04                  | 230                   | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 148          | mg/kg  400  11  759  234  985  1690  684  1120  916  1260  1260  1260  1160  606  304  176  1070  1340  1100  399  33  376  261  608  703  279  442  649  531  350  164  190  438  297  272  245  187  526  373  304  558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 339        |
|                          | GS16-149               | -                       | 2016-08-04                  | 310                   | <0.005  | 0.08          | <0.01         | <0.05          | <10        | 317          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 440        |
|                          | GS16-150               | -                       | 2016-08-04                  | 485                   | <0.005  | <0.05         | 0.01          | 0.19           | 50         | 1880         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162        |
|                          | GS16-136<br>GS16-137   | -                       | 2016-08-04<br>2016-08-04    | 460<br>310            | <0.005  | 0.13          | 0.01<br><0.01 | 0.09<br><0.05  | 60<br><10  | 1640<br>229  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 542<br>275 |
|                          | GS16-138               | -                       | 2016-08-04                  | 580                   | <0.005  | 0.12          | <0.01         | <0.05          | <10        | 331          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 776        |
| Windrow 10               | GS16-139               | -                       | 2016-08-04                  | 275                   | <0.005  | 0.13          | <0.01         | <0.05          | <10        | 228          | Mag/kg   M | 436        |
|                          | GS16-140               | -                       | 2016-08-04                  | 980                   | <0.005  | 0.07          | 0.03          | 0.42           | 130        | 3430         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 284        |
|                          | GS16-141<br>GS16-142   | -                       | 2016-08-04<br>2016-08-04    | 870<br>660            | <0.005  | 0.23<br><0.05 | <0.01         | <0.05<br><0.05 | 20<br>10   | 1380<br>1330 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 644<br>192 |
|                          | GS16-143               | -                       | 2016-08-04                  | 610                   | 0.009   | 3.83          | 0.11          | 0.51           | 10         | 344          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 153        |
|                          | GS16-129               | -                       | 2016-08-04                  | 945                   | <0.005  | <0.05         | 0.01          | 0.67           | 110        | 2120         | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50         |
|                          | GS16-130               | -                       | 2016-08-04                  | 700                   | <0.005  | <0.05         | <0.01         | <0.05          | 50         | 1240         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46         |
|                          | GS16-131<br>GS16-132   | -                       | 2016-08-04<br>2016-08-04    | 740<br>680            | <0.005  | <0.05         | <0.01         | 0.06           | 50<br>40   | 1700<br>1360 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102<br>55  |
|                          | GS16-132<br>GS16-133   | -                       | 2016-08-04                  | 830                   | <0.005  | <0.05         | <0.01         | <0.05          | 60         | 2780         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125        |
|                          | GS16-134               | -                       | 2016-08-04                  | 540                   | <0.005  | <0.05         | 0.04          | 0.48           | 110        | 1600         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62         |
| Windrow 11               | GS16-135               | -                       | 2016-08-04                  | 15                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 19           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22         |
|                          | GS16-270               | -                       | 2016-08-18<br>2016-08-18    | 690<br>710            | <0.005  | <0.05         | 0.02          | 0.22           | 26         | 2470<br>2540 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52<br>62   |
|                          | Dup-24<br>GS16-271     | -                       | 2016-08-18                  | 585                   | <0.005  | <0.05         | <0.02         | 0.88           | 21<br><10  | 1380         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63<br>69   |
|                          | GS16-272               | -                       | 2016-08-18                  | 490                   | <0.005  | <0.05         | < 0.01        | 0.1            | <10        | 1230         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57         |
|                          | GS16-273               | -                       | 2016-08-18                  | 665                   | <0.005  | <0.05         | 0.03          | 0.4            | <10        | 2350         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94         |
|                          | GS16-274               | -                       | 2016-08-18                  | 620                   | <0.005  | 0.05          | 0.01          | 0.76           | 10         | 2080         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72         |
|                          | GS16-275               | -                       | 2016-08-18                  | 65                    | <0.005  | <0.05         | <0.01         | <0.05          | <10        | 95           | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35         |

Notes:
1. m bgs = metres below ground surface

<sup>2.</sup> Current and/or applicable guidelines are bolded

(yellow highlight) = Exceeds applicable guidelines

3. View analytical report for more comprehensive results

4. Government of Northwest Territories (GNWT), 2003. Environmental Guideline for Contaminated Site Remediation. November 2003.

Table 2: Windrow Soil Sample Analytical Results for Petroleum Hydrocarbons

|                                          | GENERAL              |                         |                             |                       |                  |                |               |                |            |              |              |           |
|------------------------------------------|----------------------|-------------------------|-----------------------------|-----------------------|------------------|----------------|---------------|----------------|------------|--------------|--------------|-----------|
| Location                                 | Sample Designation   | Sample Depth<br>(m bgs) | Sample Date<br>(yyyy-mm-dd) | OVA (Field Screening) | Benzene          | Toluene        | Ethylbenzene  | Xylenes        | F1         | F2           | F3           | F4        |
|                                          |                      |                         | Units                       |                       | mg/kg            | mg/kg          | mg/kg         | mg/kg          | mg/kg      | mg/kg        | mg/kg        | mg/kg     |
| GUIDELINES<br>GNWT 2003 Residential/Parl | kland                | Surface (0.1 E.m.b      | ac)                         |                       | 0.5              | 0.8            | 1.2           | 1              | 130        | 150          | 400          | 2800      |
| GIVWT 2005 RESIDENTIAL/PAIL              | GS16-186             | Surface (0-1.5 m b      | 2019-08-09                  | 210                   | <0.005           | 0.17           | 0.02          | 0.06           | <10        | 330          | 180          | 67        |
|                                          | Dup - 16             | -                       | 2019-08-09                  | 150                   | <0.005           | 0.17           | 0.02          | 0.06           | 17         | 348          | 185          | 60        |
|                                          | GS16-187             | 1                       | 2019-08-09                  | 85                    | < 0.005          | 0.24           | < 0.01        | <0.05          | <10        | 262          | 280          | 108       |
|                                          | GS16-188             |                         | 2019-08-09                  | 25                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 61           | 140          | 71        |
|                                          | GS16-189             |                         | 2019-08-09                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 38           | 33        |
| Windrow 12                               | GS16-190<br>GS16-191 | -                       | 2019-08-09<br>2019-08-09    | 110<br>85             | 0.042<br><0.005  | 1.05<br>0.3    | 0.09          | 0.47           | <10<br><10 | 463<br>221   | 300<br>111   | 96<br>45  |
|                                          | GS16-258             | -                       | 2016-08-18                  | 70                    | <0.005           | <0.05          | <0.01         | 0.06           | <10        | 184          | 77           | 19        |
|                                          | GS16-259             | 1                       | 2016-08-18                  | 40                    | < 0.005          | 0.15           | < 0.01        | 0.08           | <10        | 150          | 99           | 19        |
|                                          | GS16-260             | -                       | 2016-08-18                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 11           | 31           | <10       |
|                                          | GS16-261             | -                       | 2016-08-18                  | 35                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 129          | 112          | 26        |
|                                          | GS16-262<br>GS16-263 | -                       | 2016-08-18<br>2016-08-18    | 40<br>35              | <0.005<br><0.005 | 0.1            | 0.04<br><0.01 | 0.16           | <10<br><10 | 172<br>168   | 168<br>150   | 44<br>41  |
|                                          | GS16-203<br>GS16-192 | -                       | 2019-08-09                  | 60                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 252          | 137          | 28        |
|                                          | GS16-193             | -                       | 2019-08-09                  | 45                    | <0.005           | 0.25           | 0.06          | 0.29           | <10        | 102          | 130          | 54        |
| Windrow 13                               | GS16-194             |                         | 2019-08-09                  | 35                    | <0.005           | 0.32           | <0.01         | <0.05          | <10        | 19           | 147          | 52        |
|                                          | GS16-195             | -                       | 2019-08-09                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 12           | 107          | 131       |
|                                          | GS16-196<br>GS16-197 | -                       | 2019-08-09<br>2019-08-09    | 15<br>10              | <0.005<br><0.005 | <0.05<br><0.05 | <0.01         | <0.05          | <10<br><10 | 16<br><10    | 67<br>45     | 41<br>36  |
|                                          | GS16-198             |                         | 2016-08-10                  | 10                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 64           | 93           | 41        |
|                                          | Dup - 17             | -                       | 2016-08-10                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 20           | 65           | 10        |
|                                          | GS16-199             |                         | 2016-08-10                  | 75                    | <0.005           | <0.05          | 0.06          | 0.57           | <10        | 199          | 125          | 26        |
| Windrow 14                               | GS16-200             | -                       | 2016-08-10                  | 110                   | <0.005           | <0.05          | <0.01         | 0.18           | <10        | 221          | 119          | 32        |
|                                          | GS16-201<br>GS16-202 | -                       | 2016-08-10<br>2016-08-10    | 310<br>260            | <0.005<br>0.042  | 0.2            | 0.13          | 0.83           | <10<br><10 | 1660<br>984  | 212<br>138   | 33<br>33  |
|                                          | GS16-203             | -                       | 2016-08-10                  | 200                   | < 0.005          | <0.05          | <0.01         | <0.05          | <10        | 738          | 232          | 44        |
|                                          | GS16-204             | -                       | 2016-08-10                  | 180                   | < 0.005          | < 0.05         | < 0.01        | < 0.05         | <10        | 118          | 163          | 34        |
|                                          | GS16-205             | i                       | 2016-08-10                  | 25                    | <0.005           | <0.05          | < 0.01        | <0.05          | <10        | <10          | 37           | 18        |
|                                          | GS16-206             | -                       | 2016-08-10                  | 540                   | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 875          | 490          | 32        |
|                                          | GS16-207<br>GS16-208 | -                       | 2016-08-10<br>2016-08-10    | 880<br>940            | <0.005<br><0.005 | <0.05<br><0.05 | <0.01         | <0.05<br><0.05 | <10<br><10 | 2120<br>2880 | 1060<br>1020 | 60<br>49  |
|                                          | GS16-209             | -                       | 2016-08-10                  | 680                   | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 507          | 129          | 35        |
| Windrow 15                               | GS16-252             | i                       | 2016-08-18                  | 420                   | <0.005           | <0.05          | <0.01         | 0.06           | <10        | 611          | 209          | 50        |
|                                          | GS16-253             | -                       | 2016-08-18                  | 415                   | <0.005           | <0.05          | 0.03          | 0.21           | <10        | 641          | 259          | 14        |
|                                          | GS16-254             | -                       | 2016-08-18                  | 590                   | 0.009            | <0.05          | 0.01          | 0.23           | <10        | 2180         | 1120         | 37        |
|                                          | GS16-255<br>GS16-256 |                         | 2016-08-18<br>2016-08-18    | 380<br>375            | <0.005<br><0.005 | <0.05          | <0.01         | <0.05<br>0.17  | <10<br><10 | 502<br>428   | 203<br>352   | <10<br>25 |
|                                          | GS16-257             | -                       | 2016-08-18                  | 35                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 41           | 69           | 11        |
|                                          | GS16-210             | -                       | 2016-08-11                  | 10                    | < 0.005          | < 0.05         | < 0.01        | <0.05          | <10        | <10          | 40           | 22        |
|                                          | Dup - 18             | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 64           | 33        |
| Windrow 16                               | GS16-211             |                         | 2016-08-11                  | 5                     | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 24           | <10       |
| Windrow 16                               | GS16-212<br>GS16-213 | -                       | 2016-08-11<br>2016-08-11    | 15<br>10              | <0.005<br><0.005 | <0.05          | <0.01         | <0.05<br><0.05 | <10<br><10 | 11<br><10    | 58<br>32     | 20<br>13  |
|                                          | GS16-214             | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 14           | 33           | 10        |
|                                          | GS16-215             | -                       | 2016-08-11                  | 5                     | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 21           | <10       |
|                                          | GS16-216             | -                       | 2016-08-11                  | 25                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 50           | 16        |
|                                          | GS16-217<br>GS16-218 | -                       | 2016-08-11<br>2016-08-11    | 15<br>10              | <0.005<br><0.005 | <0.05<br><0.05 | <0.01         | <0.05<br><0.05 | <10<br><10 | 12<br><10    | 40<br>25     | 15<br><10 |
| Windrow 17                               | GS16-218<br>GS16-219 | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 43           | 15        |
|                                          | GS16-220             | -                       | 2016-08-11                  | 670                   | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 1070         | 426          | 28        |
|                                          | GS16-265 retest 220  | i                       | 2016-08-18                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 39           | 16        |
|                                          | GS16-221             | -                       | 2016-08-11                  | 10                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 24           | <10       |
|                                          | GS16-222<br>Dup - 20 | -                       | 2016-08-11<br>2016-08-11    | 20<br>25              | <0.005<br><0.005 | <0.05<br><0.05 | <0.01         | <0.05<br><0.05 | <10<br><10 | 43<br>48     | 111<br>143   | 42<br>28  |
|                                          | GS16-223             | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 12           | 69           | 54        |
| Windrow 18                               | GS16-224             | -                       | 2016-08-11                  | 10                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 43           | 32        |
|                                          | GS16-225             | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 46           | 43        |
|                                          | GS16-226             | -                       | 2016-08-11                  | 15                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 20           | 87           | 40        |
|                                          | GS16-227<br>GS16-228 | -                       | 2016-08-11<br>2016-08-11    | 15<br>560             | <0.005<br><0.005 | <0.05<br>0.28  | <0.01         | <0.05<br>0.05  | <10<br><10 | <10<br>381   | 102<br>828   | 31<br>239 |
|                                          | GS16-228<br>GS16-229 | -                       | 2016-08-11                  | 320                   | <0.005           | 0.28           | <0.01         | <0.05          | <10        | 37           | 616          | 312       |
|                                          | GS16-230             | -                       | 2016-08-11                  | 220                   | <0.005           | 0.16           | <0.01         | <0.05          | <10        | 28           | 499          | 272       |
|                                          | Dup - 21             | -                       | 2016-08-11                  | 580                   | <0.005           | 0.07           | <0.01         | <0.05          | <10        | 711          | 1210         | 275       |
| Windrow 19                               | GS16-266             |                         | 2016-08-18                  | 580                   | <0.005           | <0.05          | <0.01         | <0.05          | <10        | 441          | 795          | 161       |
|                                          | Dup-23<br>GS16-267   | -                       | 2016-08-18<br>2016-08-18    | 320<br>40             | <0.005<br><0.005 | 0.05           | <0.01         | <0.05<br><0.05 | <10<br><10 | 262<br>43    | 427<br>246   | 73<br>79  |
|                                          | GS16-268             | -                       | 2016-08-18                  | 25                    | <0.005           | <0.05          | <0.01         | <0.05          | <10        | <10          | 176          | 68        |
|                                          |                      |                         |                             |                       |                  |                |               |                |            |              |              |           |



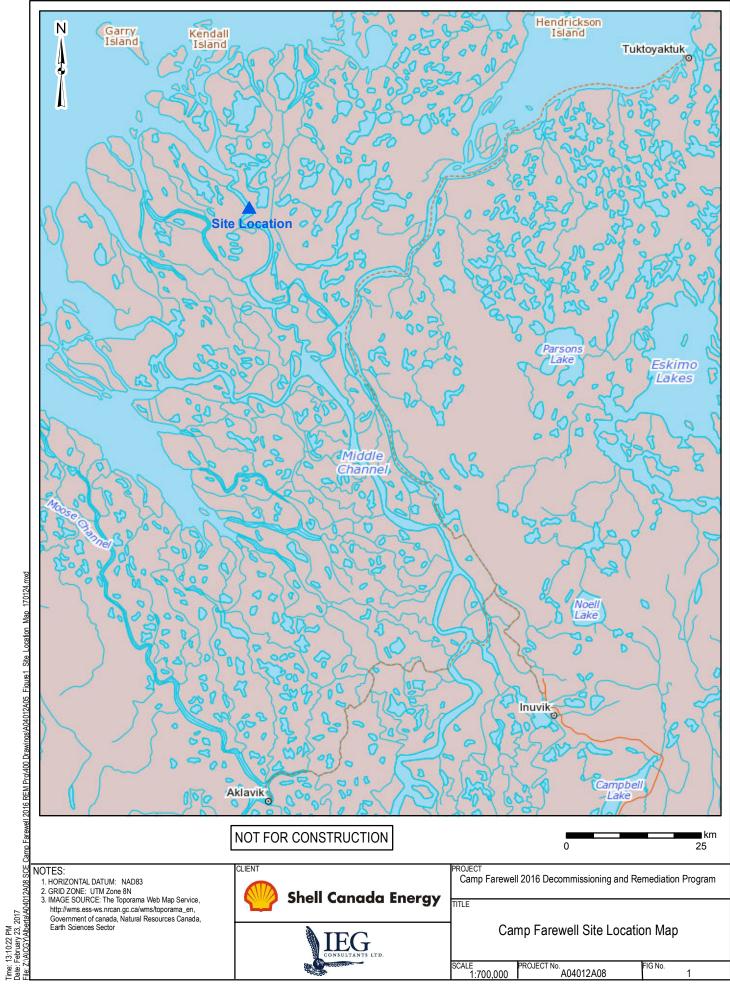
Notes:

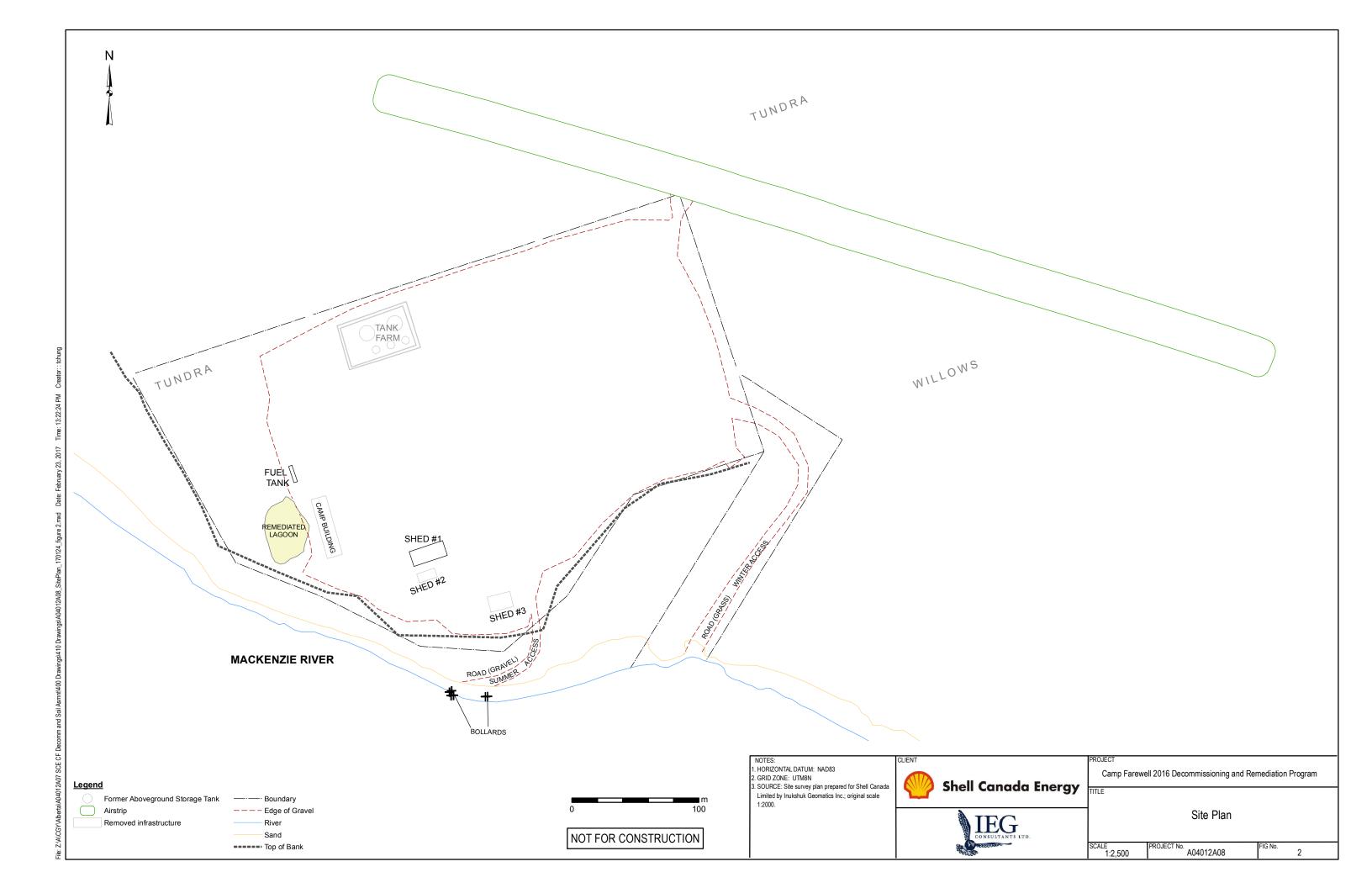
1. m bgs = metres below ground surface
2. Current and/or applicable guidelines are bolded
[(yellow highlight) = Exceeds applicable guidelines
3. View analytical report for more comprehensive results
4. Government of Northwest Territories (GNWT), 2003. Environmental Guideline for Contaminated Site Remediation. November 2003.

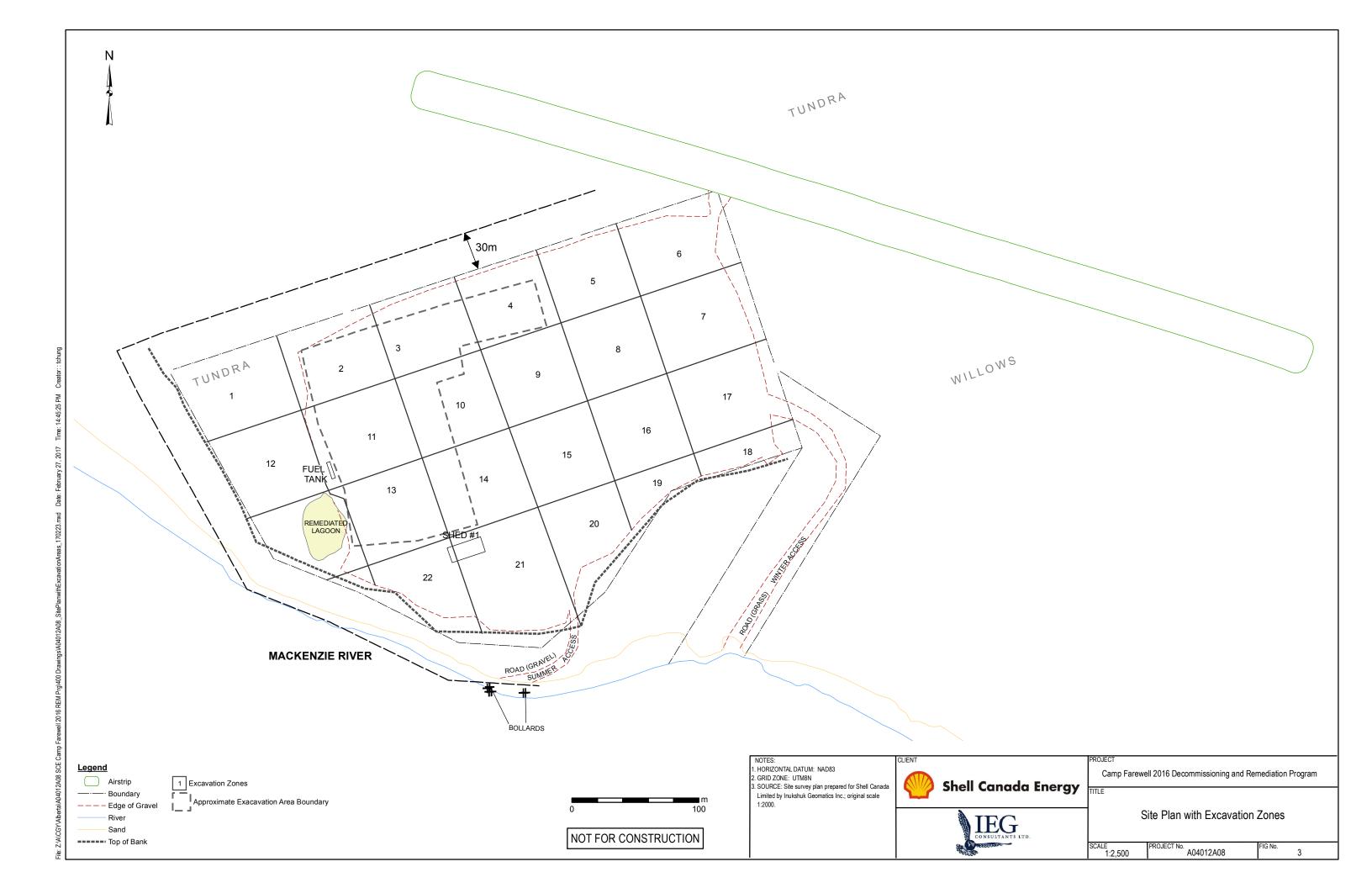
|                                                                                                                                                                                                                                                                        | GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anty Control                                                                                                                                                                                                                                                                        | rtosuits ioi                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TROLEUM F                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0113                                                                                                                |                                                                                               |                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>Designation                                                                                                                                                                                                                                                  | Sample Depth (m bgs) Sample Date (yyyy-mm-dd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzene                                                                                                                                                                                                                                                                             | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Xylenes                                                                                                                        | F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F2                                                                                                                  | 33                                                                                            | 44                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/kg                                                                                                                                                                                                                                                                               | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/kg                                                                                                                          | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                               | mg/kg                                                                                         | mg/kg                                                                                                                                                                                                                 |
| Method Det                                                                                                                                                                                                                                                             | action Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                               | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.005                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                  | 10                                                                                            | 10                                                                                                                                                                                                                    |
| Wethou Det                                                                                                                                                                                                                                                             | ection Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003                                                                                                                                                                                                                                                                               | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.003                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                                                  | 10                                                                                            | 10                                                                                                                                                                                                                    |
| GS16-011                                                                                                                                                                                                                                                               | 1.0 m bgs 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 25                                                                                            | 18                                                                                                                                                                                                                    |
| Dup 1 Relative Perce                                                                                                                                                                                                                                                   | 1.0 m bgs 2016-07-19<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005<br>0%                                                                                                                                                                                                                                                                        | 0.18<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15<br>0%                                                                                                                     | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14<br>95%                                                                                                           | 77<br><b>102%</b>                                                                             | 18<br><b>0%</b>                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                   | 52                                                                                            | 0                                                                                                                                                                                                                     |
| GS16-021                                                                                                                                                                                                                                                               | 1.0 m bgs 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 12                                                                                            | <10                                                                                                                                                                                                                   |
| Dup 2                                                                                                                                                                                                                                                                  | 1.0 m bgs 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | <10                                                                                           | <10                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%<br><b>0</b>                                                                                                                                                                                                                                                                      | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br><b>0</b>                                                                                                                 | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%<br><b>0</b>                                                                                                      | 82%<br><b>7</b>                                                                               | 0%<br><b>0</b>                                                                                                                                                                                                        |
| Absc                                                                                                                                                                                                                                                                   | nute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                   | ,                                                                                             | Ů                                                                                                                                                                                                                     |
| GS16-028                                                                                                                                                                                                                                                               | 1.0 m bgs 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | <10                                                                                           | <10                                                                                                                                                                                                                   |
| Dup 3 Relative Perce                                                                                                                                                                                                                                                   | 1.0 m bgs 2016-07-19<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005<br>0%                                                                                                                                                                                                                                                                        | <0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>0%                                                                                                                    | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10<br>0%                                                                                                           | <10<br>0%                                                                                     | <10<br>0%                                                                                                                                                                                                             |
| Abso                                                                                                                                                                                                                                                                   | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 0                                                                                             | 0                                                                                                                                                                                                                     |
| GS16-042                                                                                                                                                                                                                                                               | - 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47                                                                                                                  | 105                                                                                           | 21                                                                                                                                                                                                                    |
| Dup 4                                                                                                                                                                                                                                                                  | - 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36                                                                                                                  | 98                                                                                            | <10                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%<br><b>0</b>                                                                                                                                                                                                                                                                      | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br><b>0</b>                                                                                                                 | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%<br><b>11</b>                                                                                                     | 7%<br><b>7</b>                                                                                | 123%<br><b>16</b>                                                                                                                                                                                                     |
| AUSC                                                                                                                                                                                                                                                                   | nute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 11                                                                                                                |                                                                                               | 10                                                                                                                                                                                                                    |
| GS16-055                                                                                                                                                                                                                                                               | - 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 165                                                                                           | 60                                                                                                                                                                                                                    |
| Dup 5<br>Relative Perce                                                                                                                                                                                                                                                | - 2016-07-19<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.005<br>0%                                                                                                                                                                                                                                                                        | <0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>0%                                                                                                                    | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>0%                                                                                                            | 176<br>6%                                                                                     | 16<br>116%                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 11                                                                                            | 44                                                                                                                                                                                                                    |
| GS16-072                                                                                                                                                                                                                                                               | - 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                  | 64                                                                                            | 22                                                                                                                                                                                                                    |
| Dup 6                                                                                                                                                                                                                                                                  | - 2016-07-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 43                                                                                            | <10                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%<br><b>0</b>                                                                                                                                                                                                                                                                      | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br><b>0</b>                                                                                                                 | 0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 75%<br>6                                                                                                            | 39%<br><b>21</b>                                                                              | 126%<br><b>17</b>                                                                                                                                                                                                     |
| Abso                                                                                                                                                                                                                                                                   | nate Dinerence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , v                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                   | 21                                                                                            | 1/                                                                                                                                                                                                                    |
| GS16-077                                                                                                                                                                                                                                                               | - 2016-07-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28                                                                                                                  | 46                                                                                            | 16                                                                                                                                                                                                                    |
| Dup 7 Relative Perce                                                                                                                                                                                                                                                   | - 2016-07-21<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.005<br>0%                                                                                                                                                                                                                                                                        | <0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>0%                                                                                                                    | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14<br>0%                                                                                                            | 40<br>14%                                                                                     | <10<br>105%                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 6                                                                                             | 11                                                                                                                                                                                                                    |
| CC1C 09C                                                                                                                                                                                                                                                               | 0.6 m bgs 2016-08-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 66                                                                                            | 14                                                                                                                                                                                                                    |
| GS16-086<br>DUP - 8                                                                                                                                                                                                                                                    | 0.6 m bgs 2016-08-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 105                                                                                           | 52                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                        | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%                                                                                                                                                                                                                                                                                  | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                             | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                  | 46%                                                                                           | 95%                                                                                                                                                                                                                   |
| Abso                                                                                                                                                                                                                                                                   | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 39                                                                                            | 38                                                                                                                                                                                                                    |
| GS16-098                                                                                                                                                                                                                                                               | 0.6 m bgs 2016-08-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.005                                                                                                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 247                                                                                           | 92                                                                                                                                                                                                                    |
| DUP - 9                                                                                                                                                                                                                                                                | 0.6 m bgs 2016-08-04<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005<br>0%                                                                                                                                                                                                                                                                        | 0.24<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>0%                                                                                                                    | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10<br>0%                                                                                                           | 774<br><b>103%</b>                                                                            | 525<br><b>140</b> %                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 527                                                                                           | 433                                                                                                                                                                                                                   |
| 2010 100                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0.005                                                                                                                                                                                                                                                                              | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0.05                                                                                                                          | :10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102                                                                                                                 | 020                                                                                           | 452                                                                                                                                                                                                                   |
| GS16-109<br>DUP - 10                                                                                                                                                                                                                                                   | 1.0 m bgs 2016-08-09<br>1.0 m bgs 2016-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005<br><0.005                                                                                                                                                                                                                                                                    | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05<br><0.05                                                                                                                 | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103<br>335                                                                                                          | 929<br>523                                                                                    | 452<br>63                                                                                                                                                                                                             |
| Relative Perce                                                                                                                                                                                                                                                         | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%                                                                                                                                                                                                                                                                                  | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                             | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                  | 56%                                                                                           | 151%                                                                                                                                                                                                                  |
| Abso                                                                                                                                                                                                                                                                   | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 406                                                                                           | 389                                                                                                                                                                                                                   |
| GS16-162                                                                                                                                                                                                                                                               | - 2016-08-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <10                                                                                                                 | 81                                                                                            | 37                                                                                                                                                                                                                    |
| Dup - 14<br>Relative Perce                                                                                                                                                                                                                                             | - 2016-08-04<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.005<br>0%                                                                                                                                                                                                                                                                        | <0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05<br>0%                                                                                                                    | <10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <10<br>0%                                                                                                           | 70<br><b>15%</b>                                                                              | 12<br>131%                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0%                                                                                                                                                                                                                                                                                  | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                             | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                  | 15%                                                                                           | 25                                                                                                                                                                                                                    |
| GC1C 174                                                                                                                                                                                                                                                               | 2106 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.00F                                                                                                                                                                                                                                                                              | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                             | ZO 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                  | 276                                                                                           | 208                                                                                                                                                                                                                   |
| GS16-174<br>Dup - 15                                                                                                                                                                                                                                                   | - 2106-08-09<br>- 2106-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005<br><0.005                                                                                                                                                                                                                                                                    | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05<br><0.05                                                                                                                 | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                  | 376<br>261                                                                                    | 208<br>128                                                                                                                                                                                                            |
| Relative Perce                                                                                                                                                                                                                                                         | nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%                                                                                                                                                                                                                                                                                  | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                             | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                  | 36%                                                                                           | 48%                                                                                                                                                                                                                   |
| Abso                                                                                                                                                                                                                                                                   | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                   | 115                                                                                           | 80                                                                                                                                                                                                                    |
| GS16-186                                                                                                                                                                                                                                                               | - 2019-08-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005                                                                                                                                                                                                                                                                              | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.06                                                                                                                           | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330                                                                                                                 | 180                                                                                           | 67                                                                                                                                                                                                                    |
| Dup - 16<br>Relative Perce                                                                                                                                                                                                                                             | - 2019-08-09<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.005<br>0%                                                                                                                                                                                                                                                                        | 0.1<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                           | 17<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 348<br><b>5%</b>                                                                                                    | 185<br><b>3%</b>                                                                              | 60                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 0/0                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11%                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J/0                                                                                                                 |                                                                                               | 11%                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                        | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0%<br><b>0</b>                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18                                                                                                                  | 5                                                                                             | 11%<br><b>7</b>                                                                                                                                                                                                       |
| G\$16-109                                                                                                                                                                                                                                                              | lute Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                     | 5                                                                                             | 7                                                                                                                                                                                                                     |
| GS16-198<br>Dup - 17                                                                                                                                                                                                                                                   | - 2016-08-10<br>- 2016-08-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005<br><0.005                                                                                                                                                                                                                                                                    | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>0</b> <0.05 <0.05                                                                                                           | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18<br>64<br>20                                                                                                      | 5<br>93<br>65                                                                                 | <b>7</b> 41 10                                                                                                                                                                                                        |
| Dup - 17<br>Relative Perce                                                                                                                                                                                                                                             | - 2016-08-10<br>- 2016-08-10<br>- 2016-08-10<br>nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.005<br><0.005<br>0%                                                                                                                                                                                                                                                              | <0.05<br><0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br><0.01<br><0.01<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05<br><0.05<br>0%                                                                                                           | <10<br><10<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64<br>20<br>105%                                                                                                    | 5<br>93<br>65<br><b>35%</b>                                                                   | 41<br>10<br>122%                                                                                                                                                                                                      |
| Dup - 17<br>Relative Perce                                                                                                                                                                                                                                             | - 2016-08-10<br>- 2016-08-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005<br><0.005                                                                                                                                                                                                                                                                    | <0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>0</b> <0.05 <0.05                                                                                                           | <10<br><10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64<br>20                                                                                                            | 5<br>93<br>65                                                                                 | <b>7</b> 41 10                                                                                                                                                                                                        |
| Dup - 17<br>Relative Perce<br>Abso                                                                                                                                                                                                                                     | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.005<br><0.005<br>0%<br>0                                                                                                                                                                                                                                                         | <0.05<br><0.05<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.05<br><0.05<br>0%<br>0                                                                                                      | <10<br><10<br>0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64<br>20<br>105%<br><b>44</b><br><10                                                                                | 93<br>65<br><b>35%</b><br>28                                                                  | 41<br>10<br>122%<br>31                                                                                                                                                                                                |
| Dup - 17<br>Relative Perce<br>Abso<br>GS16-210<br>Dup - 18                                                                                                                                                                                                             | - 2016-08-10 - 2016-08-10 - 2016-08-10 nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.005<br><0.005<br>0%                                                                                                                                                                                                                                                              | <0.05<br><0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br><0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br><0.05<br><0.05<br>0%<br>0                                                                                                 | <10<br><10<br>0%<br><b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64<br>20<br>105%<br>44                                                                                              | 93<br>65<br><b>35%</b><br>28                                                                  | 7<br>41<br>10<br>122%<br>31<br>22<br>33                                                                                                                                                                               |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce                                                                                                                                                                                                         | -   2016-08-10<br>  -   2016-08-10<br>  nt Difference (RPD) (%)<br>  dute Difference<br>  -   2016-08-11<br>  -   2016-08-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005<br><0.005<br>0%<br>0<br><0.005<br><0.005                                                                                                                                                                                                                                     | <0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05                                                                               | <10<br><10<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64<br>20<br>105%<br>44<br><10                                                                                       | 93<br>65<br><b>35%</b><br>28<br>40<br>64                                                      | 7<br>41<br>10<br>122%<br>31<br>22<br>33                                                                                                                                                                               |
| Dup - 17 Relative Perce Abso GS16-210 Dup - 18 Relative Perce Abso                                                                                                                                                                                                     | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   - | <0.005<br><0.005<br>0<br>0<br><0.005<br><0.005<br><0.005<br>0                                                                                                                                                                                                                       | <0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br><0.05<br>0%                                                                                                                                                                                                                                                                                                                                                                                        | 0<br><0.01<br><0.01<br>0%<br>0<br>-(0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0%                                                                         | <10 <10 0% 0 <10 <10 <10 <10 <10 0%                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64<br>20<br>105%<br>44<br><10<br><10<br>0%                                                                          | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24                                           | 7<br>41<br>10<br>122%<br>31<br>22<br>23<br>33<br>40%<br>11                                                                                                                                                            |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20                                                                                                                                                                                 | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005<br><0.005<br>0%<br>0<br><0.005<br><0.005<br><0.005<br>0<br><0.005<br><0.005                                                                                                                                                                                                  | <0.05 <0.05 0% 0 <0.05 <0.05 <0.05 <0.05 <0.05 0% 0 <0.05 <0.05 <0.05                                                                                                                                                                                                                                                                                                                                                                             | 0<br><0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0<br>0<br><0.05<br><0.05                                                   | <10 <10 0% 0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <                                                                                                                                                                                                                                                                                                                                                                                                                          | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0                                                                     | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143                             | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11                                                                                                                                                                  |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce                                                                                                                                                                  | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 0% 0 <0.005 0% 0 <0.005 0%                                                                                                                                                                                                                  | <0.05 <0.05 0% 0 <0.05 <0.05 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0%                                                                                                                                                                                                                                                                                                                                                                                 | 0<br><0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05                                                  | <10 <10 0% 0 <10 <10 0% <10 <10 0% <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0                                                                     | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143<br>25%                      | 7<br>41<br>10<br>1229<br>31<br>22<br>23<br>33<br>40%<br>11<br>42<br>28                                                                                                                                                |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce                                                                                                                                                                  | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005<br><0.005<br>0%<br>0<br><0.005<br><0.005<br><0.005<br>0<br><0.005<br><0.005                                                                                                                                                                                                  | <0.05 <0.05 0% 0 <0.05 <0.05 <0.05 <0.05 <0.05 0% 0 <0.05 <0.05 <0.05                                                                                                                                                                                                                                                                                                                                                                             | 0<br><0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0<br>0<br><0.05<br><0.05                                                   | <10 <10 0% 0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <                                                                                                                                                                                                                                                                                                                                                                                                                          | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0                                                                     | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143                             | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11                                                                                                                                                                  |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230                                                                                                                                                   | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   nt Difference (RPD) (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 0% 0 <0.005 <0.005 0% 0 <0.005 0% 0 <0.005                                                                                                                                                                                                  | <0.05 <0.05 0% 0 <0.05 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 <0.05 0% 0 0.16                                                                                                                                                                                                                                                                                                                                                                          | <0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01<br>0%<br>0<br><0.01<br><0.01<br>0%<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>0 &lt;0.05 &lt;0.05 0% 0 &lt;0.05 &lt;0.05 &lt;0.05 0% 0 &lt;0.05 &lt;0.05 0% &lt;0.05 &lt;0.05 &lt;0.05 &lt;0.05</pre>   | <10 <10 0% 0 <10 <10 0% 0 <10 0% 0 <10 <10 0% 0 <10 0%                                                                                                                                                                                                                                                                                                                                                                                                                      | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0                                                                     | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143<br>25%<br>32                | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14                                                                                                                                         |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21                                                                                                                                          | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 <0.005 0  <0.005 0  <0.005 0 0  0 0                                                                                                                                                                                                         | <0.05 <0.05 0% 0 <0.05 <0.05 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 <0.05 0% 0 0                                                                                                                                                                                                                                                                                                                                                                       | <pre>0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br>0%<br>0                                                | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 0 <10 0 <10 0                                                                                                                                                                                                                                                                                                                                                                                                                    | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0                                                                     | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143<br>25%<br>32                | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14                                                                                                                                         |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce                                                                                                                           | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 0% 0 <0.005 <0.005 0 <0.005 0 <0.005 <0.005 <0.005                                                                                                                                                                                          | <0.05 <0.05 0% 0 <0.05 0% <0.05 0% 0 <0.05 0% 0 <0.05 0 <0.05 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                | <pre>0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.</pre> | 0<br><0.05<br><0.05<br>0<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br><0.05<br><0.05                | <10 <10 0% 0 <10 <10 0% 0 <10 0 <10 0% 0 <10 0% 0 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                                                  | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0<br>43<br>48<br>0%<br>0                                              | 5<br>93<br>65<br>35%<br>28<br>40<br>64<br>46%<br>24<br>111<br>143<br>25%<br>32<br>499<br>1210 | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14                                                                                                                                         |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso                                                                                                                      | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                        | <0.005 <0.005 0% 0 <0.005 0% <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005                                                                                                                                                                                     | <0.05 <0.05 0% 0 <0.05 0% <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                        | 0 <0.01 <0.01<br>0.01<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br><0.05<br><0.05<br>0%<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br>0<br>0<br><0.05<br>0<br>0                           | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0  <10 0% 0  <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                                     | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0<br>43<br>48<br>0%<br>0<br>28<br>711<br>185%<br>683                  | 5 93 65 35% 28 40 64 46% 24 111 143 25% 32 499 1210 83% 711                                   | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14<br>272<br>275<br>1%<br>3                                                                                                                |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce                                                                                                                           | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -     2016-08-11   -     2016-08-11   -     2016-08-11   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.005 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005                                                                                                                                                                                      | <0.05 <0.05 0% 0 <0.05 0% <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 0.16 0.07 0%                                                                                                                                                                                                                                                                                                                                                                         | 0 <0.01 <0.01<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br><0.05<br><0.05<br>0<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br>0<br><0.05<br><0.05<br>0<br>0 | <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 0% 0 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0<br>43<br>48<br>0%<br>0                                              | 5 93 65 35% 28 40 64 46% 24 111 143 25% 32 499 1210 83%                                       | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14<br>272<br>275<br>3                                                                                                                      |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce                                                                                      | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -   2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.005 <0.005 0 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 0 <0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <0.05 <0.05 0% 0 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 0.16 0.07 0% 0 <0.05 <0.05 0%                                                                                                                                                                                                                                                                                                                                                           | <pre>0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0 &lt;0.01 &lt;0.01 0% 0</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 <0.05 <0.05<br>0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                   | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0<br>43<br>48<br>0%<br>0<br>0<br>28<br>711<br>185%<br>683<br>85<br>45 | 5 93 65 35% 28 40 64 46% 24  111 143 25% 32 499 1210 83% 711 157 67 80%                       | 7 41 10 1229 31 22 33 40% 11 42 28 40% 14 272 275 1% 3 27 <10 1389                                                                                                                                                    |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce                                                                                      | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -     2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 0% 0 <0.005 <0.005 0% 0 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005                                                                                                                                                             | <0.05 <0.05 0% 0 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0 <0.05 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                   | 0 <0.01 <0.01<br>0 0 0 0 <0.01<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 <0.05 <0.05<br>0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 0% 0 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                                           | 64<br>20<br>105%<br>44<br><10<br><10<br>0%<br>0<br>43<br>48<br>0%<br>0<br>0<br>28<br>711<br>185%<br>683             | 5 93 65 35% 28 40 64 46% 24  111 143 25% 32 499 1210 83% 711 157 67                           | 7<br>41<br>10<br>1229<br>31<br>22<br>33<br>40%<br>11<br>28<br>40%<br>42<br>28<br>40%<br>3<br>3<br>40%<br>42<br>28<br>40%<br>40%<br>42<br>27<br>275<br>1%<br>3<br>40%<br>40%<br>40%<br>40%<br>40%<br>40%<br>40%<br>40% |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-231 CS16-231 Dup-22 Relative Perce Abso  GS16-236                         | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.005 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005                                                                                                                                                           | <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <0.05 <0.05<br>0.05<br>0.05<br>0 0<br>0 <0.05<br>0 0<br>0 <0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0             | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 <10 0% 0 <10 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                      | 64 20 105% 44  <10 <10 0% 0 43 48 0% 0 28 711 185% 683  85 45 62% 40                                                | 5 93 65 35% 28 40 64 46% 24 111 143 25% 32 499 1210 83% 711 157 67 80% 90                     | 7 41 10 1229 31 22 33 40% 11 42 28 40% 14 272 275 1% 3 27 <10 1389 22                                                                                                                                                 |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-236 Dup-23                                                                | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <0.005 <0.005 0 0 <0.005 0 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 0 <0.005 0 0 <0.005                                                                                             | <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <0.05 <0.05<br>0.05<br>0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0                                                                 | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 0% 0 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                              | 64 20 105% 44  <10  <10  0  43  48  0%  0 28 711 185% 683 85 45 62% 40 441 262                                      | 5 93 65 35% 28 40 64 46% 24 111 143 25% 32 499 1210 83% 711 157 67 80% 90 795                 | 7 41 10 1229 31 22 33 40% 11 42 28 40% 14 272 27 <10 1389 22 161 73                                                                                                                                                   |
| GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-231 Relative Perce Abso                                            | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.005 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005 0% 0 <0.005                                                                                                                                                           | <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <0.05 <0.05<br>0.05<br>0.05<br>0 0<br>0 <0.05<br>0 0<br>0 <0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0             | <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 <10 <10 0% 0 <10 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                      | 64 20 105% 44  <10 <10 0% 0 43 48 0% 0 28 711 185% 683  85 45 62% 40                                                | 5 93 65 35% 28 40 64 46% 24 111 143 25% 32 499 1210 83% 711 157 67 80% 90                     | 7 41 10 122% 31 22 33 40% 11 42 28 40% 14 272 272 270 <10 138% 22 161 73                                                                                                                                              |
| Dup - 17 Relative Perce Abso  GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup - 22 Relative Perce Abso  GS16-231 Dup - 23 Relative Perce Abso  GS16-266 Dup - 23 Relative Perce Abso | -   2016-08-10   -   2016-08-10   -   2016-08-10   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-11   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -   2016-08-18   -     2016-08-18   -     2016-08-18   -     2016-08-18   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.005 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                               | <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0  <0.05 0% 0  0  0.16 0.07 0% 0  <0.05 <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  <0.05 0% 0  0  0  0  0  0  0  0  0  0  0  0                                                                                                                                       | 0 <0.01 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0 <0.01 0% 0  <0.01 0% 0  <0.01 0% 0  <0.01 0% 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 <0.05 <0.05<br>0.05<br>0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0                                                                 | <10 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0                                                                                                                                                                                                                                                                                                                                                                 | 64 20 105% 44  <10 <10 0% 0 43 48 0% 0 28 711 185% 683 85 45 62% 40 441 262 51% 179                                 | 5 93 65 35% 28 40 64 46% 24  111 143 25% 32  499 1210 83% 711 157 67 80% 90  795 427 60% 368  | 7 41 10 122% 31 22 33 40% 11 42 28 40% 14 27 275 1% 3 27 <10 138% 22 161 73 75% 88                                                                                                                                    |
| GS16-210 Dup - 18 Relative Perce Abso  GS16-222 Dup - 20 Relative Perce Abso  GS16-230 Dup - 21 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-231 Dup-22 Relative Perce Abso  GS16-231 Relative Perce Abso                                            | -   2016-08-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.005 <0.005 0 0 <0.005 0 0 <0.005 0 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 <0.005 0 0 <0.005 0 0 <0.005 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                      | <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 0.16 0.07 0% 0 <0.05 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 <0.05 0% 0 0 <0.05 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 <0.05 <0.05<br>0.05<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                | <10 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 <10 0% 0 0 <10 0% 0 0 0 <10 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 64 20 105% 44  <10 <10 0% 0 43 48 0% 0 28 711 185% 683 85 45 62% 40 441 262 51%                                     | 5 93 65 35% 28 40 64 46% 24  111 143 25% 32 499 1210 83% 711 157 67 80% 90 795 427 60%        | 41<br>10<br>122%<br>31<br>22<br>33<br>40%<br>11<br>42<br>28<br>40%<br>14<br>272<br>275<br>1%<br>3<br>27<br><10<br>138%<br>22                                                                                          |

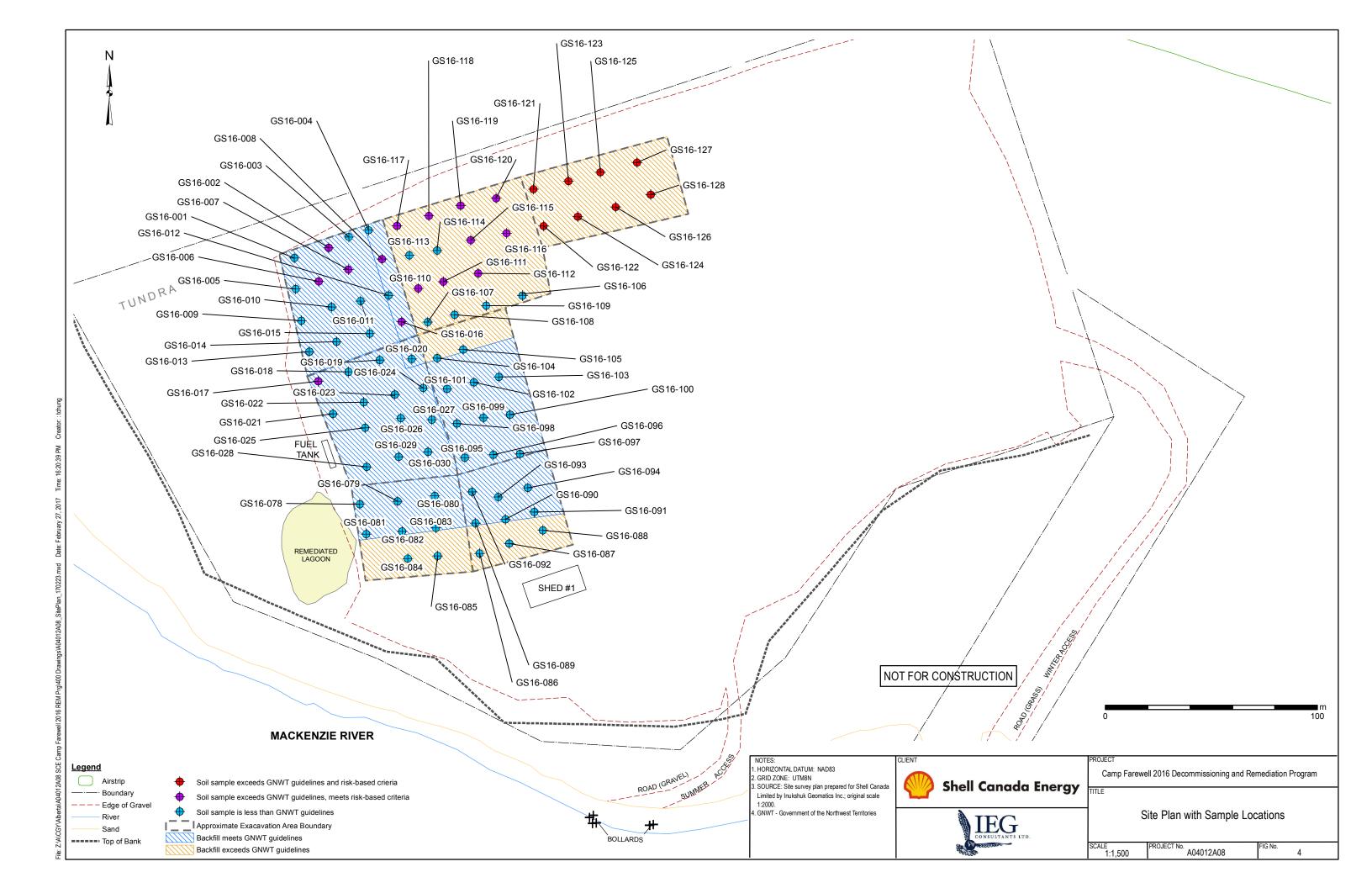
# Notes:

- 1. Applicable values (RPD or AD) are bolded. RPD is applicable if parameter concentrations in both samples are greater than or equal to 5x the detection limit; otherwise AD is applicable.


  2. (yellow highlight) = Exceeds Zeiner criteria (RPD must be less than or equal to 20%, or AD is greater than method detection limit).


  3. View analytical report for more comprehensive results





# **FIGURES**











# **APPENDIX I**

**Historical Reports** 

# Appendix I Camp Farwell Annual Reports

# I-1 PREVIOUS ENVIRONMENTAL SITE ASSESSMENT PROGRAMS

### I-1.1.1 2000

In 2000, Golder and Associates (Golder) conducted a baseline environmental assessment of the Site and Geco-Prakla, a division of Schlumberger Canada, conducted a baseline assessment prior to sub-leasing a portion of the Site from Shell. The area of the sub-lease included the main camp accommodations, associated accommodation trailers, the lagoon area and the area south of the storage crates and racks (including Shed #1), and extended to the east of the lease (Worley Parsons, 2011).

### I-1.1.2 2001

Phase I and Phase II Environmental Site Assessments (ESAs) were conducted by Komex in 2001. Analyzed parameters reported to exceed applicable guidelines which included: total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), and selected trace metals within (and down gradient of) the burn pit; xylenes and TPHs in the area of the tank farm and the area of the historical tank release; TPHs and barium concentrations from surface stained areas and throughout the gravel base pad; and electrical conductivity (EC) and pH on the base pad where mud additives were reportedly stored.

In addition, two background samples were collected from locations located to the northeast of the Site; one situated in native tundra (organic soil) and the second located on the gravel airstrip (mineral soil). Salinity parameters, including EC (180 to 360 uS/cm), pH (6.3 to 8.0) and sodium adsorption ratio (SAR) (0.9 to 1.1) were reported within the applicable guidelines for residential/parkland and industrial land uses for both locations. Concentrations of metals parameters were reported below applicable guidelines (WorleyParsons Komex, 2006).

Following the ESAs conducted in 2001, Komex submitted an Interim Abandonment and Restoration Plan to the NWTWB (Komex, 2002).

#### I-1.1.3 2006

A more detailed Phase II ESA was conducted by WorleyParsons Komex in 2006. The purpose of the additional Phase II ESA was to further delineate previously identified soil impacts and to identify potential groundwater impacts.

Two background soil and groundwater sample locations were established and tested to the northeast of the Site, in areas not likely to have been affected by historical operations. Background soil locations were advance to 0.4 m bgs, to the depth of permafrost. Findings for the background soil and groundwater locations indicated concentrations of hydrocarbons which were attributed to naturally occurring organic material. Salinity parameters EC, pH, and SAR were reported at 251 uS/cm, 6.7, and

0.6, respectively, within and/or below applicable guidelines (WorleyParsons Komex, 2006). Metals parameters were not analyzed.

Hydrocarbon impacts were identified in the vicinity of the burn pit, tank farm, above ground fuel storage tanks, and across the gravel pad including the perimeter. Salinity and barium impacts were identified on the gravel pad (WorleyParsons Komex, 2006).

### I-1.1.4 2008

WorleyParsons submitted a second Interim Abandonment and Restoration Plan in 2008 following the 2006 Phase II. A summary of the 2006 results were included as well as specific Progressive Reclamation Plans to be conducted in 2009 and 2010 (WorleyParsons, 2008).

### I-1.1.5 2010

WorleyParsons submitted an updated Interim Abandonment and Restoration Program Report that described the activities that were conducted in 2008 and 2009 (WorleyParsons, 2010).

IEG also summarized the 2008 and 2009 Site activities in the 2009 Camp Farewell Hydrocarbon Impacted Soil Remediation Report (IEG, 2010). The 2006 Phase II ESA results were summarized, and the remediation activities were described in detail, including the sampling schedule and results.

### I-1.1.6 2012

IEG conducted required Site inspections and collected water samples from the lagoon. Site inspections indicated no sign of spills, leaks, and animal or human activity on the Site. Laboratory analytical results for water samples reported values below applicable guidelines and lagoon water was subsequently discharged to the Mackenzie River in accordance with licence number N7L1-1762 (IEG 2012b, IEG 2013a, and IEG 2013b).

#### I-1.1.7 2013

In 2013, IEG conducted a remediation program at the former lagoon at Camp Farewell. The lagoon excavation was located on the west side of the camp building with the Mackenzie River bordering the south and east sides. The dimensions of the excavation were approximately 52 m by 34 m. The maximum depth of the excavation was approximately 7.5 m. Prior to remedial activities, the lagoon had a depth of approximately 2.5 m. Domestic waste debris was observed in the excavated material, including metal cans, fragments, and plastic debris. Water supply facilities and sewage treatment facilities were also decommissioned and removed during the 2013 Remediation Program.

A total of 96 soil samples were collected from the lagoon excavation: 25 interim soil samples and 71 confirmatory soil samples.

Petroleum hydrocarbon (PHC) affected soil resulting from previous operations was effectively removed from the lagoon area during the 2013 Remediation Program based on laboratory analytical data. Approximately 1,900 m<sup>3</sup> of excavated soil was barged to Hay River and hauled to and disposed at the Tervita Rainbow Lake Landfill in Rainbow Lake, AB. The last load of the barged impacted soil



arrived at the landfill on October 16, 2013. Approximately 100 m<sup>3</sup> remained on-site in a secured metal shed, to be barged to the landfill during 2014 decommissioning activities (IEG, 2014).

### I-1.1.8 2014

Decommissioning activities occurred from August 6, 2014 to September 18, 2014. During the 2014 Decommissioning Program, infrastructure was decommissioned and removed along with miscellaneous materials on-site, minor investigative soil sampling was conducted, and remaining waste from the 2013 Remediation Program was packaged and removed.

Shed #2, Shed #3, and the camp building were disassembled. Materials that could be recycled such as metals were separated from the debris and waste material, for shipment to appropriate facilities. Other materials stored on-site including rig mats, piping, hoses, wooden crates, and miscellaneous parts were also removed. Materials removed were transported off-site via barge.

Approximately 18 m<sup>3</sup> of remaining waste soil from the 2013 remediation program was packed into soil bags or wooden crates provided by Tervita. Each soil bag and wooden crate contained approximately 1 m<sup>3</sup> of impacted soil.

On August 14, 2014, two composite soil samples were collected from the dirt floor of Shed #1 to assess for contaminants. The dirt floor of Shed #1 was compacted and the sampling device could only penetrate to a depth of approximately 0.1 m bgs. Measured concentrations of EC, SAR, sodium, and chloride were reported above background conditions in the two composite soil samples collected. The concentration of total barium and PHC parameter F3 exceeded the applicable guidelines in both composite samples. The concentration of PHC parameter F2 exceeded the applicable guideline in one composite sample.

### I-1.1.9 2015

Site activities included removal of the tank farm, identification and removal of buried material, and assessing subsurface conditions. The conclusions and key findings of Site activities were as follows:

- The tank farm was decommissioned and removed during August 2015. Metal from the tank farm was compressed and packaged for removal via barge;
- The EM (electromagnetic) survey identified 15 subsurface anomalies which were investigated.
   Uncovered debris was removed. Two areas of elevated conductivity were identified on the northern half of the Site and to the west of the former tank farm, respectively;
- IEG Site assessment activities included installation of 124 boreholes and collection of groundwater samples from the existing piezometers on-site;
- Background soil and groundwater guidelines were established for the Site. Reported parameter concentrations for background soil samples were below the method detection limit and/or Government of Northwest Territories (GNWT) guideline for each parameter analyzed in 2015.



- pH values were reported below the guideline range in 56 samples collected from various locations across the extent of the Site. pH values reported for background samples were within the guideline range.
- Electrical conductivity (EC) values above the GNWT guideline were observed in three samples collected from one borehole at the airstrip. Remaining analyzed samples had reported EC values below the GNWT guideline.
- True total barium concentrations were reported above the Alberta Environment (AENV)
  guideline in three samples collected from one borehole in the burn pit area, one borehole
  inside shed #1, and one borehole in the laydown/storage area.
- Concentrations of benzene exceeded the GNWT guideline in eight soil samples collected from eight boreholes in the tank farm area.
- Concentrations of toluene exceeded the GNWT guideline in 65 soil samples collected from three boreholes in the Shed #1 area, 29 boreholes in the tank farm area, three boreholes at the airstrip, 16 boreholes in the laydown/storage area, and one borehole in the camp area.
- Concentrations of ethylbenzene exceeded the GNWT guideline in nine samples collected from two boreholes in the burn pit area, one borehole in the laydown/storage area, and five boreholes in the tank farm area.
- Concentrations of xylenes exceeded the GNWT guideline in 28 samples collected from three boreholes in the laydown/storage area, four boreholes in the burn pit area, and 13 boreholes in the tank farm area.
- Concentrations of petroleum hydrocarbon (PHC) fraction F1 exceeded the GNWT guideline in 16 samples collected from one borehole in the laydown/storage area, two boreholes in the burn pit area, and eight boreholes in the tank farm area.
- Concentrations of PHC fraction F2 exceeded the GNWT guideline in 44 samples collected from three boreholes in the Shed #1 area, seven boreholes in the laydown/storage area, four boreholes in the burn pit area, and 18 boreholes in the tank farm area.
- Concentrations of PHC fraction F3 exceeded the GNWT guideline in 83 samples collected from four boreholes in the shed #1 area, five boreholes at the airstrip, 23 boreholes in the laydown/storage area, two boreholes in the camp area, four boreholes in the burn pit area, 30 boreholes in the tank farm area, and two boreholes in the tundra area.
- Concentrations of PHC fraction F4 exceeded the GNWT guideline in one sample collected from the burn pit area.
- Groundwater samples collected from two piezometers contained concentrations of total dissolved solids (TDS) that exceeded the GNWT guidelines. Groundwater samples collected from four piezometers contained concentrations of aluminum, cadmium, copper, iron, and selenium that exceeded the GNWT guidelines. One groundwater sample contained concentrations of naphthalene that exceeded the GNWT guideline.



# **APPENDIX II**

**Permits and Licenses** 



Environnement et Changement climatique Canada

# ENVIRONMENT CANADA PERMIT

| Migratory Birds - Sanctuary                                        | NWT-MBS-16-01                        |
|--------------------------------------------------------------------|--------------------------------------|
| Permit for                                                         | Permit no,                           |
| Northwest Territories province(s), territories                     | 9.<br>Issued under section           |
| Randall Warren<br>Shell Canada Ltd.,                               | Migratory Bird Sanctuary Regulations |
| P.O. Box 100 Station "M" Calgary, AB T2P 2H5                       | 4 0 1                                |
| Permittee                                                          | - M. faxt                            |
|                                                                    | For the Minister                     |
| Date of issue: February 17, 2016 Date of expire: December 31, 2016 |                                      |

The Permittee is authorized to conduct care, maintenance and remediation of the Camp Farewell and Stockpile lease area in the Kendall Island Migratory Bird Sanctuary.

# SPECIAL CONDITIONS

### 1. PROTECTION OF TERRESTRIAL HABITAT

- 1.1. The Permittee shall not conduct any activities in the Kendall Island Bird Sanctuary outside the Camp Farewell and Stockpile lease area.
- 1.2. The Permittee shall use portable ramps during loading or unloading ships or barges.
- 1.3. The Permittee shall not remove or relocate earth, except contaminated soils collected as part of a clean-up program.
- 1.4. The permittee shall not move any equipment or vehicles unless the ground is in a state capable of fully supporting the equipment of vehicle without rutting or gouging.

#### 2. PROTECTION OF AQUATIC HABITAT

- 2.1. The Permittee shall not place dirt or debris into streams to serve as ramps for loading or unloading ships or barges.
- 3. The Permittee shall not cut any bank of a waterbody.

#### 4. WILDLIFE DISTURBANCE AND INTERACTION

- 4.1. The Permittee shall not feed wildlife or attempt to attract wildlife.
- 4.2. The Camp Farewell airstrip is not permitted to be used from 10 May 20 June and 25 August 30 September, except for emergencies.
- 4.3. Aircraft activity is restricted to flights necessary to carry out care and maintenance of the Camp Farewell and Stockpile lease area
- 4.4. Aircraft shall maintain a minimum horizontal distance of 1.5 km from any observed concentrations of migratory birds.
- 4.5. The Permittee shall notify the Manager of any birds nesting on the infrastructure within the lease area.

#### 5. FUEL STORAGE AND HANDLING

- 5.1. The Permittee shall not allow oil, oil wastes or any other substance harmful to migratory birds to be deposited in waters or other areas frequented by migratory birds, or in a place from which the substances may enter waters frequented by migratory birds.
- 5.2. The Permittee shall permanently mark all fuel containers, including 205 L drums, with the Permittee's name.

### HAZARDOUS MATERIALS AND CONTAMINANTS — HANDLING AND DISPOSAL

- 6.1. The Permittee shall have the appropriate Workplace Hazardous Material Information System, 'Material Safety Data Sheets' identification available on site.
- 6.2. The Permittee shall remove and dispose of all hazardous materials at an approved facility.
- 6.3. The Permittee shall conduct maintenance, oil changes, refueling and lubricating of mobile equipment no closer than 100 m from waterbodies (lakes, ponds and streams).

### 7. GARBAGE AND WASTE WATER HANDLING AND REMOVAL

- 7.1. The Permittee shall ensure that all domestic garbage and other wildlife attractants are inaccessible to wildlife at all times.
- 7.2. The Permittee shall regularly collect all waste, debris and domestic garbage and dispose of it using appropriate technology and accepted practices.
- 7.3. The Permittee shall inventory and dispose of any waste materials, construction materials, drilling materials or other materials on at least an annual basis to minimize accumulation within the permit area. The inventory of materials disposed and materials remaining within the permit area must be reported to the Manager.

### 8. REPORTING

8.1. The Permittee shall submit a report within thirty (30) days of the expiration date of this permit. The report shall describe all activities that occurred at Camp Farewell during 2016 including the time period of the Permittee's activities on site, location of soil sampling and laboratory results (if available) as well as remaining infrastructure and photos showing the current state of the Camp Farewell lease area in particular locations were work was conducted in 2016.

### **GENERAL CONDITIONS**

- The permit is not valid unless signed by the Permittee (holder) or authorized representative, in the space designated as "Permittee".
- 2. By signing this document you bind yourself to respect all terms and conditions of this permit.
- 3. The Permittee must comply with all other applicable Canadian laws and regulations.
- 4. Copy of signed permit must be carried by the field supervisor and Permittee when conducting this work and will be presented if asked by Police or Game Officer.
- 5. The Permittee shall display a copy of this permit in a conspicuous place in each campsite established to carry out this program.
- 6. All personnel (including employees, agents, contractors, volunteers, and visitors of the Permittee) and activities carried out under the authority of the permit fall under the conditions of the permit.
- 7. The Permittee shall ensure that a copy of this Permit, operating conditions and definitions is provided, understood and adhered to by all contractors and sub-contractors prior to the start-up of the permitted activity
- Additional restrictions may be required and may be added to this permit by the Minister if it is deemed necessary to ensure compliance with the Migratory Birds Convention Act and the Regulations.
- 9. Issuance of this permit does not supersede the necessity or legal requirement to acquire any other pertinent Territorial or Municipal license and or permit which may otherwise be applicable. This permit is not transferable to any other person(s) or organization(s) and is not valid if altered in any way.
- 10. If the Permittee proposes to conduct any activities that are not identified in the original permit application, the Permittee shall notify the Manager and, if necessary, apply for a new or amended permit to conduct the new activities.
- 11. The Permittee is authorized to possess firearms in the Kendall Island Migratory Bird Sanctuary for protection from dangerous wildlife only.
- 12. This permit may be revoked at any time at the discretion of the Minister.

#### DEFINITIONS

Manager: 'The Manager', Northern Conservation Section, Canadian Wildlife Service, Environment Canada or his/her designate.

Minister: The Minister of the Environment.

Permittee: The party to whom a CWS Sanctuary Permit is issued for conducting activities in a Migratory Bird Sanctuary.

Waterbody: Any river, stream, creek, lake, or pond.

Camp: A collection of accommodations, maintenance, transportation, and storage facilities located either permanently or temporarily at a site.

Sub-permit holder and/or nominee(s):

On site field supervisor, Tervita Corporation (to be determined)

Field staff to include personnel from Tervita and IEG (4 staff) and Mackenzie Delta Industrial Oilfield Services (10-15 staff).

I declare that I have read and understand this Permit, including all the conditions attached.

Signature of Permittee

Page 3 of 3



WATER REGISTER: N7L1-1834

July 18, 2012

Mr. Randal Warren
Manager; DAR and Drilling Waste
Projects and Technology
Shell Canada Energy
400- 4th Avenue S.W.
P.O. Box 100, Station M
Calgary, Alberta T2P 2H5

Dear Mr. Warren:

# Re: Issuance of a Type "B" Water Licence- Camp Farewell

Attached is Water Licence N7L1-1834 granted by the Northwest Territories Water Board (the Board) in accordance with the *Northwest Territories Waters Act*. A copy of this Licence has been filed in the Public Registry at the Board offices in Yellowknife and in Inuvik. Water Licence N7L1-1834 has been approved for a period of five years commencing July 18, 2012 and expiring July 17, 2017. Also attached are the general procedures for the administration of Licences in the Northwest Territories. Please review these carefully and address any questions to one of the Board offices.

Please be advised that this letter, with attached procedures, all inspection reports and correspondence related thereto are part of the Board public registry and are intended to keep all interested parties informed of the manner in which the Licence requirements are being met. All public registry material will be considered if an amendment to the Licence or its renewal is requested.

In accordance with the Northwest Territories Water Regulations (NTWR) section 6(1) and 9(1)(b) there will be a requirement for a further payment of the water use fee based on the approved water use of 150 cubic metres per day. The annual water use fee has been calculated to be \$547.50 and is payable to the Receiver General of Canada on the anniversary of the date of issuance of the licence as per section 9(6)(b)(ii) of the NTWR. At the time of your Water Licence application there was a payment of \$30.00 for the first year fee payment and there remains a balance of \$517.50 to be paid for the water use fee at the time the Licence is issued.

Please note for future Water Licence applications in accordance with NTWR section 6(1) an application for a Licence or for the amendment or renewal of a Licence shall be accompanied by a deposit equal to any water use fee that would be payable in respect of the first year of the Licence that is being applied for.

Please read all the conditions carefully and note that in accordance with the attached Water Licence Part B, condition 10, a security deposit in the amount of \$2,000,000.00 shall be posted with the Minister and copied to the Board prior to the start of the operation pursuant to section 17 of the *Northwest* 

Territories Waters Act. Submit payment of the security, made out to the Receiver General for Canada in the amount of \$2,000,000.00, to: Aboriginal Affairs and Northern Development Canada, P.O. Box 1500, Yellowknife, NT, X1A 2R3 Attention: Robert Jenkins.

Supplemental information to be submitted by Licensee as required through Licence conditions:

- post and maintain security deposit (by August 17, 2012)
- an Annual Report (by March 31, 2013-2017);
- a map or drawing of SNP sampling locations (by August 17, 2012)
- post signs to identify SNP sampling stations (by August 17, 2012)
- an updated operation and maintenance plan for the Waste Disposal Facilities (by August 17, 2012)
- an updated Emergency Response & Spill Contingency Plan (by August 17, 2012)
- an updated Abandonment and Restoration Plan (by July 17, 2013)
- submit to an Analyst for approval a Quality Assurance/Quality Control Plan (by August 17, 2012)

The full cooperation of Shell Canada Energy is anticipated and appreciated.

Should you have any further questions or concerns, please communicate with the Northwest Territories Water Board by telephone at (867) 678-2942 or via e-mail at <a href="mailto:info@nwtwb.com">info@nwtwb.com</a>.

Sincerely,

Eddie Dillon Chairperson

**NWT Water Board** 

Attached:

Water Licence N7L1-1834

General Procedures for the administration of licences issued under the Northwest

Territories Waters Act in the Northwest Territories

Distribution:

Conrad Baetz, AANDC-NMDO Robert Jenkins, AANDC-WRD

Krista Beavis, Klohn Crippen Berger

Patrick Clancy, GNWT-ENR

Rick Walbourne, DFO Stacev LeBlanc, EC

# GENERAL PROCEDURES FOR THE ADMINISTRATION OF LICENCES ISSUED UNDER THE NORTHWEST TERRITORIES WATERS ACT IN THE NORTHWEST TERRITORIES

- At the time of issuance, a copy of the Licence is placed on the Northwest Territories Water Board public registry in the Yellowknife and Inuvik Offices, and is then available to the public.
- 2. To enforce the terms and conditions of the Licence, the Minister of Aboriginal Affairs and Northern Development Canada has appointed Inspectors in accordance with Section 35(1) of the Northwest Territories Waters Act. The Inspectors coordinate their activities with officials of the Water Resources Division of Aboriginal Affairs and Northern Development Canada. The Inspector responsible for Licence N7L1-1834 is located in the North Mackenzie District Office in Inuvik.
- 3. To keep the Northwest Territories Water Board and members of the public informed of the Licensee's conformity to Licence conditions, the Inspectors prepare reports which detail observations on how each item in the Licence has been met. These reports are forwarded to the Licensee with a covering letter indicating what action, if any, should be taken. The inspection reports and covering letters are places on the Northwest Territories Water Board public registry, as are any responses received from the Licensee pertaining to the inspection reports. It is therefore of prime importance that you react in all areas of concern regarding all inspection reports so that these concerns may be clarified.
- 4. If the renewal of Licence N7L1-1834 is contemplated it is the responsibility of the Licensee to apply to the Northwest Territories Water Board for renewal of the Licence. The past performance of the Licensee, new documentation and information, and points raised during a public hearing, if required, will be used to determine the terms and conditions of any Licence renewal. Please note that if the Licence expires and another has not been issued, then water and Waste disposal must cease, or you, the Licensee, would be in contravention of the Northwest Territories Waters Act. An application for renewal of Licence N7L1-1834 should be made at least eight (8) months in advance of the Licence expiry date.
- 5. If, for some reason, Licence N7L1-1834 requires amendment, then a public hearing may be required. You are reminded that applications for amendments should be submitted as soon as possible to provide the Northwest Territories Water Board with ample time to go through the amendment process. The process may take up to six (6) months or more depending on the scope of the amendment requested.

6. Specific clauses of your Licence make reference to the Board, Analyst or Inspector. The contact person, address, phone and fax number of each is:

Board: Executive Director

Northwest Territories Water Board

P.O. Box 2531 Inuvik, NT X0E 0T0

Phone No: (867) 678-2942 Fax No: (867) 678-2943

Analyst: Analyst

Taiga Environmental Laboratory

Aboriginal Affairs and Northern Development Canada

P.O. Box 1500, 4601 – 52<sup>nd</sup> Avenue

Yellowknife, NT X1A 2R3 Phone No: (867) 669-2788 Fax No: (867) 669-2718

Inspector: Water Resource Officer

North Mackenzie District Office

Aboriginal Affairs and Northern Development Canada

P.O. Box 2100 Inuvik, NT X0E 0T0 Phone No: (867) 777-8900 Fax No: (867) 777-2090

7. Your Licence requires a security deposit be submitted. Should the security deposit be submitted in the form of a "letter of credit", recommended wording is outlined below. It is advised that a "draft" letter of credit be forwarded to Water Resources Division for review. The contact person, address, phone and fax number of the individual administering security deposits is:

Manager

Water Resources Division

Aboriginal Affairs and Northern Development Canada

P.O. Box 1500, 4923 – 52<sup>nd</sup> Street YELLOWKNIFE, NT X1A 2R3 Phone No: (867) 669-2654

Fax No: (867) 669-2716

[BANK

ADDRESS]

## **IRREVOCABLE LETTER OF CREDIT**

[The term "DOCUMENTARY CREDIT" may also be used instead of "Letter of Credit"]

DATE OF ISSUE: [Date] OUR REFERENCE NUMBER: [Bank's reference

numberl

**AMOUNT:** CAD\$########.00

MAXIMUM ########.00

**CANADIAN DOLLARS ONLY** 

APPLICANT: **BENEFICIARY:** 

["Customer" can be used instead RECEIVER GENERAL FOR CANADA

of "Applicant"] [Company's Name]

[Company's Address]

INDIAN AFFAIRS AND NORTHERN DEVELOPMENT

ON BEHALF OF THE MINISTER OF

4923 - 52<sup>nd</sup> STREET, 2<sup>nd</sup> FLOOR

P.O. BOX 1500

YELLOWKNIFE, NT X1A 2R3

ATTENTION: REGIONAL DIRECTOR GENERAL DIAND - NT REGION

RE: **SECURITY PURSUANT TO** [the Water Licence Type and Number]

AT THE REQUEST AND FOR THE ACCOUNT OF [Company's Name] (THE "APPLICANT"), WE, [Bank's Name], HEREBY ESTABLISH IN YOUR FAVOUR OUR IRREVOCABLE LETTER OF CREDIT NO. [Bank's Reference Number] ("CREDIT") FOR SUMS NOT EXCEEDING IN THE AGGREGATE [Amount of Security required stated in Canadian Dollars].

THIS CREDIT IS AVAILABLE WITH US FOR DRAWING AT SIGHT. WITHOUT ENQUIRY AS TO WHETHER YOU HAVE RIGHT AS BETWEEN YOURSELF AND THE APPLICANT TO MAKE SUCH DEMAND AND WITHOUT RECOGNIZING ANY CLAIM OF THE APPLICANT, AGAINST PRESENTATION TO US, BY YOU OR YOUR DULY AUTHORIZED REPRESENTATIVE OR AGENT, OF THE FOLLOWING DOCUMENTS:

- 1. A SIGHT DRAFT DRAWN ON [Bank's Name and Address of the Branch that the security can be drawn at, usually one of the Bank's larger commercial banking centres]; AND
- 2. THE ORIGINAL OF THIS IRREVOCABLE LETTER OF CREDIT NO. [Bank's Reference Number | FOR ENDORSEMENT OF PAYMENT THEREON; AND

- 3. A STATEMENT SIGNED BY AN OFFICIAL OF THE DEPARTMENT OF INDIAN AFFAIRS AND NORTHERN DEVELOPMENT CERTIFYING
- A) THAT THE SIGNATORY IS AN OFFICIAL OF THE DEPARTMENT OF INDIAN AFFAIRS AND NORTHERN DEVELOPMENT AND HAS AUTHORITY TO SIGN THE STATEMENT ON BEHALF OF THE MINISTER OF INDIAN AFFAIRS AND NORTHERN DEVELOPMENT (THE "MINISTER"), AND
- B) EITHER
- THAT THE MINISTER IS ENTITLED TO APPLY THE AMOUNT DRAWN, BEING ALL OR PART OF THE SECURITY POSTED AND MAINTAINED PURSUANT TO [the Water Licence Type and Number] ISSUED BY THE NORTHWEST TERRITORIES WATER BOARD, WHETHER AS ORIGINALLY ISSUED OR AS AMENDED OR RENEWED FROM TIME TO TIME, OR
- II THAT THIS LETTER OF CREDIT IS DUE TO EXPIRE IN THIRTY (30) DAYS OR LESS AND THAT THE APPLICANT HAS NOT REPLACED THIS CREDIT BY POSTING WITH THE MINISTER OTHER SECURITY SATISFACTORY TO THE MINISTER.

### PARTIAL DRAWINGS ARE PERMITTED.

THIS CREDIT IS EFFECTIVE FROM [Time] .AM. ON [Effective Date as required by Water Licence] AND SHALL EXPIRE AT OUR COUNTERS AT [Time] P.M. [Expiry Date] (THE "INITIAL EXPIRATION DATE"). THIS CREDIT SHALL BE RENEWED AUTOMATICALLY FOR AN ADDITIONAL ONE-YEAR PERIOD FROM THE INITIAL EXPIRATION DATE, AND FOR AN ADDITIONAL ONE-YEAR PERIOD FROM EACH FUTURE EXPIRATION DATE, UNLESS AT LEAST NINETY (90) DAYS PRIOR TO THE OPERATIVE EXPIRATION DATE WE NOTIFY YOU IN WRITING BY REGISTERED MAIL OR COURIER THAT WE ELECT NOT TO CONSIDER THIS CREDIT RENEWED FOR SUCH ADDITIONAL PERIOD.

WE HEREBY AGREE THAT ALL DRAFTS DRAWN UNDER AND IN COMPLIANCE WITH THE TERMS OF THIS CREDIT SHALL BE DULY HONOURED BY US IF PRESENTED FOR PAYMENT ON OR BEFORE THE OPERATIVE EXPIRATION DATE.

EXCEPT SO FAR AS IS OTHERWISE EXPRESSLY STATED HEREIN, THIS CREDIT IS SUBJECT TO THE UNIFORM CUSTOMS AND PRACTICE FOR DOCUMENTARY CREDITS (1993 REVISION), INTERNATIONAL CHAMBER OF COMMERCE, PUBLICATION NO. 500. NOTWITHSTANDING ARTICLE 17 OF SAID PUBLICATION, IS THIS CREDIT EXPIRES DURING AN INTERRUPTION OF BUSINESS AS DESCRIBED IN ARTICLE 17, WE AGREE TO EFFECT PAYMENT IF THIS CREDIT IS

| DRAWN ON<br>BUSINESS. | US WI    | THIN    | FIFTEEN | (15) | DAYS      | AFTER       | THE   | RESUMPTION    | OF |
|-----------------------|----------|---------|---------|------|-----------|-------------|-------|---------------|----|
| [Bank's Name          | ]        |         |         |      |           |             |       |               |    |
| Official's Nam        | ne and P | osition | <u></u> |      | <u>[O</u> | fficial's N | ame a | and Position] |    |

# NORTHWEST TERRITORIES WATER BOARD

Pursuant to the *Northwest Territories Waters Act* and Regulations the Northwest Territories Water Board, hereinafter referred to as the Board, hereby grants to

| SHELL CANADA                                                            | ENERGY                                                                                                                                                       |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Licensee)  400- 4 Avenue S.W., P.C  ofCALGARY, ALBER (Mailing Address) |                                                                                                                                                              |
| to the restrictions and conditions conta                                | ght to alter, divert or otherwise use water subject ained in the <i>Northwest Territories Waters Act</i> and object to and in accordance with the conditions |
| Licence Number                                                          | N7L1-1834                                                                                                                                                    |
| Licence Type                                                            | "B"                                                                                                                                                          |
| Water Management Area                                                   | NORTHWEST TERRITORIES 07                                                                                                                                     |
| Location                                                                | Within a two kilometre radius of<br>Latitude 69°12'30" N.<br>Longitude135°06'04" W.<br>MACKENZIE RIVER DELTA, N.W.T                                          |
| Purpose                                                                 | TO USE WATER AND DISPOSE OF WASTE FOR INDUSTRIAL UNDERTAKINGS AND ASSOCIATED USES                                                                            |
| Description                                                             | OIL AND GAS EXPLORATION AND DEVELOPMENT                                                                                                                      |
| Quantity of Water Not<br>To Be Exceeded                                 | 150 CUBIC METRES DAILY                                                                                                                                       |
| Effective Date of Licence                                               | JULY 18 <sup>TH</sup> , 2012                                                                                                                                 |
| Expiry Date of Licence                                                  | JULY 17 <sup>TH</sup> , 2017                                                                                                                                 |
| This Licence issued and recorded a conditions.                          | t Inuvik includes and is subject to the annexed                                                                                                              |

NORTHWEST TERRITORIES WATER BOARD

Chairperson (Eddie Dillon)

Witness

# PART A: SCOPE AND DEFINITIONS

# 1. Scope

- a) This Licence entitles Shell Canada Energy to use water and dispose of Waste as an industrial undertaking associated with oil and gas exploration and development in the Mackenzie Delta at Farewell Camp and Stockpile Site (Camp Farewell) located at Latitude 69°12'30" North, and Longitude 135°06'04" West, Northwest Territories;
- b) This Licence is issued subject to the conditions contained herein with respect to the taking of water and the depositing of Waste of any type in any Waters or in any place under any conditions where such Waste or any other Waste that results from the deposits of such Waste may enter any Waters. Whenever new Regulations are made or existing Regulations are amended by the Governor in Council under the *Northwest Territories Waters Act*, or other statutes imposing more stringent conditions relating to the quantity or type of Waste that may be so deposited or under which any such Waste may be so deposited, this Licence shall be deemed, upon promulgation of such Regulations, to be automatically amended to conforming to such Regulations; and
- c) Compliance with the terms and conditions of this Licence does not absolve the Licensee from responsibility for compliance with the requirements of all applicable Federal, Territorial and Municipal legislation.
- d) This Licence is issued subject to the conditions contained herein with respect to the use of Waters as prescribed in Section 8 of the *Act* and the deposit of Waste to any Waters as prescribed in Section 9 of the *Act*.

# 2. <u>Definitions</u>

In this Licence: N7L1-1834

"Act" means the Northwest Territories Waters Act;

"Analyst" means an Analyst designated by the Minister under Section 35(1) of the Northwest Territories Waters Act;

- "Average Concentration" means the discrete average of up to four (4) consecutive analytical results submitted to the Board in accordance with the sampling and analysis requirements specified in the "Surveillance Network Program";
- "Board" means the Northwest Territories Water Board established under Section 10 of the Northwest Territories Waters Act;
- "Freeboard" means the vertical distance between water line and the lowest elevation of the effective water containment crest on a dam or dyke's upstream slope;
- <u>"Geotechnical Engineer"</u> means a professional engineer registered with the Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists whose principal field of specialization is the design and construction of earthworks in a permafrost environment;
- "Greywater" means all liquid Wastes from showers, baths, sinks, kitchens and domestic washing facilities, but does not include toilet Waste;
- "Inspector" means an Inspector designated by the Minister under Section 35(1) of the Northwest Territories Waters Act;
- "Licensee" means the holder of this Licence;
- "Minister" means the Minister of Aboriginal Affairs and Northern Development Canada (AANDC);
- "<u>Modification</u>" means an alteration to a physical work that introduces a new structure or replaces an existing structure and does not alter the purpose or function of the work, but does not include an expansion;
- "Regulations" mean Regulations proclaimed pursuant to Section 33 of the Northwest Territories Waters Act;
- "Sewage" means all toilet Wastes and Greywater;
- "Sewage Treatment Facilities" comprises the area and engineered structures designed to contain Sewage as identified in the project description and also include a Sump constructed of impervious material and/or with an impervious liner;
- "Sump" means an excavation for the purpose of catching or storing water and/or Waste;
- "Waste" means Waste as defined by Section 2 of the Northwest Territories Waters Act;

- "<u>Waste Disposal Facilities</u>" mean all facilities designated for the disposal of Waste and include the Sewage disposal facilities, solid Waste disposal facilities, and bagged toilet Wastes disposal facilities;
- "Water Supply Facilities" mean all facilities designed to collect, treat and supply water for industrial purposes; and
- "<u>Waters</u>" mean Waters as defined by Section 2 of the *Northwest Territories Waters* Act:

# PART B: GENERAL CONDITIONS

- 1. The Licensee shall file an Annual Report with the Board not later than March 31<sup>st</sup> of the year following the calendar year reported which shall contain the following information:
  - a) the monthly and annual quantities in cubic metres of fresh water obtained from all sources;
  - b) the monthly and annual quantities in cubic metres of each and all Waste discharged;
  - c) the location and direction of flow of all Waste discharged to the water or the land:
  - d) a summary of the monthly and annual quantities of Waste stored on site and transported off site;
  - e) the results of sampling carried out under the "Surveillance Network Program";
  - f) a summary of any Modifications carried out on the Water Supply Facilities and Sewage Treatment Facilities, including all associated structures;
  - g) a list of any spills and unauthorized discharges;
  - h) details on the restoration of any Sumps;
  - a summary of any abandonment and restoration work completed during the year and an outline of any work anticipated for the next year;

- j) a summary of any studies requested by the Board that relate to Waste disposal, water use, or reclamation, and a brief description of any future studies planned;
- k) notation of updates and/or revisions to the approved Spill Contingency Plan, Waste Disposal Facilities operations and maintenance plan, and sewage treatment plan;
- an outline of any spill training and communications exercises carried out;
   and
- m) any other details on water use or Waste disposal requested by the Board within forty-five (45) days before the annual report is due.
- The Licensee shall comply with the "Surveillance Network Program" annexed to this Licence, and any amendment to the said "Surveillance Network Program" as may be made from time to time, pursuant to the conditions of this Licence.
- 3. The "Surveillance Network Program" and compliance dates specified in the Licence may be modified at the discretion of the Board.
- 4. The Licensee shall, within thirty (30) days of the issuance of this Licence, submit to the Board for approval a map or drawing indicating the location of all Surveillance Network Program sampling stations.
- 5. The Licensee shall, within thirty (30) days of the issuance of this Licence, post the necessary signs to identify the stations of the "Surveillance Network Program". All postings shall be located and maintained to the satisfaction of an Inspector.
- 6. Any meters, devices or other such methods used for measuring the volumes of water used or Waste disposed and discharged shall be installed, operated and maintained by the Licensee to the satisfaction of an Inspector.
- 7. The Licensee shall immediately report to the 24 Hour Spill Report Line (867-920-8130) any spills which are reported to, or observed by, the Licensee within the project boundaries.
- 8. All monitoring data shall be submitted in printed form and electronically in spreadsheet format on a diskette or other electronic forms acceptable to the Board.
- All reports shall be submitted to the Board in printed format accompanied by an electronic copy in a common word processing format on diskette or other electronic forms acceptable to the Board.

- 10. Within thirty (30) days of issuance of this Licence, the Licensee shall have posted and shall maintain a security deposit in the amount of Two Million (\$2,000,000.00) Dollars pursuant to Section 17 of the Act and Section 12 of the Regulations, in a form suitable to the Minister. The security deposit shall be maintained until such time as it is fully or in part refunded by the Minister pursuant to Section 17 of the Act.
- 11. The Licensee shall ensure a copy of this Licence is maintained at the site of operation at all times.

# PART C: CONDITIONS APPLYING TO WATER USE

- The Licensee shall obtain water from the Middle Channel of the Mackenzie River in winter or the unnamed lake north of the camp in summer as described in the project description, or as otherwise approved by an Inspector.
- 2. The daily quantity of water used for all purposes shall not exceed 150 cubic metres.

# PART D: CONDITIONS APPLYING TO WASTE DISPOSAL

- The Licensee shall within thirty (30) days of the issuance of this Licence, submit to the Board for approval an updated operation and maintenance plan for the Waste Disposal Facilities. This plan shall include but not necessarily be limited to details on the design, operational capacity, management and maintenance, and disposal of sludges.
- 2. All Sewage shall be directed to the onsite Sewage Treatment Facilities as approved by an Inspector.
- 3. The Sewage Treatment Facilities shall be maintained and operated in such a manner as to prevent structural failure to the satisfaction of the Inspector.
- All Waste discharged from the onsite Sewage lagoon shall be directed to the channel of the Mackenzie River at a location approved by an Inspector.
- 5. There should be no discharge of floating solids, garbage, grease, free oil or foam.

6. All effluent discharged by the Licensee from the Sewage lagoon at "Surveillance Network Program" Station Number 1834-1 shall meet the following effluent quality requirements:

| Sample Parameter              | Average Concentration |
|-------------------------------|-----------------------|
| BOD <sub>5</sub>              | 70.0 mg/L             |
| Total Suspended Solids        | 70.0 mg/L             |
| Faecal Coliforms              | 1 X 10⁴ CFU/dL        |
| Oil and Grease                | 5.0 mg/L              |
| Total Residual Chlorine (TRC) | 0.1 mg/L              |

- 7. The effluent discharged shall have a pH between six (6) and nine (9) and no visible sheen of oil and grease.
- 8. Introduction of water to Waste for the purpose of achieving effluent quality requirements in Part D, Item 7 is prohibited.
- A Freeboard limit of 1.0 metre shall be maintained at all times in the Sewage lagoon, or as recommended by a qualified Geotechnical Engineer and/or as approved by the Board.
- 10. The Licensee shall advise an Inspector at least five (5) days prior to initiating and decant of the Sewage lagoon.
- 11. All analyses shall be conducted in accordance with methods prescribed in the current edition of "Standard Methods for the Examination of water and Wastewater" or by such other methods as may be approved by an Analyst.
- 12. The Licensee shall contain all contaminated soil or contaminated snow in such a manner as to minimize the potential for migration of contaminants into any Waters, to the satisfaction of an Inspector.
- 13. The Licensee shall store, segregate and dispose of all solid and hazardous Wastes in a manner acceptable to the Inspector.
- 14. Unless authorized by this Licence, the Licensee shall ensure that any Wastes associated with this undertaking do not enter any water body.
- 15. The Licensee shall submit to the Board a copy of each agreement(s) between third parties to store, transport or dispose of Wastes. The copy submitted to the Board shall include, at a minimum, the following:

- a. type of Waste;
- b. quantities of Waste;
- c. disposal location(s), and
- d. proof of acceptance from third parties.

# PART E: CONDITIONS APPLYING TO MODIFICATIONS

- The Licensee may, without written approval from the Board, carry out Modifications to the planned undertakings provided that such Modifications are consistent with the terms of this Licence and the following requirements are met:
  - a) the Licensee has notified an Inspector in writing of such proposed Modifications at least five (5) days prior to beginning the Modifications;
  - such Modifications do not place the Licensee in contravention of either the Licence or the Act;
  - c) an Inspector has not, during the five (5) days following notification of the proposed Modifications, informed the Licensee that review of the proposal will require more than five (5) days; and
  - d) an Inspector has not rejected the proposed Modifications.
- 2. Modifications for which all of the conditions referred to in Part F, Item 1 have not been met may be carried out only with written approval from an Inspector.
- The Licensee shall provide to the Board as-built plans and drawings of the Modifications referred to in this Licence within ninety (90) days of completion of the Modifications.

# PART F: CONDITIONS APPLYING TO CONTINGENCY PLANNING

1. The Licensee shall submit to the Board for approval within thirty (30) days of issuance of this Licence an updated Emergency Response & Spill Contingency Plan in accordance, for example, with the *Guidelines for Spill Contingency Planning, April 2007*, developed by AANDC-Water Resources Division.

- 2. The Licensee will maintain a copy of the approved Emergency Response & Spill Contingency Plan onsite in a readily available location, to the satisfaction of an Inspector.
- 3. The Licensee shall ensure that petroleum products, hazardous material and other Wastes associated with the project do not enter any Waters.
- 4. The Licensee shall ensure that all containment berms are constructed of an impermeable material, to the satisfaction of an Inspector.
- 5. The Licensee shall ensure that fuel stored in each tank within the tank farm be no greater than 85% of the tank's capacity to allow for expansion and avoid overflows.
- 6. If, during the period of this Licence, an unauthorised discharge of Waste occurs, or if such a discharge is foreseeable, the Licensee shall:
  - a) report the incident immediately via the 24 Hour Spill Reporting Line (867) 920-8130; and
  - b) submit to an Inspector a detailed report on each occurrence not later than thirty (30) days after initially reporting the event.

# PART G: CONDITIONS APPLYING TO ABANDONMENT AND RESTORATION

- The Licensee shall submit to the Board for approval within one (1) year of issuance of this Licence, an updated Interim Abandonment and Restoration Plan including plans for the abandonment and restoration of the Sewage lagoon and a complete Phase II environmental site assessment of Camp Farewell. This assessment will include the full delineation of contamination (soil and water) associated with Camp Farewell operations, located both on and off the gravel base pad.
- 2. The Licensee shall implement this Plan as and when approved by the Board.
- Following approval of the Plan, the Licensee shall review the Abandonment and Restoration Plan every two (2) years and shall modify the Plan as necessary to reflect changes in operations and technology. All proposed Modifications to the Plan shall be submitted to the Board for approval.

NORTHWEST TERRITORIES WATER BOARD

Chairman

# NORTHWEST TERRITORIES WATER BOARD

LICENSEE: Shell Canada Energy

LICENCE NUMBER: N7L1-1834

**EFFECTIVE DATE OF LICENCE:** July 18, 2012

**EFFECTIVE DATE OF** 

SURVEILLANCE NETWORK PROGRAM: July 18, 2012

# SURVEILLANCE NETWORK PROGRAM

# A. Location of Sampling Stations

Station Number Description

1834-1 Discharge from the Sewage lagoon.

# B. Sampling and Analysis Requirements

1. Water at Station Number 1834-1 shall be sampled prior to, and once during decanting. Each sample shall be analyzed for the following parameters:

BOD5 Total Suspended Solids

Oil and Grease Faecal Coliforms

Ammonia pH

Phosphorous Total Residual Chlorine

- 2. More frequent sample collection may be required at the request of an Inspector.
- All sampling, sample preservation, and analyses shall be conducted in accordance with methods prescribed in the current edition of "Standard Methods for the Examination of Water and Wastewater", or by such other methods approved by an Analyst.
- 4. All analysis shall be performed in a laboratory approved by an Analyst.
- 5. The Licensee shall, by August 17, 2012, submit to an Analyst for approval a Quality Assurance/Quality Control Plan.

Page 10 of 11

6. The Plan referred to in Part B, Item 5 shall be implemented as approved by an Analyst.

# C. Reports

1. The Licensee shall, within thirty (30) days following the month of discharge from the Sewage lagoon, submit to the Board and an Inspector all data and information required by the "Surveillance Network Program" including the results of the approved Quality Assurance/Quality Control Plan.

Witness

**NORTHWEST TERRITORIES WATER BOARD** 

nirman

# Northwest Territories Water Board Reasons for Decision

Issued pursuant to section 26 of the Northwest Territories Waters Act. S.C. 1992 C.39

Water Licence Number: N7L1-1834(Type B)

This is the decision of the Northwest Territories Water Board (Board) for the issuance of Water Licence N7L1-1834. The project is located at Latitude 69°12'30" North and Longitude 135°06'04" West in the Northwest Territories.

The Northwest Territories Water Board issued Licence N7L1-1834 in accordance with Section 14 of the *Northwest Territories Waters Act*.

## Background:

Shell Canada Energy applied to the Board on March 5<sup>th</sup>, 2012 for a Water Licence for Farewell Camp and Stockpile Site (Camp Farewell) in the Mackenzie Delta. The Board deemed the application complete on May 23, 2011.

### Canadian Environmental Assessment Act (CEAA)

The Water Licence application was exempt from the Canadian Environmental Assessment Act under Section 7(1)(a), specifically under Schedule 1, Part 1, Section 3(a) of the Exclusion List Regulations.

### Environmental Impact Screening Committee (EISC)

On April 20, 2012 the Board received an official notification from the Environmental Impact Screening Committee that determined the application met the definition of development and that it was exempt from the screening process, as it qualified under exclusion #1 of Environmental Impact Screening Guidelines, Appendix C.

## Notice of Application

In accordance with rule 38 of the Board Rules of Procedure, the Board gave notice of the application for a Water Licence regarding Camp Farewell, on May 28, 2012 in News North in English, May 31, 2012 in the Inuvik Drum in Inuvialuktun, and May 25, 2012 in L'Aquilon in French.

### Reviewers' Comments

The Board sent the Water Licence application and supporting information for review to the following agencies: AANDC-NMDO, AANDC-WRD, EC, DFO and GNWT-ENR on May 23, 2012. The Board received written comments from AANDC (June 15, 2012), EC (June 15, 2012), DFO (May 28, 2012) and GNWT-ENR (June 14, 2012).

The Board considered all submitted comments at a Board meeting held via teleconference on July 10, 2012. The Board approved a Water Licence for the applicant's review. The Licence was submitted to the applicant on July 11, 2012 and it indicated in its response on July 16, 2012 that the Licence was acceptable.

# **Requirements of the Northwest Territories Waters Act:**

Shell Canada Energy has provided the Board with its Schedule III application and supporting information for its consideration as required by section 16 of the *Northwest Territories Waters Act*.

The Board is in accordance with Paragraph 14(4)(a) of the *Northwest Territories Waters Act* by ensuring that the granting of the Water Licence to Shell Canada Energy will not adversely affect, in a significant way, any existing Licensee, providing the conditions of Water Licence N7L1-1834 are met. There are no other applicants with precedence.

The Board does not believe that any users nor persons listed in Paragraph 14(4)(b) of the *Northwest Territories Waters Act* will be adversely affected by the use of waters or the deposit of waste proposed by the Licensee provided that the Licensee operates in accordance with the terms and conditions of Water Licence N7L1-1834.

The Board is of the view that compliance with Water Licence N7L1-1834 terms and conditions will ensure that the waste will be treated and deposited in a manner that will maintain water quality in the area and will be consistent with applicable water quality standards in accordance with Sub-Paragraph 14(4)(c) (i) of the *Northwest Territories Waters Act*.

The Board drafted the terms and conditions of Water Licence N7L1-1834 in accordance with Section 15 of the *Northwest Territories Waters Act*.

In Accordance with Sub-Section 17(1) of the *Northwest Territories Waters Act*, the Board requested that a security deposit in the amount of two million dollars (\$2,000,000.00) be posted and shall be maintained in a form suitable to the Minister of Aboriginal Affairs and Northern Development Canada.

### Decision to issue Water Licence N7L1-1834:

The Board has reviewed the Camp Farewell Project Application and draft Water Licence N7L1-1834 for issuance. Upon consideration of the facts and circumstances, the purpose, scope and intent of the *Northwest Territories Waters Act*, the Board has determined that it can issue Water Licence N7L1-1834.

For the above reasons the Board has determined to issue Water Licence N7L1-1834 in accordance with Sub-Section 14(1) and Sub-Paragraph 14(6)(b)(i) of the *Northwest Territories Waters Act* for the use of water and the deposit of wastes.

SIGNED this 18 day of July, 2012 on behalf of the Northwest Territories Water Board.

**Eddie Dillon** 

Chairperson, Northwest Territories Water Board

# **APPENDIX III**

**Site Photographs** 





Photograph 1: View south of barge camp secured to bollard on shore (July 14, 2016).



Photograph 2: View northwest of Zone 2 excavation (August 29, 2016).



**Photograph 3:** Impacted soil windrowed and being treated with an Allu bucket (August 6, 2016).



**Photograph 4:** View northeast of excavated area being backfilled with treated soil (August 5, 2016).



**Photograph 5:** View south of shed #1 building in good condition and soil bags prepared for removal off-site (August 19, 2016).

## **APPENDIX IV**

**GPRA Risk Assessment** 





## Risk-Based remediation for Camp Farewell, Mackenzie Delta, Northwest Territories.

Submitted to: IEG Consultants Ltd.

Submitted by:

GatePost Risk Analysis

January 2017

### **Table of Contents**

| Summary                                                      | 3  |
|--------------------------------------------------------------|----|
| Introduction                                                 | 4  |
| Scope                                                        | 4  |
| Assumptions                                                  | 4  |
| Site Setting                                                 | 4  |
| Guidelines and References                                    | 5  |
| Problem Formulation                                          | 6  |
| Conceptual Model                                             | 6  |
| Receptors                                                    | 7  |
| Human                                                        | 7  |
| Wildlife                                                     | 7  |
| Vegetation                                                   | 8  |
| Contaminant Exposure Pathways                                | 8  |
| Groundwater:                                                 | 8  |
| Surface water:                                               | 8  |
| Soil and subsoil:                                            | 8  |
| Vegetation:                                                  | 9  |
| Terrestrial Food Chain:                                      | 9  |
| Summary of Exposure Pathways                                 | 9  |
| Chemicals of Potential Concern                               | 9  |
| On-site activities related to chemicals of potential concern | 10 |
| Summary of Chemicals of Potential Concern                    | 11 |
| Conceptual Model – refined                                   | 12 |
| Conclusions and Recommendations                              | 12 |
| Limitations and Qualifications                               | 13 |
| Closure                                                      | 13 |
| Figures                                                      | 15 |

#### **Summary**

Camp Farewell is a former oil exploration and staging camp located on the main channel of the Mackenzie River Delta. Remediation of the site is currently underway; a qualitative, screening level risk assessment was performed to evaluate risks of leaving contaminants in place at greater than 1.0 m below ground surface.

The camp is located in an arctic geoclimatic zone with permafrost underlying the site and frozen conditions / snow cover for a significant portion of the year. It is situated at the southernmost end of the Kendall Island Migratory Bird Sanctuary. No known SARA listed species frequent the site area, however, many species of waterfowl and shorebirds use the sanctuary for breeding and nesting. Arctic herbivores and carnivores are common in the Mackenzie Delta, as are raptor species. Vegetation is typically low willow scrub, shrubs, arctic grasses and sedges, and lichen.

Groundwater is unlikely to be used as a source for drinking water due to the shallow permafrost, freeze-thaw cycles, and other nearby sources of freshwater. Also, the lease area is greater than 10 m away from the Mackenzie River and at least 100 m from the nearest wetland. Together these observations rule out groundwater as a significant exposure pathway for human or ecological receptors.

The remediation efforts currently underway aim to remove the top 1.0 m of soil from the contaminated areas of the site, followed by on-site treatment. This risk evaluation assumes surface soil will meet relevant GNWT guidelines; therefore, it is based on contaminants remaining in soil deeper than 1.0 m.

Our screening level risk assessment of the post-remediation scenario at Camp Farewell resulted in elimination of the following exposure pathways: groundwater to drinking water; groundwater to freshwater aquatic life; direct soil contact or ingestion; and indoor vapour transport. The majority of GNWT de minimis guidelines are based on protection of groundwater for drinking water or groundwater for freshwater aquatic life. These pathways were eliminated based on the shallow soil active zone where any groundwater would freeze annually, the permafrost barrier near 1.5 m, the distance to surface water bodies, and the remediation of surface soil to GNWT guidelines.

VOCs and barium (the only metal that exceeded a guideline) may also be ruled out as contaminants of concern in the subsoil because of elimination of the groundwater to drinking water and groundwater to freshwater aquatic life pathways. Concentrations of the VOCs and barium are well below thresholds for ecological direct contact.

For PHCs in subsoil, the remaining potential exposure pathway is ecological direct contact, after accounting for depth and associated mechanisms of contaminant transport. Maximum F2 and F3 in the tank farm area exceeded the GNWT subsoil eco contact guidelines – however, less than 4% of the 2015-2016 tank farm area samples exceeded these values. Leaving these higher concentrations of contaminants in place is expected to result in very low risks of exposures to F2 or F3 that could result in adverse effects for any ecological receptors. Additionally, further excavation is more likely to affect the integrity of the permafrost across the site. GPRA recommends leaving the remaining PHCs in the ground in the Tank Farm area. Remaining contaminants in all other areas are expected to contribute negligible exposures to terrestrial ecological receptors and people accessing the site for recreational purposes.

#### Introduction

Camp Farewell was used as an accommodation, storage, and staging site as part of the Shell Mackenzie Delta Drilling Program from 1971 until about 1994. Details of the site history are available in other reports <sup>1</sup>. Its location has a number of physical and temperate characteristics that require further consideration for the best approach to remediation. These include vegetation species, root zones, and soil organisms; wildlife receptors; human receptors and the most-likely human use scenarios. Each of these will be covered in the Problem Formulation, which is essentially a screening level risk assessment.

Surface soil across the contaminated areas of the site has been removed to a depth of 1.0 m. The following screening level risk assessment will evaluate future exposure pathways with the assumption that the removed soil will be put back in place following on-site remediation, and that contaminant concentrations will meet appropriate guidelines in this soil.

#### Scope

GatePost Risk Analysis (GPRA) was engaged by IEG Consultants Ltd to provide a risk assessment of the Camp Farewell site, with a goal of providing direction to IEG and their client on remediation activities. This assessment is a qualitative, screening level risk assessment, focused on site-appropriate exposure pathway elimination. No site-specific target levels are calculated in this assessment. Rather, we will evaluate the site characteristics of Camp Farewell against existing guidelines using a risk assessment approach, and apply protective contaminant concentration limits from existing sources that are most appropriate for the site. If site-specific target levels for Camp Farewell are required, GPRA will proceed with quantitative modeling and calculations to derive target levels as a second phase of this project.

#### **Assumptions**

GPRA is undertaking this risk assessment and associated recommendations with the following assumptions:

- Site chemistry data are used as received from IEG.
- Site data such as sample depths, locations, and categorization of samples with regard to areas of former use (e.g. tank farm, burn pit, etc) are used as denoted in data files received from IEG.
- Contaminated soil excavated from site areas will be treated on-site to achieve GNWT surface soil guidelines, put back into excavated areas, and graded for effective surface water drainage.

#### **Site Setting**

The site is on the main channel of the Mackenzie River Delta, approximately 100 km NW of Inuvik. It is a remote area, accessible by air, by water in the summer, or winter road on the river depending on ice

<sup>&</sup>lt;sup>1</sup> IEG Consultants Ltd 2015. Shell Canada Energy, Camp Farewell 2015 Decommissioning and Soil Assessment Program: Section 3.

conditions. For guideline purposes, the regional land use would be considered residential/parkland as it will be reclaimed to a natural state.

The area is at the southern-most portion of the <u>Kendall Island Migratory Bird Sanctuary</u><sup>2</sup>, which was established by the Canadian Wildlife Service in 1961. The sanctuary is a summer breeding and nesting ground for over 100 species, including waterfowl (e.g. Lesser Snow Goose, Tundra Swan, Sandhill Crane) and shorebirds (e.g. Long-billed Dowitcher, Hudsonian Godwits), some of which are unique to this region.

Activities that could harm migratory birds, nests, or eggs are prohibited. Therefore, although the site represents a small fraction of the overall sanctuary area, remediation and reclamation activities should recognize and mitigate the exposure pathways of migratory birds as appropriate.

#### **Guidelines and References**

Provinces and territories have specified guidance for remediation of contaminated sites, most of them using the CCME <sup>3</sup> guidelines or modifications thereof for human and ecological protection from contaminants in soil and water. Often the remediation approaches can have more than one level – a generic, or Tier 1 level that specifies contaminant concentration levels that must be achieved; a site-specific, or Tier 2 level that allows some adjustment to certain parameters in the site remediation, depending on specific site factors; and full risk-based site specific target level development in which a quantitative human health and ecological risk assessment is completed to calculate site specific soil quality guidelines.

Risk assessment guidance from Health Canada<sup>4</sup> and Environment Canada<sup>5</sup> build on CCME guidelines to provide more detailed methods for human health- and ecological risk assessments. Some provinces have specific risk assessment guidance that is derived from those agencies' documents and refined to coordinate with provincial policies, however, NWT does not have territory-specific risk assessment guidance. Therefore, this screening level risk assessment is based on general methods and approaches from the above agencies.

As mentioned above, a number of provincial or territorial agencies allow for full risk-based site-specific target level development. In this approach, the default assumptions used in developing Tier 1 or equivalent soil quality guidelines are evaluated against actual conditions or parameters at the contaminated site. Sufficient and appropriate site-specific data may be used to replace default values. Examples of site-specific data may include: local diets of key wildlife species that have been observed on the site; recorded weather patterns such as snow cover days per year; human use such as hunting, camping, fishing, and accompanying information regarding days per year the site is used and ingestion amounts of game, fish, berries, etc.

Receptors and pathways can differ on a specific site compared to the generic scenarios that are anticipated in most guidelines. This is an important consideration for Arctic sites in particular. The

<sup>&</sup>lt;sup>2</sup> Kendall Island Migratory Bird Sanctuary (https://www.ec.gc.ca/ap-pa/default.asp?lang=En&n=A885ADAF-1)

<sup>&</sup>lt;sup>3</sup> CCME 2016. Guidance Manual for Environmental Site Characterization in Support of Environmental and Human Health Risk Assessment. Volumes 1 through 4. Canadian Council of Ministers of the Environment.

<sup>&</sup>lt;sup>4</sup> Health Canada 2012. Federal Contaminated Site Risk Assessment in Canada. Part I. Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA), Ver. 2.0, Revised 2012.

<sup>&</sup>lt;sup>5</sup> Government of Canada, 2012. Federal Contaminated Sites Action Plan (FCSAP). Ecological Risk Assessment Guidance.

contaminated site soil quality guidelines derived by the CCME are predominantly based on organisms (plants, invertebrates, wildlife) whose habitat is in temperate and southern climates of Canada. For example, a key factor in a number of guideline values is toxicity to soil invertebrates – most commonly, earthworms, which do not exist in the active soil layer in the Arctic. Guidelines based on earthworm toxicity are likely overly conservative, which can lead to greater harm due to disruptive remediation activities than is likely to occur from ecotoxicological effects. Another important assumption is plant rooting depth, as the soil below the general maximum root depth is considered subsoil. Subsoil guidelines are adjusted to account for the greater depth to the contaminants in question, their mobility in soil and groundwater, and mechanisms for exposure to different receptors. CCME considers soil less than 1.5 m as surface soil because rooting depth of many crops may exceed 1.0 m. However, maximum root depth in the Arctic is less than 0.3 m; because of influences of permafrost, short summers, and other conditions in the Arctic, soil below 0.5 m is more appropriately considered as subsoil. Based on these factors, GPRA makes the assumption that soil below 1.0 m is considered as subsoil.

For protecting human health, considerations for developing guidelines for volatile compounds and petroleum hydrocarbon include inhalation of vapours that may migrate into a residential building (whether real or hypothetical). Two scenarios are considered: basement construction or slab-on-grade construction. In an Arctic setting, neither of these is likely due to the restrictions that permafrost places on residential construction. Furthermore, the average soil temperature is much lower at Arctic locations, which would result in reduced transfer of hydrocarbon vapours from soil to air. Based on these considerations, significantly higher concentrations of volatile hydrocarbons could be present in surface soil and still present a low risk of adverse health effects.

#### **Problem Formulation**

In a standard environmental risk assessment, the problem formulation process is comprised of three steps: 1) identifying the chemicals of concern and the environmental media that are affected; 2) identifying the receptors (who or what could be exposed to those chemicals); and 3) identifying the possible pathways between the contaminants and the receptors. If all three components (contaminants; receptors; pathways) are present, risks of adverse effects may exist; however, further evaluation is needed to quantify those risks.

#### **Conceptual Model**

From the CCME Canada Wide Standard for Petroleum Hydrocarbons, a general conceptual model describes the major exposure pathways and ecological receptors at a PHC contaminated site (Figure 1). This type of schematic can be used to describe Camp Farewell, with appropriate amendments to receptors and geographical features. The initial conceptual model (Figure 2) of the Camp Farewell site depicts the overall site characteristics, the contaminants identified in Phase II site assessment activities, classes of possible receptors, and the exposure pathways that should be initially considered for this site. The site lease area is accessed from the Main Channel of the Mackenzie River. An airstrip lies on the east side of the site. Maps from previous reports show the locations of the tank farm, burn pit, laydown yard, and camp buildings. There is no surface water on the site. Exposure to contaminants identified in the Phase II sampling of 2015, which include petroleum hydrocarbons (PHCs), some volatile compounds

<sup>&</sup>lt;sup>6</sup> INAC 2008. Abandoned Military Site Remediation Protocol, Volumes 1 and 2. Indian and Northern Affairs Canada, Northern Affairs Organization, Contaminated Sites Program.

such as toluene, and barium, would occur directly or indirectly via soil. Contaminants in surface soil may transfer into plants via roots, and then into herbivore species (lemming, arctic hare, caribou) and omnivore species (grizzly). Surface soil is consumed directly via incidental consumption in the case of most animals and birds, and beetles and soil-dwelling organisms may also absorb contaminants through their skin; in turn, birds and omnivorous animals consume insects and beetles. Carnivores, such as the arctic fox will prey or scavenge on all species; birds of prey may also be present and prey on small mammals and birds. Waterfowl and shorebirds, such as the snow goose and sandhill crane shown in the model, might use the area; however, primary nesting areas and food sources are not likely to be found on the site due to its distance from the river channel or the nearest wetlands.

Groundwater is likely to be transient on the site due to annual freezing depth and permafrost; direction and magnitude of groundwater flow was not determined during Phase II activities. Exposure to contaminants via groundwater is unlikely unless there is a direct link with a surface water body nearby.

Humans using the site would most likely be there for recreational or cultural/traditional purposes, and could be exposed to contaminants from surface soil-skin contact, incidental ingestion of surface soil, and through transfer to berries, game, or birds via surface soil.

We will refine this model following consideration of each of the components of the problem formulation.

#### Receptors

The region around Camp Farewell would be classified as residential/parkland from a regulatory perspective. This is a standard classification that is used for remote areas, and is often based on consideration of future use of the land. While the most sensitive land-use is agricultural use, this can be ruled out due to the climate on the Mackenzie River Delta.

#### Human

People using the area are most likely to be there for recreational use or traditional use: camping, hunting, fishing, gathering, and cultural activities. Because of its remoteness, building a permanent residence is unlikely. For people using the area for recreation or traditional purposes, a typical set of assumptions would include residing at the site for up to 2 months, gathering and consuming berries from the site, and hunting consuming game (e.g. caribou, waterfowl, and ptarmigan) from the area.

#### Wildlife

Currently there are no SARA listed species in the Kendall Island Migratory Bird Sanctuary.

Mammals that are likely to be found in the region (or are representative of the broad classes) include foxes and wolves (carnivores); caribou, lemmings, voles, and hares (herbivores); and grizzly bears (omnivores).

Insects include mosquitos, flies, butterflies and moths, and various beetles. Soil invertebrates such as earthworms do not occur in the far north: many of the ecological-based toxicity guidelines are based on toxicity studies with earthworms<sup>7</sup>, under conditions that reflect southern Canadian climates. However, the ecology of the surface soil in the Arctic is substantially different than in soils of southern areas, therefore, the same parameters that may be generalized for most provincial regions are likely not

<sup>&</sup>lt;sup>7</sup> CCME 2008. Canada-Wide Standards for PHCs in Soil: Scientific Rationale – Supporting Technical Document.

relevant for Arctic soils. This becomes relevant particularly for contaminants whose guidelines are derived from earthworm studies.

Birds include migratory waterfowl and shorebirds as noted above, birds of prey (snowy owl, falcon), and upland birds (ptarmigan).

Aquatic wildlife: Data do not extend to the shoreline and into the Mackenzie River channel adjacent to the site. The majority of the site and all contaminated areas are greater than 30m from the nearest surface water body. This assessment will exclude direct evaluation of aquatic ecological receptors.

#### Vegetation

Terrestrial vegetation on the Mackenzie River Delta is comprised of low shrubs (including some berries), sedges, grasses, mosses, and lichens. Some black spruce may be present, as well as various willow species.

#### **Contaminant Exposure Pathways**

A discussion of the potential exposure pathways follows, along with analysis of those pathways. Relevant and complete pathways will be retained for further risk evaluation; pathways that can be ruled out will be discussed.

#### **Groundwater:**

The shallow groundwater regime sampled on the site has not been assessed as a viable source of potable drinking water. Historical use of the site has not indicated any use of groundwater as a drinking water source. At least two of the installed sampling piezometers did not collect sufficient water to draw a sample. Furthermore, annual freezing in the active soil layer and the barrier of the underlying permafrost means that there would be no groundwater available for a significant portion of the year. The site is accessed from the main channel of the Mackenzie River, which would be more likely to be used for drinking water if people were occupying the site for any length of time.

Additionally, surface soil will be treated on-site to achieve GNWT surface soil guidelines, whose de minimus levels are based on protection of groundwater- based exposures. Therefore any plants, invertebrates, and terrestrial receptors will be protected.

Based on these factors, groundwater on the site would constitute an insignificant exposure pathway for human or ecological receptors. *Groundwater was not included as an exposure pathway*.

#### Surface water:

Surface water was not analyzed in the field programs. The site is accessed from the Mackenzie River Main Chanel, with the excavated areas more than 30m away from the shore (**Figure 3**). The nearest wetland is 100 m to the east, and upslope from the site, therefore a groundwater to surface water route is effectively eliminated as a viable transport and exposure pathway.

Our assumption is that during reclamation, the site will be graded to promote surface drainage. Surface water is not evaluated as an exposure pathway.

#### Soil and subsoil:

Surface soil and subsoil samples used for this assessment were collected during the 2015 and 2016 field seasons. Numerous areas on the site had hydrocarbons exceeding GNWT guidelines, and it was on the basis of the 2015 results that the remedial action plan (RAP) was developed.

As we have previously stated, our assumption is that the surface soil at the completion of the reclamation process will meet the appropriate guidelines for contaminants (PHCs, VOCs, and metals). Certain human and wildlife exposure pathways can then be eliminated if we rule out surface soil as a source of hazardous concentrations of contaminants: direct skin exposure, inadvertent ingestion of soil, and indirect exposure via the food chain.

Exposure to volatile contaminants in soil will be significantly reduced in this climate due to two main factors: average soil temperature is low and the soil is frozen or snow covered for a significant part of a year; and building construction methods do not normally use slab-on-grade or basements (in the unlikely event that residential construction would occur on this site in any case). Low soil temperature or frozen soil greatly reduces the movement of volatile contaminants within the soil to either the surface or into buildings. Constructing on pilings with an air space between the floor and the soil substantially reduces or eliminates the transfer of soil vapours into the building, where people spend the majority of time. Vapour exposure will not be considered further as a viable exposure pathway.

#### **Vegetation:**

The vegetation in the Mackenzie River Delta is a combination of grasses, sedges, willows and various shrubs. Some black spruce and balsam poplar is present. Berries may also grow in the area. As described above, the rooting zone of plants in the far north is very shallow, with maximum root depth less than 30 cm.

Our assumption is that soil  $\leq 1.0$  m on the site will be remediated to applicable GNWT guidelines; therefore, contaminant exposure pathways via vegetation are not considered further.

#### **Terrestrial Food Chain:**

The terrestrial food chain is an important factor in evaluating contaminant transport pathways. Some contaminants can transfer from surface soil or groundwater to plant roots and into the edible portion of plants, which are consumed by herbivorous species, and the herbivores in turn are consumed by carnivores. Our assumption that surface soil will meet GNWT guidelines rules out significant contaminant transfer into the terrestrial food chain, therefore this pathway will not be considered.

#### **Summary of Exposure Pathways**

The excavation and remediation of contaminated soils to 1.0 m depth effectively eliminates all direct exposure routes to human receptors and terrestrial plant, invertebrate, and animal species. We make the assumption that the vegetation and associated ecosystem established post reclamation will be consistent with the surrounding region, including the climate- and vegetation limited shallow rooting zone. With a maximum active soil depth (rooting zone and associated terrestrial invertebrates) of 0.3 m, it is appropriate to apply subsoil-based guidelines to the site for all soil > 1.0 m bgs.

There is no surface water body within 10 m of the site: the contaminated areas are all greater than 30 m from the Mackenzie River, and at least 100 m from the nearest wetland. Groundwater as a source of drinking water on the site is very unlikely, based on shallow permafrost, annual freezing down to the permafrost, and other sources of fresh water nearby. Therefore, the use of subsoil guidelines based on eco-soil contact is appropriate, rather than the *de minimis* value based on protection of groundwater for human or aquatic life.

#### **Chemicals of Potential Concern**

Historical site use, documented incidents (e.g. spills, fires, etc.), and knowledge of products typically used at various time periods in different industries can help assessors put together a preliminary list of

potential contaminants at a site. For oil and gas exploration and drilling operations there are a primary group of potential contaminants, including VOCs and PHCs from minor or major spilled crude oils, drilling fluids, fuels, and machine and motor oils. Some metals, such as lead from leaded gasoline or leaded paint, may also be a factor. Other persistent and ecologically toxic compounds may be present, based on customary practices in that time period. It is important to set up a sampling and analysis approach that accounts for the likely possible contaminants, and is sufficient to rule others out if they are not detected.

#### On-site activities related to chemicals of potential concern

Camp Farewell was operated as a storage, staging, and accommodations facility for seismic and drilling operations. Electricity was generated on-site. Fuel was stored in above ground storage tanks (AST). Equipment was stored or staged in a lay-down area. A burn pit was used for on-site disposal of various wastes.

General operations practices in the 1970s may not have held to today's environmental regulations and practices. For example, all used machine- or transformer oils may not have been transported off-site for disposal at a designated facility.

A diesel spill from the tank farm was reported in spring 1981: approximately 80,000 L of water mixed with diesel overflowed the berm and flowed over the site and onto the ice on the Mackenzie River. Pumping and absorbent pads were used to collect as much of the fuel as possible at the time. Subsequent investigations and partial site remediation have been described elsewhere.

In the time frame of the camp operations, polychlorinated biphenyl (PCB) lubricants marketed as Aroclors by Monsanto may have been used in the transformers employed in electrical generation via diesel generators. Aroclor 1254 or Aroclor 1260 were common formulations used in Northern Canada during that time. PCBs are very persistent organochlorine compounds that bioaccumulate in food chains and can have significant toxic effects. Many of the northern radar installations (e.g. Dew Line or Pole Vault) have had extensive PCB remediation efforts over the past 20 years. As reported below, PCBs were below all guidelines in soil.

Pesticides such as DDT were often used in northern camps to control mosquitos and flies. DDT is another persistent organochlorine compound that was linked to many ecological effects. Some sites in the north have been found to have significant DDT concentrations from early use of the pesticide. As reported below, DDT and its by-products were not detected in soil.

Metal contamination may have occurred due to different materials used: for example, leaded fuels, paints containing lead, barium in drilling fluids or muds, or dissolution, leaching, or degradation of paints, pesticides or herbicides, batteries, etc. used on the site.

For initial screening purposes, the maximum concentration of a contaminant is compared with relevant guidelines. Based on various site-specific considerations and professional judgment, a statistical value such as the 90th percentile concentration or the 95th upper confidence limit of the mean (UCLM) may be used when estimating exposures and subsequent risks. We have calculated the 90th percentile concentration for the different areas of activity or areas of potential concern (APECs) on the site (e.g. tank farm, laydown/storage, camp, burn pit, etc.). The maximum concentration may significantly overestimate risks on a particular site or APEC; using the 90th percentile concentration reduces the bias toward unrealistically high risk characterizations (e.g. due to a single high concentration sample), while remaining sufficiently conservative in estimating risks to ensure protection of relevant receptors.

Data from the 2015 site assessment and 2016 site remediation have been combined to provide aggregate concentration data for the APECs as applicable.

#### Subsoil

Soil samples from 2015 and 2016 (see **Figure 4**) were combined into a dataset for evaluating chemicals of potential concern. Samples were analyzed for a standard suite of soil quality properties, metals, petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs), PCBs and organochlorine pesticides. Soil data were sorted according to site area and sample depth. Maximum and 90<sup>th</sup> percentile values were calculated for data below 1.0 m.

A chemical screening procedure was used to compare the contaminant concentrations from the APECs with appropriate screening criteria – usually the relevant regulatory guideline values. Chemicals were initially screened against GNWT generic criteria and only the compounds with maximum concentrations exceeding those criteria were carried over to the detailed screening – toluene, PHC fractions F1 through F4, and barium. Other metals, PCBs, or DDT and associated breakdown products were either not detected or were well below generic criteria in soil samples taken from the site during the 2016 remediation activities.

Table 1 shows the results of the screening. The maximum concentrations of VOCs, F2, and F3 exceed the lowest Tier 1 GNWT guidelines in at least one former area of activity on the site – mostly the tank farm area. For benzene, ethyl benzene and F3, the 90<sup>th</sup> percentile concentration does not exceed the lowest Tier 1 guideline. Barium is the only inorganic compound or metal that exceeds a guideline.

VOCs or barium do not have specified subsoil guidelines. However, considerations of viable exposure pathways allow for adoption of pathway-appropriate guideline values. The default soil quality guidelines for VOCs are based on protection of groundwater for drinking water (human health) or aquatic life (eco), because these result in the most conservative guideline values. In the Pathways discussion above, groundwater was ruled out as a viable exposure route at the site. Therefore, the next lowest toxicity based values are those derived for ecological direct contact. None of the VOCs or barium maxima in any site area exceeds ecological direct contact guidelines, therefore, these contaminants were eliminated from consideration as contaminants of concern in the subsoil.

Maximum concentrations of F2 and F3 in the Tank Farm area exceed the ecological direct contact thresholds listed by GNWT. The 90<sup>th</sup> percentile F2 and F3 concentrations are well below these guidelines – further calculations show that the 96<sup>th</sup> and the 98<sup>th</sup> percentile concentrations of F2 and F3, respectively, remain below the ecological direct contact subsoil threshold. Considered within the context of the Camp Farewell site, leaving the remaining contaminants in place in the Tank Farm area would present very low risks to ecological receptors. Because of the depth below the active soil layer (maximum rooting zone 0.3 m), the annual freeze cycle and low average soil temperature would inhibit diffusion-driven transport mechanisms and it is unlikely that F2 or F3 would result in exposures sufficient to result in adverse effects. Active digging by burrowing animals or by recreational users on the site would also have very low likelihood significant exposures. Finally, with the assumption of post-reclamation surface grading designed for efficient surface water drainage, short- and long term influence of surface water percolation and subsequent mobilization of remaining PHC will be minimized.

#### **Summary of Chemicals of Potential Concern**

The majority of contaminant concentrations below 1.0 m depth across the Camp Farewell site meet the lowest, groundwater protective, Tier 1 GNWT guidelines. Because of the site geo-climatic characteristics, shallow permafrost barrier, and distance from surface water bodies, groundwater is not considered to be a viable exposure pathway. Similarly, exposure to soil-volatiles in residential buildings was ruled out due to low soil temperatures and common construction practices. The next lowest Tier 1 guidelines are based on ecological direct contact. A small percentage of F2 and F3 concentrations in the Tank Farm exceeded these guidelines: risks from future exposures to F2 and F3 in the former tank farm area are expected to be very low.

#### **Conceptual Model – refined**

Returning to the site conceptual model from Figure 2, by remediating excavated surface soil to Tier 1 guidelines the primary routes of contaminant exposure on the Camp Farewell site are eliminated. Subsequent evaluation of ground water or volatile-based exposure pathways effectively eliminates the remaining mechanisms for ecological or human receptors accessing the Camp Farewell site to be exposed to any contaminants that may remain in the subsoil. Figure 5 shows the conceptual model with all of the contaminant exposure arrows removed. With surface soil remediated to applicable guidelines, risks of adverse effects from PHCs, VOCs, or metals on vegetation, invertebrates, terrestrial animals, birds, or people using the area recreationally are expected to be negligible.

#### **Conclusions and Recommendations**

Our screening level risk assessment of the post-remediation scenario at Camp Farewell resulted in elimination of the following exposure pathways: groundwater to drinking water; groundwater to freshwater aquatic life; direct soil contact or ingestion; and indoor vapour transport. The majority of GNWT de minimis guidelines are based on protection of groundwater for drinking water or groundwater for freshwater aquatic life. These pathways were eliminated based on the shallow soil active zone where any groundwater would freeze annually, the permafrost barrier near 1.5 m, the distance to surface water bodies, and the remediation of surface soil to GNWT guidelines.

VOCs and barium (the only metal that exceeded a guideline) may also be ruled out as contaminants of concern in the subsoil because of elimination of the groundwater to drinking water and groundwater to freshwater aquatic life pathways. Concentrations of the VOCs and barium are well below thresholds for ecological direct contact.

For PHCs in subsoil, the remaining potential exposure pathway is consideration of ecological direct contact, after accounting for depth and associated mechanisms of contaminant transport. Maximum F2 and F3 in the tank farm area exceeded the GNWT subsoil eco contact guidelines - however, less than 4% of the 2015-2016 tank farm area samples exceeded these values. Leaving these higher concentrations of contaminants in place is expected to result in very low risks of exposures to F2 or F3 that could result in adverse effects for any ecological receptors. Additionally, further excavation is more likely to affect the integrity of the permafrost across the site. Therefore, GPRA recommends leaving the remaining PHCs in the ground in the Tank Farm area.

#### **Limitations and Qualifications**

This document is intended for the exclusive use of IEG Consultants Ltd. and the primary client, Shell Canada Energy. GatePost Risk Analysis does not accept any responsibility to any third party for the use of information presented in this report, or decisions made or actions taken based on its content. Other than by the named client, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the expressed written permission of GatePost Risk Analysis. Nothing in this report is intended to constitute or provide a "legal opinion".

In conducting the risk assessment, GatePost Risk Analysis has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this report. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by GatePost Risk Analysis to be correct. GatePost Risk Analysis assumes no responsibility for any deficiency or inaccuracy in information received from others. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report.

Conclusions made within this report are a professional opinion at the time of the writing of this report, not a certification of the property's environmental condition.

#### Closure

We trust this information meets your present requirements. Should you have any questions, please contact me at 403.969.9716 or klfroese@gmail.com.

Prepared By:

Ken Froese, PhD, PChem (AB & BC)

Principal and Senior Risk Analyst

GatePost Risk Analysis

Table 1. Screening table for site maxima and 90th percentile concentrations. Data have been rounded to two significant figures. Bold numbers exceed any guideline.

| GNWT  Benzene 0.5         | GNWT<br>(eco soil<br>contact) | CCME <sup>(4)</sup><br>AEP <sup>(6)</sup><br>62 SQG <sub>E</sub> | BC MOE                                  | Shed (1.                      | 0-1.5m) 90th percentile | Airstrip (1  |                    |         |                                 | Camp (0       | 6-1 5m)            | Purn Di+ / | 1 0 1 Fm\           | Tauli Facer | (1.0.2.0 )         | V (N-                                                                                                                                                        |
|---------------------------|-------------------------------|------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------|--------------|--------------------|---------|---------------------------------|---------------|--------------------|------------|---------------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | (eco soil                     | AEP <sup>(6)</sup>                                               | BC MOE                                  | Maximum                       |                         | Maximum      | 001                |         | Laydown/ Storage<br>(0.6 - 1.5) |               | Camp (0.6-1.5m)    |            | Burn Pit (1.0-1.5m) |             | (1.0-3.0m)         | Yes / No                                                                                                                                                     |
| Benzene 0.5               |                               | 62 SQG <sub>E</sub>                                              |                                         |                               |                         | Widalifidiff | 90th<br>percentile | Maximum | 90th<br>percentile              | Maximum       | 90th<br>percentile | Maximum    | 90th<br>percentile  | Maximum     | 90th<br>percentile |                                                                                                                                                              |
|                           |                               |                                                                  |                                         | 0.005                         | 0.005                   | 0.005        | 0.005              | 0.023   | 0.005                           | 0.005         | 0.005              | 0.005      | 0.005               | 3.3         | 0.26               | No. Max is > GNWT but guideline is based on drinking water protection. Eco soil contact is next most conservative.                                           |
| Toluene 0.8               |                               | 150<br>SQG <sub>E</sub>                                          |                                         | 0.08                          | 0.07                    | 53           | 24                 | 8.0     | 0.15                            | 0.13          | 0.09               | 0.05       | 0.05                | 13          | 1.4                | No. Max is > GNWT but guideline is based on drinking water protection. Eco soil contact is next most conservative.                                           |
| Ethyl 1.2                 |                               | 110<br>SQG <sub>E</sub>                                          |                                         | 0.01                          | 0.01                    | 0            | 0.01               | 3.5     | 0.01                            | 0.01          | 0.01               | 0.01       | 0.01                | 15          | 0.36               | No. Max is > GNWT but guideline is based on drinking water protection. Eco soil contact is next most conservative.                                           |
| Xylenes 1                 |                               | 190<br>SQG <sub>E</sub>                                          |                                         | 0.05                          | 0.05                    | 0            | 0.05               | 20      | 0.05                            | 0.05          | 0.05               | 0.1        | 0.07                | 62          | 1                  | No. Max is > GNWT but guideline is<br>based on drinking water protection. Eco<br>soil contact is next most conservative.                                     |
| F1 230 <sup>(2)</sup>     | 350                           |                                                                  |                                         | 10                            | 10                      | 53           | 27                 | 31      | 10                              | 10            | 10                 | 10         | 10                  | 98          | 10                 | No. Max F2 and F3 are > eco soil contact                                                                                                                     |
| F2 150 <sup>(2)</sup>     | 1500                          |                                                                  |                                         | 10                            | 10                      | 10           | 10                 | 520     | 10                              | 10            | 10                 | 48         | 25                  | 11000       | 180 <sup>(7)</sup> | guideline, but small fraction of tank farm                                                                                                                   |
| F3                        | 2500                          |                                                                  |                                         | 10                            | 10                      | 1200         | 650                | 980     | 290                             | 370           | 230                | 130        | 67                  | 3000        | 600 (7)            | samples (< 4%) exceeds guideline. Eco receptor exposures above guidelines very unlikely.                                                                     |
| F4                        | 10000                         |                                                                  |                                         | 13                            | 12                      | 830          | 520                | 520     | 170                             | 160           | 100                | 60         | 35                  | 1300        | 180                | No                                                                                                                                                           |
| Barium 500 <sup>(3)</sup> |                               | 9800<br>SQG <sub>нн</sub>                                        | 1000<br>SQG <sub>E</sub> <sup>(5)</sup> | 130                           | nc                      | 340          | 320                | 540     | 240                             | 170           | 150                | 130        | 120                 | na          | na                 | No. Pathway elimination due to permafrost and remediation of surface soil; BC MOE SQG <sub>E</sub> protective of any unlikely invertebrate or plant contact. |
| Other metals 1.0 - 200    |                               |                                                                  |                                         |                               |                         |              |                    |         |                                 |               |                    |            |                     |             |                    | No                                                                                                                                                           |
| PAHs 0.7 - 10             |                               |                                                                  |                                         | no GNWT guideline exceedances |                         |              |                    |         |                                 |               | No                 |            |                     |             |                    |                                                                                                                                                              |
| PCBs 1.3                  |                               |                                                                  | -                                       |                               |                         |              |                    | 110 0   | JINWI BUIGEI                    | ille exceedar | ices               |            |                     |             |                    | No                                                                                                                                                           |
| DDT 0.7                   |                               |                                                                  |                                         |                               |                         |              |                    |         |                                 | No            |                    |            |                     |             |                    |                                                                                                                                                              |

<sup>(1)</sup> soil depth greater than 1.5 m bgs

<sup>(2)</sup> soil quality guidelines for protection of freshwater aquatic life assuming surface water body 10m from site.

<sup>(3)</sup> barium interim soil quality guideline CCME 1991.

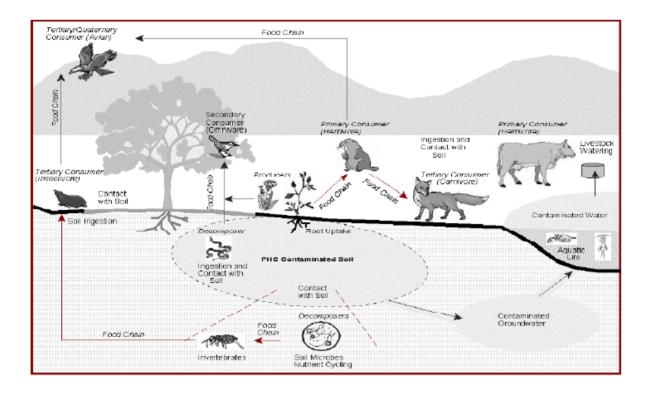
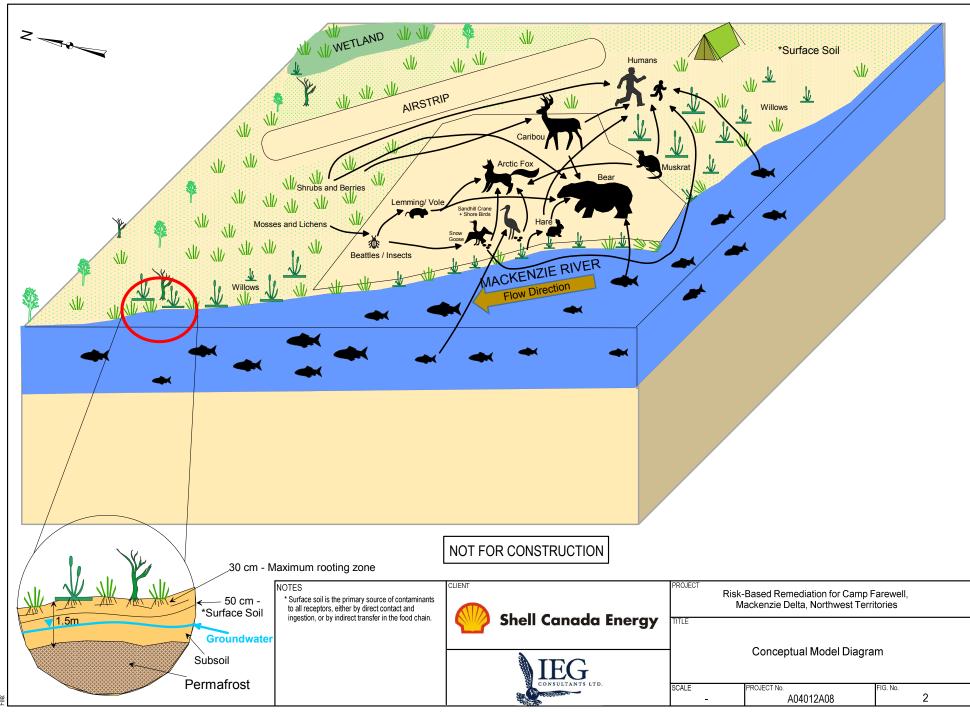
<sup>(4)</sup> CCME subsoil quality guidelines that are not based on vapour exposure, drinking water, or groundwater for aquatic life criteria. SQG<sub>E</sub>: ecological direct contact; SQG<sub>HH</sub>: human direct contact.

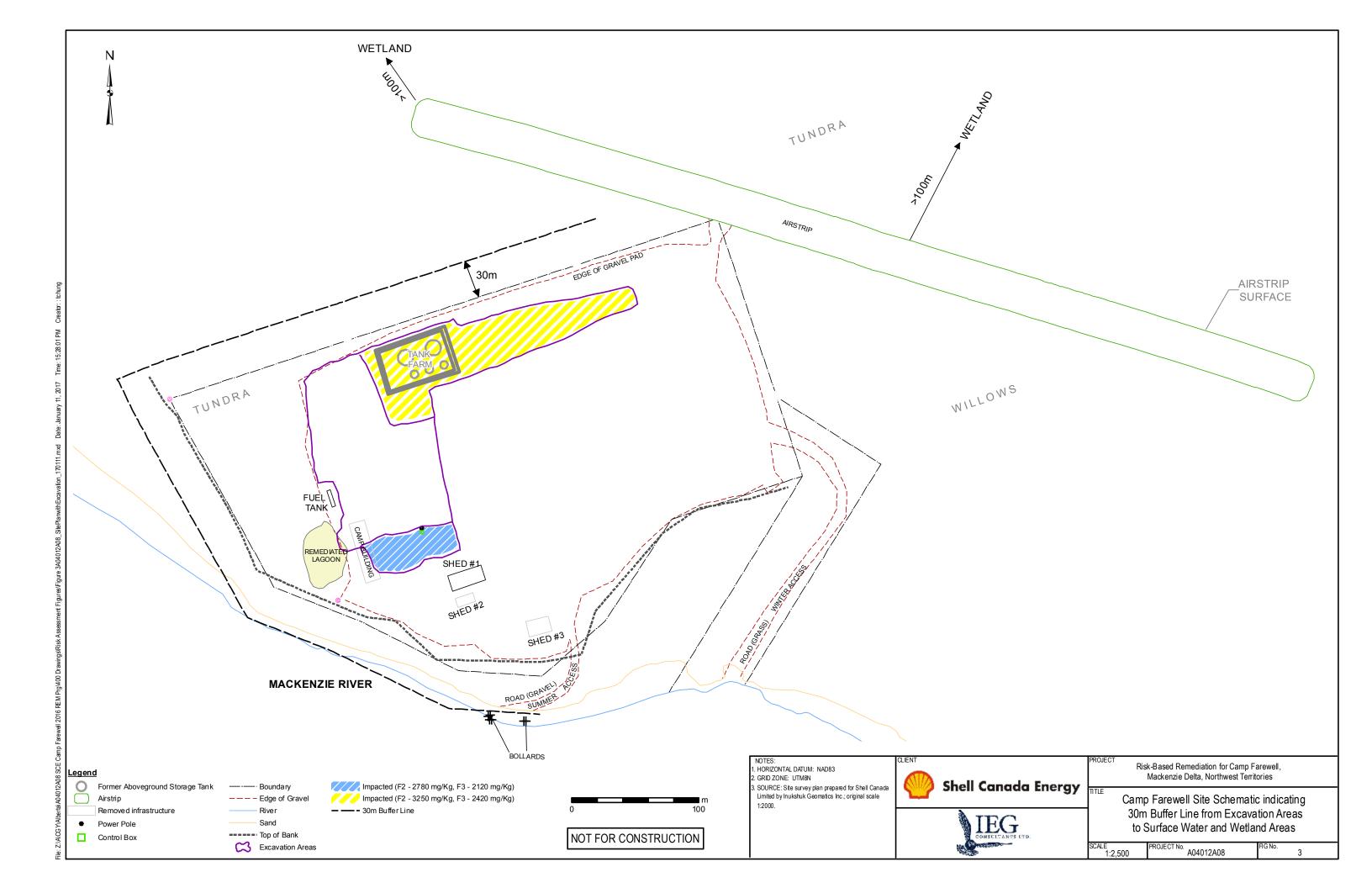
<sup>(5)</sup> BC MOE barium guideline for soil invertebrates and plants.

<sup>(6)</sup> AEP (Alberta Environment and Parks) subsoil guidelines for Natural Area Land Use that are not based on vapour exposure, drinking water, or groundwater for aquatic life criteria.

<sup>(7) 96</sup>th percentile F2 calculated at 850 mg/kg, still well below GNWT eco soil contact guideline of 1500 mg/kg. 98th percentile F3 calculated at 2300 mg/kg, below GNWT eco soil contact guideline of 2500 mg/kg. nc = not calculated; na = not analysed

## **Figures**



Figure 1. Conceptual model of a PHC contaminated site, taken from CWS-PHC <sup>8</sup> (Figure 4.1).

<sup>&</sup>lt;sup>8</sup> CCME 2008. Canada-Wide Standard for Petroleum Hydrocarbons in Soil (PHC CWS): Scientific Rational, Supporting Technical Document. Canadian Council for Ministers of the Environment.









| -igure 4. Camp Farev | veil site schematic snow | ing areas of contamina | ition and borenole sites | for soil characterization. |
|----------------------|--------------------------|------------------------|--------------------------|----------------------------|
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |
|                      |                          |                        |                          |                            |

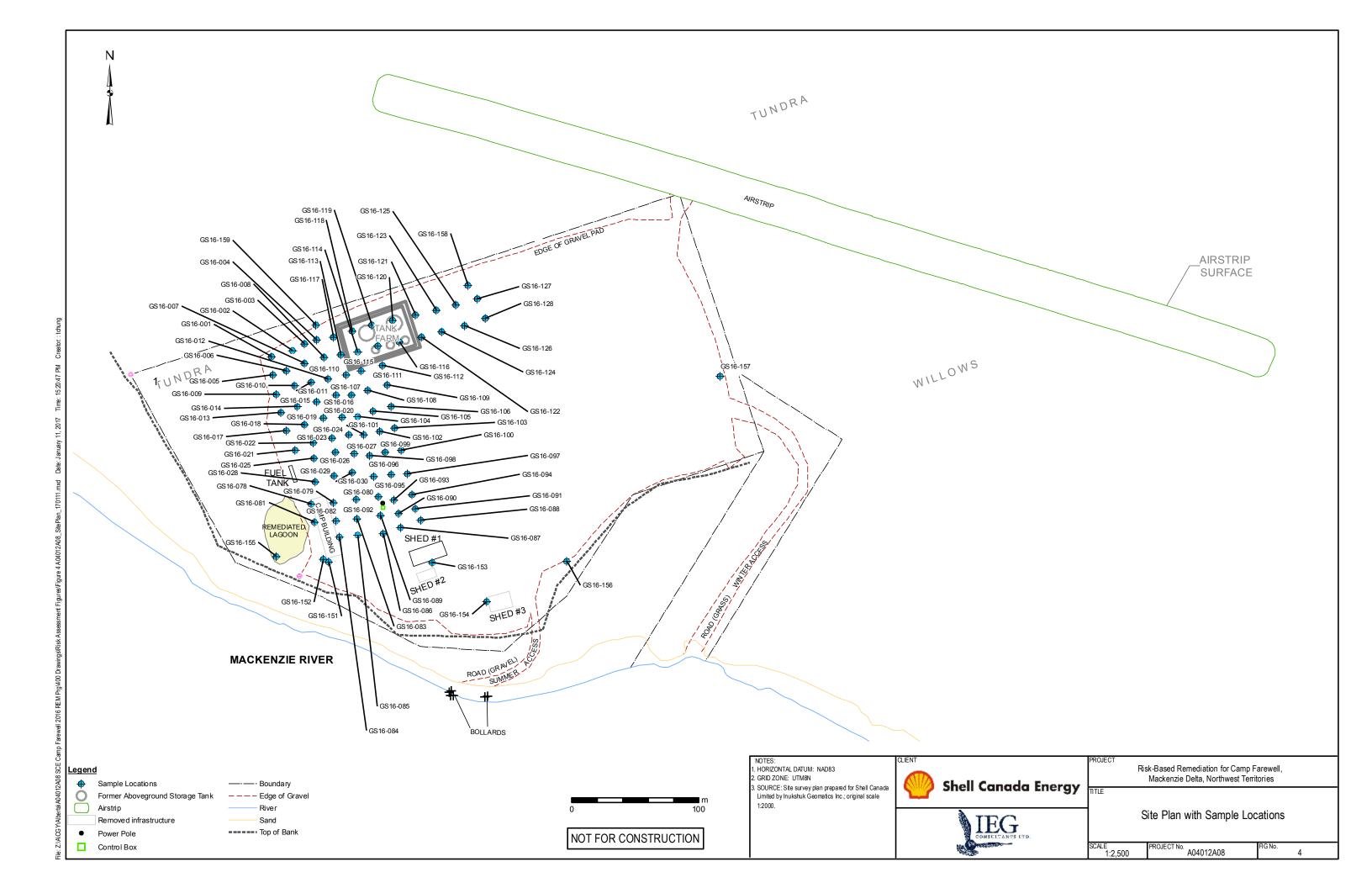
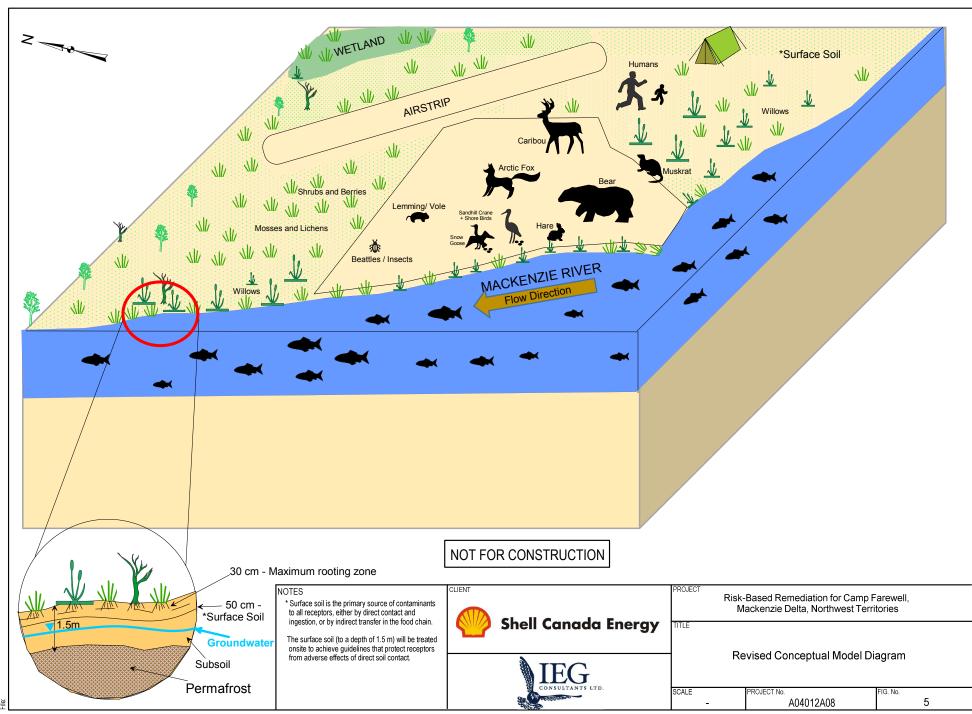




Figure 5. Revised conceptual model of the Camp Farewell site with the contaminant transport pathways eliminated. By eliminating groundwater to drinking water and groundwater to freshwater aquatic life as exposure pathways, surface soil is the only viable matrix for receptors to be exposed to contaminants. The surface soil (to a depth of 1.5 m) will be treated onsite to achieve guidelines that protect receptors from adverse effects of direct soil contact. Risks to any individual receptor or group of receptors via direct soil ingestion or indirectly through the food chain will be negligible under this post-remediation scenario.



## **APPENDIX V**

**Quality Assurance/Quality Control** 

## Appendix V Camp Quality Assurance/Quality Control

#### I-1 QUALITY ASSURANCE/QUALITY CONTROL

As part of routine Quality Assurance/Quality Control (QA/QC), 20 field replicate soil samples were collected during the remediation program and sent to the laboratory for analysis. The replicate samples were collected at the same time as the initial soil sample and following the same sampling procedures.

The purpose of the replicate samples is to ensure consistency in the analytical results that the laboratory produces. Large variances between replicate results and the original sampling results could indicate errors in the testing process conducted by the laboratory. Variances in results are investigated further with the laboratory.

Precision in analytical results may be evaluated by calculating the relative percent difference (RPD) or absolute difference (AD) of replicate samples using the following formulae:

$$RPD = \frac{(S-D)}{(S+D)/2} \times 100 \qquad AD = (S-D)$$

where: RPD and AD are absolute values,

S is the original sample result (mg/kg), and, D is the replicate sample result (mg/kg).

Zeiner's *Environmental Standard's Field Duplicate Criteria* has been applied in order to evaluate the precision of the results (Zeiner 1994).

If both the original and replicate soil sample concentrations are greater than five times the method detection limit (MDL) for a given parameter, the RPD must be less than or equal to 40% to be considered precise. If the results lie outside of the range, they should be considered estimates only.

If at least one of the sample concentrations is less than or equal to five times the MDL for a given parameter, the AD should be less than or equal to two times the MDL. If the AD is greater than two times the MDL, the results should be considered estimates only.

If one of the sample concentrations is positive and its replicate sample concentration is less than the MDL, the AD between the reported concentration and one-half the MDL should be less than or equal to two times the MDL. If the AD is greater than two times the MDL, the results should be considered estimates only.

Chain-of-custody (CoC) procedures were followed throughout the sampling program. CoC forms were provided by AGAT and filled out by KCB personnel for each sample delivered to the laboratory.

AGAT has internal QA/QC protocols and procedures to ensure accuracy and consistency of results. These procedures include COC tracking, storage and holding times, instrument calibration, surrogate matrix spikes, blanks, and laboratory duplicates.

## **APPENDIX VI**

**Laboratory Analytical Reports** 





5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: KLOHN CRIPPEN

500-2618 HOPEWELL PLACE NE

CALGARY, AB T1Y7J7

(403) 274-3424

ATTENTION TO: Konrad Ross

PROJECT: A04012A08

AGAT WORK ORDER: 16E117223

ASBESTOS REVIEWED BY: Ian Seddon, Analyst

DATE REPORTED: Jul 20, 2016

PAGES (INCLUDING COVER): 6

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| NOTES |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

\*NOTE O

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 6



### Certificate of Analysis

AGAT WORK ORDER: 16E117223

PROJECT: A04012A08

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: Konrad Ross

SAMPLED BY:

**Bulk Asbestos** 

DATE RECEIVED: 2016-07-19 DATE REPORTED: 2016-07-20

SAMPLE DESCRIPTION: GS16-INS
SAMPLE TYPE: Soil
DATE SAMPLED: 7/15/2016
G/S RDL 7714683

 Parameter
 Unit
 G / S
 RDL
 77146

 Asbestos (Bulk)
 %
 0.5
 ND

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7714683 Condition of sample was satisfactory at time of arrival in laboratory. Analysis done at AGAT 5623 McAdam Road Mississauga location.

"ND" - Not Detected

CLIENT NAME: KLOHN CRIPPEN

SAMPLING SITE:

Certified By:





5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

## **Method Summary**

CLIENT NAME: KLOHN CRIPPEN

**PARAMETER** 

PROJECT: A04012A08

AGAT WORK ORDER: 16E117223 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

LITERATURE REFERENCE ANALYTICAL TECHNIQUE

Asbestos (Bulk) INORG 93-6010 EPA 600/R-93/116 & NIOSH 9002 PLM

AGAT S.O.P



2910 12 Street NE Calgary, Alberta T2E 7P7 P: 403.735.2005 • F: 403.735.2771

webearth.agatlabs.com

| Laboratory Use Only  | 0         |  |
|----------------------|-----------|--|
| Arrival Temperature: |           |  |
| AGAT Job Number:     | 16年117223 |  |

Date and Time:

| 168 | -11/ |    | _     |
|-----|------|----|-------|
| '16 | JUL  | 19 | 10:05 |

| Chain of Cu                                      | ustody Record                                                    | Emergency                                        | Support Serv                                              | vices Hotline 1-855-AGAT 245                                                                            | (1-8   | 55-2                       | 42-8                                                   | 245)       |                          |                     |                                   |                       |                  |            |                   |                             |                                                |                       |      |           |                         |
|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|----------------------------|--------------------------------------------------------|------------|--------------------------|---------------------|-----------------------------------|-----------------------|------------------|------------|-------------------|-----------------------------|------------------------------------------------|-----------------------|------|-----------|-------------------------|
| Report Informa Company: Contact: Address: Phone: | KCB Konrad Ross 2618 Hopewell Place NE Calgary 403-464-7677 Fax: | Report  1. Name: Email: 2. Name: Email: 3. Name: | Information                                               | Konrad Ross<br>Kross@klohn.com<br>Nicole Wills<br>nwills@klohn.com                                      | Re     | Sin<br>pe                  | Forn<br>ngle Sa<br>er Page<br>ultiple<br>amples<br>age | ample      | A.                       | F<br>F              | urna<br>legula<br>lush 1<br>Surch | ar TA<br>TAT<br>arge  | , [              | ] 5<br>] L | -7 Bus<br>Less th | rsiness<br>han 24<br>han 48 | ed (TA<br>s Days<br>4 Hour<br>8 Hour<br>2 Hour | s<br>rs (20<br>rs (10 | 00%) |           |                         |
| LSD:<br>Client Project #:                        | A04012A08  Same V Yes No                                         |                                                  |                                                           | on may impact detection limits)  AB Tier 1 BC CSR  Agricultural AW  Industrial IW  Residential/ Park LW |        | ste)                       | Ĭ                                                      | 미츱         |                          |                     |                                   |                       | H                |            |                   |                             |                                                |                       |      |           |                         |
| Company: Contact: Address: Phone:                | Fax:                                                             |                                                  |                                                           | Commercial DW Natural Area  AB Surface Water                                                            | .RS    | Salinity (Saturated Paste) | F1-F4                                                  | Dissolved  | Potability               | ıdfill              | (boulood ay) which (              | dalling (As received) | 4/ерн ∏церн/нерн | 1          |                   |                             |                                                |                       | DAYS |           | CONTAMINATED/ HAZARDOUS |
| PO/AFE#                                          | CAMDIE IDENTIFICATION                                            | SAMPLE                                           | DS0 (Drilling)  DATE/ TIME                                | COMMENTS- SITE SAMPLE INFO, SAMPLE                                                                      |        | d Soil                     | STEX/                                                  | er Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill                       | Microtox              | BTEXS/VPH/EPH    | Asbestos   |                   |                             |                                                |                       | 101  | PRESERVED | TAMINATE                |
| (LAB ID#) 77/4683                                | SAMPLE IDENTIFICATION  GS16-INS                                  | MATRIX                                           | SAMPLED  15-Jul-16                                        | CONTAINMENT                                                                                             | 1<br>1 | +                          | CCME                                                   | Water      | Rou                      | AB                  | BC                                | Si V                  |                  | X          | -                 |                             |                                                |                       | 10H  | PRE       |                         |
|                                                  |                                                                  |                                                  |                                                           |                                                                                                         |        |                            |                                                        |            |                          |                     |                                   |                       |                  |            |                   |                             |                                                |                       |      |           |                         |
|                                                  | E TENENT                                                         |                                                  | 1 1                                                       |                                                                                                         |        |                            |                                                        |            |                          |                     |                                   |                       |                  |            |                   |                             |                                                |                       |      |           |                         |
|                                                  |                                                                  |                                                  | 1 1                                                       |                                                                                                         | 4      |                            |                                                        |            |                          |                     |                                   |                       |                  |            |                   |                             |                                                |                       |      |           |                         |
| Samples Reilinguished By (Print Name and Sign):  |                                                                  | Date/Time: Date/Time:                            | Date/Time: Samples Relinquished By (Print Name and Sign): |                                                                                                         |        | Fol byro                   |                                                        |            |                          |                     | Date/Time:                        |                       |                  |            |                   |                             |                                                |                       |      |           |                         |



# AGAT Laboratories

## SAMPLE INTEGRITY RECEIPT FORM

| RECEIVING BASICS - Shipping                                                 | Temperature (Bottles/Jars only) N/A if only Soil Bags Received               |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Company/Consultant: KCB                                                     | FROZEN (Please Circle if samples received Frozen)                            |
| Courier: CAWADIAN KORTH (Prepair) Collect                                   | 1 (Bottle/Jar)++=°C 2(Bottle/Jar)++_=°C                                      |
| Waybill# 518-YEV-7061-5269                                                  | 3 (Bottle/Jar)++=°C                                                          |
|                                                                             | 5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C                                      |
| Branch EDM GP FN FM RD VAN LYD FSJ EST Other:                               | 7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C                                      |
| If multiple sites were submitted at once: Yes (No)                          | 9 (Bottle/Jar) + + = °C 10 (Bottle/Jar) + + = °C                             |
| Custody Seal Intact: Yes No NA                                              | (If more than 10 coolers are received use another sheet of paper and attach) |
| TAT: <24hr 24-48hr 48-72hr Reg Other                                        | LOGISTICS USE ONLY                                                           |
| Cooler Quantity: 1 13 16                                                    | Workorder No: 16E 117 223                                                    |
| TIME CONCITIVE ISSUES Skinning                                              | Samples Damaged: Yes No If YES why?                                          |
| TIME SENSITIVE ISSUES - Shipping                                            | No Bubble Wrap Frozen Courier                                                |
| ALREADY EXCEEDED HOLD TIME? Yes No                                          | Other:                                                                       |
| Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , | Account Project Manager:have they been notified of the above issues: Yes No  |
| Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*,           | 1.3 Section 4: CO                                                            |
| Chloroamines*                                                               | Whom spoken to: Date/Time:                                                   |
| Earliest Expiry:                                                            | CPM Initial                                                                  |
| Hydrocarbons: Earliest Expiry                                               | General Comments:                                                            |
| SAMPLE INTEGRITY - Shipping                                                 |                                                                              |
| Hazardous Samples: YES NO Precaution Taken:                                 |                                                                              |
| Legal Samples: Yes No                                                       |                                                                              |
| International Samples: Yes No                                               |                                                                              |
| Tape Sealed: Yes (No)                                                       |                                                                              |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                   |                                                                              |

\* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

| FOI                                                                           | CUR                                               | 1                                                                                                                                 | C   |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                            |                               |          |                 | NO. OF<br>PIECES<br>RCP                          | ĺ          | HANDLING                                                                                   | Edr                                                                                                                                                                                               | TO<br>YE                                                       | AGER<br>AIRPI                                                                                                                                              | USSI                                                                         | 78C                    | AGZ<br>631<br>Edn                                        | Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Can                                                 | Nor<br>146                                   | SHIP                       |
|-------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------|-------------------------------|----------|-----------------|--------------------------------------------------|------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------|
| FOR CARRIERS USE ONLY AT DESTINATION OLICET CHARGES IN DESTINATION CLIRRENCY. | CURRENCY CONVERSION RATES                         | FOTAL PREPAID                                                                                                                     | V   | 11.                                                                      | 0 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                           | 0.                         | PREPAID                       | Р        | Ъ               | OF GROSS<br>ES WEIGHT                            |            | HANDLING INFORMATION These commodities licensed by US for ultimate destination ${ m HFPU}$ | AIRPORT OF DESTINATION                                                                                                                                                                            | ROUTING AND DESTINATION TO BY FIRST CARRIER YEG Canadian North | ACCOUNT NO.  ACCOUNT NO. | ISSUING CARRIER'S AGENT NAME                                                 | ິທ                     | AGAT Laboratories<br>6310 Roper Road<br>Edmonton, AB T6B | Registered  CONSIGNEE'S NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inuvik, NT XOE<br>Canada<br>Canada                  | Northwind Ind<br>146 Navy Rd.<br>PO Box 1130 | SHIPPER'S NAME AND ADDRESS |
| ONLY AT                                                                       | to be by                                          |                                                                                                                                   | CAD | .38                                                                      | THER CHAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 46                                        | VALUATION CHARGE           | WEIGHT CHARGE                 | <u>Р</u> | Z               | ₩ Æ                                              |            | N These co                                                                                 | DESTINATIO                                                                                                                                                                                        | TION<br>RIER<br>IN Nort                                        | RE (ADDR O                                                                                                                                                 | ENT NAME                                                                     | 403-735-274            |                                                          | D ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (OE OTO                                             | Industries<br>{d.                            | DDRESS                     |
| CHARGES                                                                       | TOTAL COLLECT                                     | IOIAL                                                                                                                             |     | TOTAL OTHER CHARGES DUE CARRIER 11.38                                    | TOTAL OTHER CHARGES DUE AGENT 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | CHARGE                     | HARGE                         |          | GCR 35          | RATE CLASS COMMODITY                             |            | mmodities lic                                                                              | N                                                                                                                                                                                                 | th                                                             | F FIRST CAR                                                                                                                                                | AND CITY                                                                     | 5-2745                 | Ltd<br>3P9                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 2426                                              | s Inc.                                       | 11                         |
| CHARGES AT DESTINATION                                                        | TOTAL COLLECT IN DESTINATION CHRENCY              | 0.                                                                                                                                | 0.  | 0.                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.                                          | 0.                         | COLLECT<br>0.0                |          |                 |                                                  |            | ensed by US                                                                                | FLIGHT/                                                                                                                                                                                           | 10                                                             | ACCOUNT NO.                                                                                                                                                |                                                                              |                        |                                                          | CONSIGNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |                                              | SHIPPER'S                  |
| 1000                                                                          | 7 E                                               | -                                                                                                                                 | 00  | 00                                                                       | 00 con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                         | 0.0 ZONE                   | ZONE ZONE                     |          | N               | CHARGEABLE<br>WEIGHT                             |            | for ultimate d                                                                             | DATE F                                                                                                                                                                                            | ВУ                                                             | REQUESTED                                                                                                                                                  |                                                                              |                        |                                                          | E'S ACCOUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                              | SACCOUNT                   |
| TOTAL COLLECT                                                                 | (Date)                                            | NATURE OF SH<br>THIS SHIPM<br>REGULATED                                                                                           |     | RE-WEIGI                                                                 | ipper certifies trains dangerd cording to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HER CHARGE                                  | L DELIVERY                 | P PICKUP CHARGES              |          |                 | RATE / C                                         |            | estination                                                                                 | FOR CARRIER USE ONLY FLIGHT/DATE FLIGHT/DATE                                                                                                                                                      | то ву                                                          | ROUTING                                                                                                                                                    |                                                                              |                        |                                                          | CONSIGNEE'S ACCOUNT NUMBER<br>AGALOOCW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                              | ACCOUNT NUMBER<br>NOR178CW |
| ECT CHARGES                                                                   | :60                                               | THIS SHIPMER ABOVE AND INITIAL APPLICABLE BOX BELOW.  THIS SHIPMENT DOES NOT CONTAIN DANGEROUS GOODS  REGULATED IN AIR TRANSPORT. |     | RE-WEIGH/DIMENSIONAL WEIGHT AND SHIPPER GUARANTEES SUBJECT TO RATE AUDIT | Shipper certifies that the particulars on the face hereof are correct and that insofar as any part contains dangerous goods, such part is properly described by name and is in proper condition according to the applicable Dangerous Goods Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OTHER CHARGES AND DESCRIPTION 11.38 Nav Car | DELIVERY CHARGES 0.00      | 0.                            |          | NIM             | CHARGE                                           | 8          |                                                                                            | AMOUNT (                                                                                                                                                                                          | CAD                                                            | DOMESTIC                                                                                                                                                   | PRINTED N                                                                    | SIGNATURE              |                                                          | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | (AIR CONS                                    | -                          |
|                                                                               | 28<br>28                                          | AND INITIAL AP<br>CONTAIN DAN<br>PORT.                                                                                            |     | IONAL W                                                                  | ulars on the fact part is properly grown group for the fact of the | V Canada,                                   | DEST, A                    | ORIGIN<br>00                  |          |                 | TOTAL                                            | ( ( (      | t .                                                                                        | AMOUNT OF INSURANCE NTL                                                                                                                                                                           | Code PPD CC                                                    | TO EMPEDITE MOMEMENT, SHIPMENT MAY BE DIVERTED TO MOTOR OR OTHER CARRIER DOMESTIC LIABILITY:                                                               | PRINTED NAME ALSO NOTIFY: NAME AND ADDRESS (OPTIONAL ACCOUNTING INFORMATION) |                        | r increase such li<br>uired.                             | IT SIGNED HAN HE GUALS DESCRIBED HEREIN AS EACHDANN HE PROMETING WAS AN AND HE CARRIED BY ANY OTHER MERAON ENLIGHENCE SHEPER AND HE STREET OF THE CONTRACTOR OF THE REVERSE HEREOF, ALL GOODS MAY BE CARRIED BY ANY OTHER MEANS INCLUDING ROAD OR ANY OTHER CARRIER WILESS SPECIFIC CONTRACTOR WISTRUCTIONS ARE GIVEN HEREON BY THE SHIPPER, AND THE SHIPPER AGREES THAT THE SHIPMENTS MAY BE CARRIED BY ANY OTHER MEANDLATE STOPPING PLACES WHICH THE CARRIER DELAYS APPROPRIATE. THE MAY BE CARRIED THAN INTERMEDIATE STOPPING PLACES WHICH THE CARRIER DELAYS APPROPRIATE. THE | Copies 1, 2                                         | (AIR CONSIGNMENT NOTE)                       | NOT NEGOTIABLE             |
|                                                                               | al (Place)                                        | PLICABLE BOX                                                                                                                      |     | EIGHT AND SHIPPER G                                                      | erly described<br>s Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | da, Fuel                                    | DEST, ADVANCE CHARGES 0.00 | ORIGIN ADVANCE CHARGES 0.00   | 37.90    | 37.90           | AL                                               |            | *                                                                                          |                                                                                                                                                                                                   | WT/VAL OTHER DPD COLL                                          | NT MAY BE DIVERTO                                                                                                                                          | ADDRESS (OF                                                                  | RE                     | mitation of liabili                                      | CONDITIONS O MEANS INCLUD NEREON BY 1 RMEDIATE STO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GST #: R 892. Copies 1, 2 and 3 of this Air Waybill | E) Edmont                                    | Cana<br>1 111              |
|                                                                               | <u>(b)</u>                                        | BELOW                                                                                                                             |     | D SHIPPE<br>TO RATE A                                                    | by name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | el Sur                                      |                            | 0.00                          | J.:      | Samp            |                                                  |            | Flalz                                                                                      | E - If carrier of<br>accordance v<br>d in figures in                                                                                                                                              | DECLARED V/                                                    | ED TO MOTOR OR C                                                                                                                                           | TIONAL ACCO                                                                  | RECEIVED IN GOOD ORDER | ty by declaring a                                        | F CONTRACT (ING ROAD OR THE SHIPPER, DPPING PLACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R 89244 Air Waybill are                             | nton I                                       | Canadian N                 |
| 518-                                                                          | SIGNATUR                                          | THIS SHIPMEN                                                                                                                      |     | ER GUAR                                                                  | that insofar as<br>d is in proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Surcharg                                    | DESCRIPTION OF DEST        | SCRIPTION                     |          | $\vdash$        | NATURE A                                         |            | 7                                                                                          | ers insurance, with the condition marked "Au                                                                                                                                                      | DECLARED VALUE FOR CARRIAGE NVD                                | THER CARRIER UNI                                                                                                                                           | JNTING INFORI                                                                | OD ORDER               | a higher value fo                                        | ON THE REVER<br>ANY OTHER CA<br>AND THE SHIPE<br>S WHICH THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 892440629 Waybill are originals an                  | nt Arp                                       | North<br>52 Ave E          |
| -YEV-                                                                         | 992<br>E OF ISSUING                               | N AIR TRANSPO                                                                                                                     |     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                            | DESCRIPTION OF ORIGIN ADVANCE |          | es<br>18x12x2IN | ND QUANTIT                                       | Idnd       |                                                                                            | INSURANCE - If carrier offers insurance, and such insurance is requested in accordance with the conditions thereof, indicate amount to be insured in figures in box marked "Amount of insurance". | NCV                                                            | ESS SHIPPER GIVE                                                                                                                                           | NATION)                                                                      | PLACE                  | r carriage and pa                                        | SE HEREOF, AI<br>RRIER UNLESS<br>YER AGREES T<br>CARRIER DEEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and have the sa                                     | AB                                           | ਸ                          |
| -7061-                                                                        | 992091<br>GNATURE OF ISSUING CARRIER OR ITS AGENT | THIS SHIPMENT DOES CONTAIN DANGEROUS GOODS REGULATED IN AIR TRANSPORT.                                                            |     | ALL CHARGES                                                              | of the consignment<br>for carriage by air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | l á                        | DVANCE                        |          | (bulk)          | E AND QUANTITY OF GOODS<br>DIMENSIONS OR VOLUME) | PLICATE    |                                                                                            | rance is ficale amount ance".                                                                                                                                                                     | DECLARED VALUE FOR CUSTOMS                                     | S OTHER INSTRUC                                                                                                                                            |                                                                              | DATE                   | aying a supplem                                          | S SPECIFIC CO HAT THE SHIPM IS APPROPRIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | same validity.                                      | T9E 0V4                                      |                            |
| -5269                                                                         | TS AGENT                                          | NUS GOODS                                                                                                                         |     | RGES                                                                     | ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ITEMS COLLECT                               |                            |                               |          |                 | S                                                | GEN<br>GEN |                                                                                            | DECLINED INTIALS                                                                                                                                                                                  | R CUSTOMS                                                      | INSTRUCTIONS HEREON.                                                                                                                                       |                                                                              | DATE/TIME              | nental                                                   | Y BE Y BE NTRARY MENTS TE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -11 6.7                                             | 4                                            |                            |



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

CLIENT NAME: IEG CONSULTANTS LTD 500-2618 HOPEWELL PLACE NE CALGARY, AB T1Y7J7 (403) 262-5505

ATTENTION TO: Konrad Ross

PROJECT: A04012A08

AGAT WORK ORDER: 16E119478

TRACE ORGANICS REVIEWED BY: Laarni Hafso, Laboratory Manager

DATE REPORTED: Jul 28, 2016

PAGES (INCLUDING COVER): 23

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

| NOTES |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

\*NOTE O

Page 1 of 23

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



CLIENT NAME: IEG CONSULTANTS LTD

SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           | ļ         | DATE REPORTI | ED: 2016-07-28 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-001  | GS16-002  | GS16-003  | GS16-004  | GS16-005  | GS16-006     | GS16-007       | GS16-008  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730258   | 7730259   | 7730260   | 7730262   | 7730263   | 7730266      | 7730267        | 7730268   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | 0.62      | 5.03      | 0.28      | < 0.05    | 0.31      | < 0.05       | 0.32           | 1.33      |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | 769            | 13        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 16        | 450       | 27        | <10       | 34        | 426          | 729            | 81        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 10        | 205       | 12        | <10       | 14        | 159          | 73             | 29        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 15        | 44        | 11        | 17        | 19        | 42           | 55             | 37        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 109       | 108       | 109       | 105       | 106       | 105          | 106            | 105       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 105       | 108       | 89        | 88        | 100       | 107          | 110            | 112       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 84        | 86        | 105       | 82        | 88        | 92           | 109            | 109       |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:

Stshafar



CLIENT NAME: IEG CONSULTANTS LTD

SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •         | `         | ,         | •         | ,         |             |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORT | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-009  | GS16-010  | GS16-011  | GS16-012  | GS16-013  | GS16-014    | GS16-015       | GS16-016  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016   | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730269   | 7730270   | 7730271   | 7730272   | 7730273   | 7730274     | 7730275        | 7730276   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | <0.005    | <0.005    | <0.005    | <0.005    | <0.005      | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | 0.19      | 0.27      | 0.14      | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01          | 0.39      |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | 1.89      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | 98        |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | 95        |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | 3060      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 11        | 14        | 25        | <10       | 11        | <10         | 20             | 2130      |
| C34 - C50 (F4)                 | mg/kg | 10                  | <10       | <10       | 18        | <10       | <10       | <10         | 10             | 22        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A         | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 14        | 20        | 14        | 16        | 15        | 18          | 13             | 16        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 108       | 107       | 107       | 105       | 107       | 107         | 106            | 109       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 100       | 91        | 99        | 102       | 93        | 97          | 85             | 101       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 83        | 117       | 102       | 94        | 111       | 120         | 100            | 109       |
|                                |       |                     |           |           |           |           |           |             |                |           |

Certified By:

Stshafar



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | `         | ,         | `         | ,         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORTI | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-017  | GS16-018  | GS16-019  | GS16-020  | GS16-021  | GS16-022     | GS16-023       | GS16-024  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730277   | 7730278   | 7730279   | 7730280   | 7730281   | 7730282      | 7730283        | 7730284   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | <0.005    | < 0.005   | < 0.005   | <0.005       | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | 0.81      | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | 0.06           | 0.08      |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | < 0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | 11        | <10       | <10       | <10          | <10            | <10       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 73        | <10       | 56        | 10        | 12        | <10          | <10            | <10       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 32        | <10       | 18        | 15        | <10       | <10          | <10            | <10       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 24        | 15        | 13        | 9         | 13        | 10           | 11             | 17        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 105       | 107       | 107       | 107       | 107       | 107          | 109            | 109       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 97        | 98        | 108       | 92        | 89        | 98           | 80             | 90        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 105       | 110       | 107       | 110       | 114       | 104          | 96             | 97        |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | `         | ,         | `         | ,         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORTE | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-025  | GS16-026  | GS16-027  | GS16-028  | GS16-029  | GS16-030     | GS16-031       | GS16-032  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730286   | 7730287   | 7730288   | 7730289   | 7730290   | 7730291      | 7730292        | 7730295   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | < 0.005   | < 0.005   | < 0.005   | < 0.005      | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | 0.07      | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | 0.08      |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | < 0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | 18        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 36        | <10       | <10       | <10       | <10       | 89           | 31             | 162       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 19        | <10       | <10       | <10       | <10       | 29           | 17             | 72        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 14        | 15        | 16        | 16        | 10        | 8            | 5              | 14        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 109       | 109       | 109       | 108       | 103       | 106          | 101            | 105       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 90        | 85        | 88        | 91        | 97        | 99           | 81             | 89        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 93        | 95        | 97        | 99        | 95        | 85           | 91             | 92        |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           | ļ         | DATE REPORTI | ED: 2016-07-28 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-033  | GS16-034  | GS16-035  | GS16-036  | GS16-037  | GS16-038     | GS16-039       | GS16-040  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730296   | 7730297   | 7730298   | 7730299   | 7730301   | 7730303      | 7730304        | 7730305   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 14        | 26        | 20        | <10       | 19        | 126          | 134            | 13        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 166       | 77        | 68        | 47        | 73        | 219          | 243            | 68        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 80        | 32        | 32        | 28        | 27        | 23           | 30             | 38        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 13        | 8         | 8         | 6         | 6         | 8            | 5              | 14        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 106       | 107       | 107       | 108       | 108       | 108          | 107            | 112       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 94        | 92        | 89        | 82        | 86        | 92           | 92             | 125       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 90        | 86        | 84        | 90        | 95        | 100          | 94             | 93        |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | `         | ,         | `         | ,         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORTI | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-041  | GS16-042  | GS16-043  | GS16-044  | GS16-045  | GS16-046     | GS16-047       | GS16-048  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730306   | 7730307   | 7730308   | 7730309   | 7730312   | 7730313      | 7730314        | 7730315   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | <0.005    | < 0.005   | < 0.005   | < 0.005      | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | < 0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 12        | 47        | 22        | <10       | 116       | 10           | 36             | <10       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 109       | 105       | 91        | 34        | 184       | 35           | 63             | 42        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 29        | 21        | 13        | 15        | 45        | 15           | 32             | 24        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 5         | 5         | 8         | 4         | 5         | 6            | 7              | 5         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 108       | 108       | 103       | 105       | 104       | 103          | 102            | 105       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 121       | 106       | 94        | 90        | 88        | 101          | 90             | 95        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 95        | 90        | 71        | 70        | 62        | 84           | 83             | 78        |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •         | •         | ,         | •         | ,         |             |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORT | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-049  | GS16-050  | GS16-051  | GS16-052  | GS16-053  | GS16-054    | GS16-055       | GS16-056  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016   | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730316   | 7730317   | 7730318   | 7730319   | 7730320   | 7730321     | 7730322        | 7730323   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | <0.005    | < 0.005   | <0.005    | < 0.005     | < 0.005        | < 0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | 11        | <10       | 23        | <10       | 172         | <10            | <10       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 30        | 41        | 82        | 370       | 48        | 316         | 165            | 47        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 24        | 18        | 48        | 188       | 24        | 44          | 60             | 26        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A         | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 6         | 6         | 8         | 22        | 5         | 10          | 8              | 5         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 103       | 103       | 104       | 97        | 108       | 108         | 108            | 77        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 88        | 96        | 98        | 101       | 102       | 110         | 107            | 62        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 79        | 70        | 74        | 92        | 84        | 71          | 64             | 61        |
|                                |       |                     |           |           |           |           |           |             |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           | [         | DATE REPORT | ED: 2016-07-28 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-057  | GS16-058  | GS16-060  | GS16-061  | GS16-062  | GS16-063    | GS16-064       | GS16-065  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/21/2016 | 7/21/2016 | 7/21/2016 | 7/19/2016   | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730324   | 7730325   | 7730327   | 7730328   | 7730329   | 7730330     | 7730331        | 7730332   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | <0.005    | <0.005    | <0.005    | <0.005    | <0.005      | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | 0.02           | 0.03      |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | 0.11      | < 0.05    | < 0.05      | 0.20           | 0.32      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | 15             | 17        |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | 15             | 17        |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | <10       | 1030      | <10       | 1790        | 3250           | 1750      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 38        | 112       | 11        | 759       | 234       | 985         | 1690           | 684       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 26        | 77        | <10       | 36        | 423       | 42          | 38             | 39        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A         | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 3         | 5         | 5         | 7         | 17        | 8           | 6              | 6         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 108       | 107       | 104       | 105       | 106       | 103         | 102            | 103       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 107       | 102       | 111       | 98        | 114       | 100         | 93             | 101       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 70        | 69        | 60        | 76        | 65        | 69          | 94             | 88        |
| I                              |       |                     |           |           |           |           |           |             |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •         | •         | •         | •         | •         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORTI | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-066  | GS16-067  | GS16-068  | GS16-069  | GS16-070  | GS16-071     | GS16-072       | GS16-073  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016    | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730333   | 7730334   | 7730335   | 7730336   | 7730337   | 7730338      | 7730339        | 7730340   |
| Benzene                        | mg/kg | 0.005               | <0.005    | <0.005    | <0.005    | <0.005    | <0.005    | <0.005       | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | <0.05     | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | <0.05     | <0.05     | < 0.05    | < 0.05    | < 0.05    | < 0.05       | <0.05          | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1340      | 778       | 10        | 14        | 14        | 24           | 11             | 42        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1120      | 535       | 118       | 98        | 57        | 68           | 64             | 82        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 46        | 46        | 59        | 53        | 26        | 28           | 22             | 16        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 5         | 13        | 10        | 9         | 7         | 6            | 5              | 6         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 103       | 106       | 102       | 107       | 102       | 92           | 92             | 92        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 102       | 120       | 115       | 109       | 110       | 89           | 89             | 86        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 108       | 81        | 81        | 77        | 88        | 78           | 83             | 81        |
|                                |       |                     |           |           |           |           |           |              |                |           |

Certified By:



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| I .                            |       |                     | •         | •         | •         | •         | •         |             |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           |           |           | DATE REPORT | ED: 2016-07-28 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-074  | GS16-075  | GS16-076  | GS16-077  | Dup 1     | Dup 2       | Dup 3          | Dup 4     |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016 | 7/19/2016   | 7/19/2016      | 7/19/2016 |
| Parameter                      | Unit  | G/S RDL             | 7730341   | 7730342   | 7730343   | 7730344   | 7730412   | 7730413     | 7730414        | 7730415   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | <0.005    | < 0.005   | <0.005    | <0.005    | <0.005      | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | 0.18      | < 0.05      | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | 0.02      | <0.01       | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | 0.15      | < 0.05      | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 25        | 23        | 14        | 28        | 14        | <10         | <10            | 36        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 40        | 45        | 34        | 46        | 77        | <10         | <10            | 98        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 12        | 11        | <10       | 16        | 18        | <10         | <10            | <10       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A         | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 5         | 12        | 5         | 6         | 19        | 16          | 16             | 8         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 107       | 92        | 92        | 104       | 104       | 107         | 108            | 107       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 110       | 88        | 91        | 102       | 89        | 90          | 98             | 85        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 81        | 66        | 66        | 88        | 101       | 87          | 85             | 82        |
|                                |       |                     |           |           |           |           |           |             |                |           |

Certified By:

Stshapar



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| I .                            |       |                     | •         | •         | •         | ·                         |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|---------------------------|
| DATE RECEIVED: 2016-07-25      |       |                     |           |           |           | DATE REPORTED: 2016-07-28 |
|                                |       | SAMPLE DESCRIPTION: | Dup 5     | Dup 6     | Dup 7     |                           |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      |                           |
|                                |       | DATE SAMPLED:       | 7/19/2016 | 7/21/2016 | 7/21/2016 |                           |
| Parameter                      | Unit  | G/S RDL             | 7730416   | 7730417   | 7730418   |                           |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | <0.005    |                           |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    |                           |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     |                           |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    |                           |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       |                           |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       |                           |
| C10 - C16 (F2)                 | mg/kg | 10                  | 10        | <10       | 14        |                           |
| C16 - C34 (F3)                 | mg/kg | 10                  | 176       | 43        | 40        |                           |
| C34 - C50 (F4)                 | mg/kg | 10                  | 16        | <10       | <10       |                           |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       |                           |
| Moisture Content               | %     | 1                   | 7         | 5         | 6         |                           |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |                           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 107       | 106       | 108       |                           |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 86        | 90        | 96        |                           |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 75        | 82        | 89        |                           |
| ' ' '                          |       |                     |           |           |           |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7730258-7730418 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:

Strapar

AGAT WORK ORDER: 16E119478

# **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| SAMPLING SITE:                    |               |               |             |                |           |                 |             | SAMP   | LED B          | Υ:          |       |                |          |        |                |
|-----------------------------------|---------------|---------------|-------------|----------------|-----------|-----------------|-------------|--------|----------------|-------------|-------|----------------|----------|--------|----------------|
|                                   |               |               | Trac        | e Orç          | ganio     | s An            | alys        | is     |                |             |       |                |          |        |                |
| RPT Date: Jul 28, 2016            |               |               | Г           | UPLICATE       |           |                 | REFEREN     | NCE MA | TERIAL         | METHOD      | BLANK | SPIKE          | MAT      | RIX SP | IKE            |
| PARAMETER                         | Batch         | Sample        | Dup #1      | Dup #2         | RPD       | Method<br>Blank | Measured    |        | ptable<br>nits | Recovery    |       | ptable<br>nits | Recovery |        | ptable<br>mits |
|                                   |               | la la         |             |                |           |                 | Value       | Lower  | Upper          |             | Lower | Upper          |          | Lower  | Uppe           |
| Petroleum Hydrocarbons (BTEX      | (/F1-F4) in   | Soil (CWS)    | )           |                |           |                 |             |        |                |             |       |                |          |        |                |
| Benzene                           | 1372          | 7730269       | < 0.005     | < 0.005        | NA        | < 0.005         | 94%         | 80%    | 120%           | 85%         | 80%   | 120%           | 98%      | 60%    | 1409           |
| Toluene                           | 1372          | 7730269       | 0.19        | 0.20           | NA        | < 0.05          | 90%         | 80%    | 120%           | 81%         | 80%   | 120%           | 95%      | 60%    | 1409           |
| Ethylbenzene                      | 1372          | 7730269       | < 0.01      | < 0.01         | NA        | < 0.01          | 87%         | 80%    | 120%           | 83%         | 80%   | 120%           | 94%      | 60%    | 1409           |
| Xylenes                           | 1372          | 7730269       | < 0.05      | < 0.05         | NA        | < 0.05          | 91%         | 80%    | 120%           | 85%         | 80%   | 120%           | 90%      | 60%    | 1409           |
| C6 - C10 (F1)                     | 1372          | 7730269       | < 10        | < 10           | NA        | < 10            | 98%         | 80%    | 120%           | 107%        | 80%   | 120%           | 124%     | 60%    | 1409           |
| C10 - C16 (F2)                    | 728           | 7730269       | < 10        | < 10           | NA        | < 10            | 91%         | 80%    | 120%           | 108%        | 80%   | 120%           | 126%     | 60%    | 1409           |
| C16 - C34 (F3)                    | 728           | 7730269       | 11          | 15             | NA        | < 10            | 94%         | 80%    | 120%           | 105%        | 80%   | 120%           | 134%     | 60%    | 1409           |
| C34 - C50 (F4)                    | 728           | 7730269       | < 10        | < 10           | NA        | < 10            | 93%         | 80%    | 120%           | 104%        | 80%   | 120%           | 136%     | 60%    | 1409           |
| Moisture Content                  | 728           | 7730269       | 14          | 14             | 0.0%      | < 1             |             |        | ,              |             | /-    | ,              |          |        |                |
| Comments: If the RPD value is NA, | , the results | of the duplic | cates are u | nder 5X the    | e RDL and | d will not b    | e calculate | ed.    |                |             |       |                |          |        |                |
| Petroleum Hydrocarbons (BTEX      | (/F1-F4) in   | Soil (CWS)    | )           |                |           |                 |             |        |                |             |       |                |          |        |                |
| Benzene                           | 1125          | 7730284       | < 0.005     | < 0.005        | NA        | < 0.005         | 117%        | 80%    | 120%           | 100%        | 80%   | 120%           | 115%     | 60%    | 1409           |
| Toluene                           | 1125          | 7730284       | 0.08        | 0.09           | NA        | < 0.05          | 89%         | 80%    | 120%           | 82%         | 80%   | 120%           | 88%      | 60%    | 1409           |
| Ethylbenzene                      | 1125          | 7730284       | < 0.01      | < 0.01         | NA        | < 0.01          | 87%         | 80%    | 120%           | 82%         |       | 120%           | 84%      | 60%    |                |
| Xylenes                           | 1125          | 7730284       | < 0.05      | < 0.05         | NA        | < 0.05          | 91%         | 80%    | 120%           | 83%         | 80%   | 120%           | 82%      | 60%    | 1409           |
| C6 - C10 (F1)                     | 1125          | 7730284       | < 10        | < 10           | NA        | < 10            | 81%         |        | 120%           | 110%        |       | 120%           | 136%     | 60%    | 1409           |
| C10 - C16 (F2)                    | 1001          | 7730284       | < 10        | < 10           | NA        | < 10            | 89%         | 80%    | 120%           | 99%         | 80%   | 120%           | 94%      | 60%    | 1409           |
| C16 - C34 (F3)                    | 1001          | 7730284       | < 10        | < 10           | NA        | < 10            | 90%         | 80%    | 120%           | 88%         | 80%   | 120%           | 86%      | 60%    | 1409           |
| C34 - C50 (F4)                    | 1001          | 7730284       | < 10        | < 10           | NA        | < 10            | 89%         |        | 120%           | 91%         | 80%   |                | 87%      | 60%    | 1409           |
| Moisture Content                  | 1001          | 7730284       | 17          | 16             | 6.1%      | < 1             | 0370        | 0070   | 12070          | 3170        | 0070  | 12070          | 01 /0    | 0070   | 140            |
| Comments: If the RPD value is NA, | , the results | of the duplic | cates are u | nder 5X the    | e RDL and | d will not b    | e calculate | ed.    |                |             |       |                |          |        |                |
| Petroleum Hydrocarbons (BTEX      |               |               |             |                |           |                 |             |        |                |             |       |                |          |        |                |
| Benzene                           | 995           | 7730308       | < 0.005     | < 0.005        | NA        | < 0.005         | 81%         | 80%    | 120%           | 90%         | 80%   | 120%           | 95%      | 60%    | 1409           |
| Toluene                           | 995           | 7730308       | < 0.005     | < 0.005        | NA        | < 0.005         | 96%         | 80%    | 120%           | 88%         |       | 120%           | 96%      | 60%    |                |
| Ethylbenzene                      | 995           | 7730308       | < 0.03      | < 0.03         | NA        | < 0.05          | 113%        | 80%    | 120%           | 111%        | 80%   | 120%           | 118%     | 60%    |                |
| Xylenes                           | 995<br>995    | 7730308       | < 0.01      | < 0.01         | NA<br>NA  | < 0.01          | 116%        | 80%    | 120%           | 98%         | 80%   | 120%           | 103%     | 60%    | 1409           |
| C6 - C10 (F1)                     | 995<br>995    | 7730308       | < 10        | < 0.05<br>< 10 | NA<br>NA  | < 10            | 118%        | 80%    | 120%           | 90%<br>114% | 80%   | 120%           | 116%     | 60%    | 1409           |
| 040 040 (50)                      |               | 7700000       |             |                |           |                 |             |        |                |             |       |                |          |        | 4.400          |
| C10 - C16 (F2)                    | 818           | 7730308       | 22          | 25             | 13.0%     | < 10            | 101%        |        | 120%           | 117%        |       | 120%           | 81%      | 60%    |                |
| C16 - C34 (F3)                    | 818           | 7730308       | 91          | 84             | 8.0%      | < 10            | 93%         |        | 120%           | 103%        |       | 120%           | 72%      |        | 1409           |
| C34 - C50 (F4)                    | 818           | 7730308       | 13          | 15             | 14.0%     | < 10            | 92%         | 80%    | 120%           | 108%        | 80%   | 120%           | 75%      | 60%    | 1409           |
| Moisture Content                  | 818           | 7730308       | 8           | 8              | 0.0%      | < 1             |             |        |                |             |       |                |          |        |                |
| Comments: If the RPD value is NA, | , the results | of the duplic | cates are u | nder 5X the    | RDL and   | d will not b    | e calculate | ed.    |                |             |       |                |          |        |                |
| Petroleum Hydrocarbons (BTEX      | (/F1-F4) in   | Soil (CWS)    | )           |                |           |                 |             |        |                |             |       |                |          |        |                |
| Benzene                           | 1125          | 7731266       | < 0.005     | < 0.005        | NA        | < 0.005         | 117%        | 80%    | 120%           | 100%        | 80%   | 120%           | 120%     | 60%    | 1409           |
| Toluene                           | 1125          | 7731266       | < 0.05      | < 0.05         | NA        | < 0.05          | 89%         | 80%    | 120%           | 81%         | 80%   | 120%           | 96%      | 60%    | 1409           |
| Ethylbenzene                      | 1125          | 7731266       | < 0.01      | < 0.01         | NA        | < 0.01          | 87%         | 80%    | 120%           | 82%         | 80%   | 120%           | 93%      | 60%    | 1409           |
| Xylenes                           | 1125          | 7731266       | < 0.05      | < 0.05         | NA        | < 0.05          | 91%         | 80%    | 120%           | 84%         | 80%   | 120%           | 90%      | 60%    | 1409           |

#### AGAT QUALITY ASSURANCE REPORT (V1)

Page 13 of 23

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



### **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E119478 PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| Trace Organics Analysis (Continued) |       |         |         |        |        |                 |          |       |                |          |       |                |          |       |                |
|-------------------------------------|-------|---------|---------|--------|--------|-----------------|----------|-------|----------------|----------|-------|----------------|----------|-------|----------------|
| RPT Date: Jul 28, 2016              | E     |         | REFEREN | NCE MA | TERIAL | METHOD          | BLANK    | SPIKE | MAT            | RIX SPI  | KE    |                |          |       |                |
| PARAMETER                           | Batch | Sample  | Dup #1  | Dup #2 | RPD    | Method<br>Blank | Measured |       | ptable<br>nits | Recovery | Lin   | ptable<br>nits | Recovery | Lin   | ptable<br>nits |
|                                     |       | Id      |         |        |        |                 | Value    | Lower | Upper          |          | Lower | Upper          | ,        | Lower |                |
| C6 - C10 (F1)                       | 1125  | 7731266 | < 10    | < 10   | NA     | < 10            | 81%      | 80%   | 120%           | 117%     | 80%   | 120%           | 134%     | 60%   | 140%           |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| C10 - C16 (F2)   | 793 | 7730412 | 778 | 713 | 8.7%  | < 10 | 89% | 80% 120% | 86%  | 80% | 120% | 90%  | 60% | 140% |
|------------------|-----|---------|-----|-----|-------|------|-----|----------|------|-----|------|------|-----|------|
| C16 - C34 (F3)   | 793 | 7730412 | 535 | 463 | 14.4% | < 10 | 94% | 80% 120% | 102% | 80% | 120% | 108% | 60% | 140% |
| C34 - C50 (F4)   | 793 | 7730412 | 46  | 41  | NA    | < 10 | 93% | 80% 120% | 105% | 80% | 120% | 104% | 60% | 140% |
| Moisture Content | 793 | 7730412 | 13  | 13  | 0.0%  | < 1  |     |          |      |     |      |      |     |      |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.



# **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E119478

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| PARAMETER                      | AGAT S.O.P                      | LITERATURE REFERENCE   | ANALYTICAL TECHNIQUE |
|--------------------------------|---------------------------------|------------------------|----------------------|
| Trace Organics Analysis        |                                 | •                      |                      |
| Benzene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Toluene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene                   | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Xylenes                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| C6 - C10 (F1)                  | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C6 - C10 (F1 minus BTEX)       | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C10 - C16 (F2)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C16 - C34 (F3)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C34 - C50 (F4)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Gravimetric Heavy Hydrocarbons | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Moisture Content               | LAB-175-4002                    | CCME Tier 1 Method-S % | GRAVIMETRIC          |
| Toluene-d8 (BTEX)              | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene-d10 (BTEX)        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| o-Terphenyl (F2-F4)            | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |



2910 12 Street NE Calgary, Alberta T2E 7P7 P: 403.735.2005 • F: 403.735.2771

webearth.agatlabs.com

| Laboratory | Use | Only |
|------------|-----|------|
|------------|-----|------|

Arrival Temperature: AGAT Job Number:

|     | 1.8 | 0  | C  |  |
|-----|-----|----|----|--|
| IGE | Ma  | 14 | 78 |  |

Date and Time:

| Chain of Ci                       | ustody Record E        | mergency         | Support Serv                                                  | rices Hotline 1-855-AGAT 245 (                 | (1-8            | 55-2                                     | <b>42-8</b>  | 245             | )                        |                     |             |                                     |          |               |        | -        |        |       |        |          |           |                         |
|-----------------------------------|------------------------|------------------|---------------------------------------------------------------|------------------------------------------------|-----------------|------------------------------------------|--------------|-----------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|--------|----------|--------|-------|--------|----------|-----------|-------------------------|
| Report Informa                    | ntion                  | Report           | Information                                                   |                                                | Re              | port                                     | Forn         | at              |                          | 1                   | Tui         | rnaı                                | roui     | nd T          | ime    | Req      | uire   | d (T  | AT)    |          |           |                         |
|                                   |                        | 1. Name:         |                                                               | Konrad Ross                                    | _               | Sin                                      | gle S        | ample           | 2                        |                     | Reg         | (ular                               | TAT      | 4             | 5-7    | 7 Busir  | ness   | Days  | S      |          |           |                         |
| Company:                          | ксв                    | Email:           |                                                               | Kross@klohn.com                                | ∥└              | per                                      | Page         | <b>:</b>        |                          |                     |             |                                     |          |               | ٦ , -  | 4L_      | 24     | 4.11  | (2     | 0004     |           |                         |
| Contact:                          | Konrad Ross            | 2. Name:         | )                                                             | Nicole Wills                                   |                 | Mı                                       | Itiple       |                 |                          |                     | ı           | h TA                                |          | <u>_</u>      |        | ss tha   |        |       | •      |          | •         |                         |
| Address:                          | 2618 Hopewell Place NE | Emall:           |                                                               | nwills@klohn.com                               | ll ⊏            |                                          | nples        | per             |                          |                     | (Sur        | rchai                               | rge)     | L             | _      | ss tha   |        |       | -      |          | )         |                         |
|                                   | Calgary                | 3. Name:         |                                                               |                                                | $\parallel$     | Pa                                       | ge           |                 |                          |                     |             |                                     |          | L             | ] Les  | ss tha   | n /2   | Hou   | ırs (5 | ۱%)      |           |                         |
| Phone:                            | 403-464-7677 Fax:      | Email:           |                                                               |                                                |                 |                                          |              |                 |                          |                     | Date        | e Re                                | quire    | ed:           |        |          |        |       |        |          |           |                         |
| LSD:                              |                        | Require          | ements (Selection                                             | on may impact detection limits)                |                 |                                          |              | رد <sub>و</sub> | Т                        | П                   |             |                                     |          |               |        |          | T      | Т     | $\top$ | T        |           |                         |
| Client Project #:                 | A04012A08              | CCI              |                                                               | AB Tier 1 BC CSR                               |                 |                                          | Ĕ            |                 |                          |                     |             |                                     |          |               |        |          |        |       |        |          |           |                         |
| Invoice To                        | Same V Yes No          | I I              | Agricultural<br>Industrial<br>Residential/ Park<br>Commercial | Agricultural                                   |                 | aste)                                    |              | <u>ā</u>        |                          |                     |             | ਜ਼ਿ                                 |          | ]ьерн/нерн    |        |          |        |       |        |          |           |                         |
| Company:                          |                        |                  | Orinking Water                                                | Commercial DW Natural Area                     |                 | P                                        | \$           |                 |                          |                     |             | ive.                                |          | <del>I</del>  |        |          |        |       |        |          |           | ر ا                     |
| Contact:                          |                        |                  | WAL                                                           | Natural Area                                   |                 | ırate                                    | 11           | ۾ ال            |                          |                     |             | Še                                  |          | 릴             |        |          | -      |       |        |          |           | Įğ                      |
| Address:                          |                        |                  | [                                                             | AB Surface Water                               |                 | (Satu                                    | 9            | Dissolved       | <u>₹</u>                 |                     |             | / (As I                             |          |               |        |          |        |       |        |          |           | ZARE                    |
| Phone:                            | Fax:                   | - Oth            |                                                               |                                                | ူတ္က            | linity                                   | F1-F4        |                 | Potat                    | Ħ                   |             | alinit                              |          | /EPH          |        |          |        |       |        | DAYS     |           | \<br>∀H                 |
| PO/AFE#                           |                        |                  | 050 (Drilling)                                                | SPIGEC                                         | AINE            | oil Sa                                   | -  -         | lals:           | ater                     | Lan                 | _           | led S                               |          | VPH           |        |          |        |       |        | 8        | и         | ATE                     |
| LABORATORY USE<br>(LAB ID#)       | SAMPLE IDENTIFICATION  | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED                                         | COMMENTS-SITE SAMPLE INFO, SAMPLE CONTAINMENT  | # of CONTAINERS | Detailed Soil Salinity (Saturated Paste) | Soil Metals: | Water Metals:   | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed Salinity (As Received) | Microtox | ВТЕХЅ/VРН/ЕРН |        |          |        |       |        | HOLD FOR | PRESERVED | CONTAMINATED/ HAZARDOUS |
| 7730258                           | GS16-001               | Soil             | 19-Jul-16                                                     |                                                | 2               | _                                        | x            | 1               | <u> </u>                 | 1                   |             | Ť                                   |          |               |        | $\dashv$ | $\pm$  | $\pm$ | +      | 1        | +=        | Ĕ                       |
| 254                               | GS16-002               | Soll             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 |                          |                     |             |                                     |          |               |        |          |        |       |        |          |           |                         |
| 260                               | GS16-003               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 |                          |                     |             |                                     |          |               |        |          |        |       |        |          |           |                         |
| 262                               | GS16-004               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 |                          |                     |             |                                     |          |               |        |          |        |       |        |          |           |                         |
| 263                               | GS16-005               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 | Т                        |                     |             |                                     |          | П             | $\Box$ |          | T      |       |        |          |           | 50                      |
| 266                               | GS16-006               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x T          |                 |                          |                     |             |                                     |          |               | $\Box$ |          | T      |       |        |          |           |                         |
| 267                               | GS16-007               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x T          |                 |                          |                     |             |                                     |          |               | $\Box$ |          | $\top$ |       |        |          |           |                         |
| 268                               | GS16-008               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x T          |                 |                          |                     |             |                                     |          |               |        | 14       | 6      | ILL   | 25     | 16       | 38        |                         |
| 269                               | GS16-009               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 |                          |                     |             |                                     |          |               |        |          | Ť      |       |        |          |           |                         |
| 270                               | GS16-010               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            | 1               | П                        |                     |             |                                     |          |               |        | $\neg$   | T      |       | 1      | +        | $\vdash$  |                         |
| 271                               | GS16-011               | Soil             | 19-Jul-16                                                     |                                                | 2               |                                          | x            |                 |                          |                     |             |                                     |          |               |        |          |        |       | 1      |          |           |                         |
| 272                               | GS16-012               | Soil             | 19-Jul-16                                                     |                                                | 2               | -                                        | x T          | T               | Т                        |                     |             |                                     |          |               |        | $\top$   | $\top$ | 1     | 1      | T        | $\vdash$  |                         |
| Samples Relinquished By (Print Na | me and Sign):          | Date/ Time:      |                                                               | Samples Relinquished By (Print Name and Sign)  |                 | -                                        | -            | _               | _                        |                     |             | Onley T                             | Time:    |               |        |          | _      | 〒     | _      | 〒        | T         |                         |
| Samples Relinquished By (Print Na | me and Sign):          | Date/ Time:      |                                                               | Samples Relinfulshed By (Print Name and Sign): |                 |                                          |              |                 |                          |                     | _           | Date/ 1                             | IZ.      | 5/.           | 201    | 6        | _      | f     | Page   |          | of        |                         |
| Semples Relinquished By (Print Na | me and Sign):          | Dale/Time:       |                                                               | Samples Relinquished By (Print Name and Sign): |                 |                                          |              |                 |                          |                     |             | Date/ I                             | limo:    |               | Ε      | 30       | 376    | 37    |        |          |           |                         |

Document ID: DIV-50-1507.003

| G                                       | GAT La                | borator          | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 |                                          |                  | Hg           | Hg Cr6+       |                          |                     |             |                                     |          | ЕРН           |     |           |     |       |      |     |                  |           |                         |
|-----------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|-----|-----------|-----|-------|------|-----|------------------|-----------|-------------------------|
| Chain of Cus                            | stody Record          | Emergency Supp   | ort Services H        | Hotline 1-855-AGAT 245 (1-855-242-8245)                                                                     |                 | ed Paste                                 |                  | Cr6+         | Total         |                          |                     |             | eived)                              |          | LEPH/HEPH     |     |           |     |       |      |     |                  |           | S                       |
| Report to: Company:                     |                       | Same as          | COC#:                 |                                                                                                             | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            | HWS-B        | : Dissolved   | r Potability             | ındfill             |             | D50 Detailed Salinity (As Received) |          |               |     |           |     |       |      |     | DAYS             |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)             | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |     |           |     |       |      |     | HOLD FOR 60 DAYS | PRESERVED | CONTAMINAT              |
| 273                                     | GS16-013              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 274                                     | GS16-014              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 275                                     | GS16-015              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |     | П         |     |       |      |     |                  |           |                         |
| 276                                     | GS16-016              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 277                                     | GS16-017              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     | П         |     |       |      |     |                  |           |                         |
| 278                                     | GS16-018              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 279                                     | GS16-019              | Soil             | 19-Jul-16             |                                                                                                             | 2               | П                                        | х                | П            |               |                          |                     |             |                                     |          |               |     | П         | П   |       |      |     |                  |           |                         |
| 280                                     | GS16-020              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 261                                     | GS16-021              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 282                                     | GS16-022              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 283                                     | GS16-023              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 284                                     | GS16-024              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 286                                     | GS16-025              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 287                                     | GS16-026              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 288                                     | GS16-027              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 289                                     | GS16-028              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 290                                     | GS16-029              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 291                                     | GS16-030              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     | $\Box$    |     |       |      |     |                  |           |                         |
| 292                                     | GS16-031              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     | $\square$ |     |       |      |     |                  | $\perp$   |                         |
| 295                                     | GS16-032              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           | 0   | 11 11 | Q.   | - 4 |                  | 1         |                         |
| 296                                     | GS16-033              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           | .0  | JUI   | - 41 | ė A | Credi            |           |                         |
| 297                                     | GS16-034              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 298                                     | GS16-035              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 299                                     | GS16-036              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| 30)                                     | GS16-037              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |     |           |     |       |      |     |                  |           |                         |
| Samples Relinquished By (Print Name and | Sign):                | Date/ Time:      |                       | Samples Relinquished By (Print Name and Star):                                                              |                 |                                          |                  |              |               |                          |                     |             |                                     | Date/T   | lime:         | 7/2 | 15/2      | 116 |       |      | . 1 | -                |           |                         |
| Semples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Samples Relifiquished By (Print Name and Sign):                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     | Date/ I  | lime:         | 0   |           |     |       |      | 0   |                  |           | -                       |
| Samples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Semples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  |              |               |                          | _                   |             |                                     | Date/ T  | milet:        |     | F         | Ξ   | 08    | 76   | Ø   |                  |           | _                       |

Document ID: DIV-50-1507.002

| G G                                     | GAT L                 | aborator         | ies -                 | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (2)                                      |                  | Hg           | Hg Cr6+       |                          |                     |             |                                     |          | ЕРН           |    |     |    |        |        |        |                  |           |                         |
|-----------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|----|-----|----|--------|--------|--------|------------------|-----------|-------------------------|
| Chain of Cus                            | stody Record          | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | ed Paste                                 |                  | ] Cr6+       | Total         |                          |                     |             | eived)                              |          | П СЕРН/НЕРН   |    |     |    |        |        |        |                  |           | S                       |
| Report to: Company:                     |                       | Same as          | COC#:                 |                                                                                                             | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            | ☐HWS-B       | : Dissolved   | r Potability             | ındfill             |             | D50 Detailed Salinity (As Received) |          |               |    |     |    |        |        |        | DAYS             |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)             | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLI<br>CONTAINMENT                                                           | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |    |     |    |        |        |        | HOLD FOR 60 DAYS | PRESERVED | CONTAMINAT              |
| 303                                     | GS16-038              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 304                                     | GS16-039              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 305                                     | GS16-040              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 306                                     | GS16-041              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 307                                     | GS16-042              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 308                                     | GS16-043              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 309                                     | GS16-044              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 312                                     | GS16-045              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 313                                     | G\$16-046             | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        | П      |        |                  |           |                         |
| 314                                     | GS16-047              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 315                                     | GS16-048              | Soil             | 19-Jul-16             |                                                                                                             | 2               | П                                        | х                |              |               |                          |                     |             |                                     |          |               |    |     |    | $\Box$ | П      | $\Box$ |                  |           |                         |
| 316                                     | GS16-049              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 317                                     | GS16-050              | Soil             | 19-Jul-16             |                                                                                                             | 2               | П                                        | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        | $\Box$ | $\Box$ |                  | $\neg$    |                         |
| 318                                     | GS16-051              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 319                                     | GS16-052              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        | П      |        |                  |           |                         |
| 320                                     | GS16-053              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    | 9.4 | £. | 11     | 25     | 1      | 6:3              | 8         |                         |
| 321                                     | GS16-054              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 322                                     | GS16-055              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 323                                     | GS16-056              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 324                                     | GS16-057              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 325                                     | GS16-058              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 326                                     | GS16-059              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 327                                     | GS16-060              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 328                                     | GS16-061              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | X                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| 329                                     | GS16-062              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |    |     |    |        |        |        |                  |           |                         |
| Samples Relinquished By (Print Name and | d Sign):              | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | 1               |                                          | 1                | 1/1          | 5             |                          |                     |             |                                     | Date/T   | lme:          | 71 | 75/ | 20 | 1      | $\neg$ | Paria  | Ţ                |           |                         |
| Samples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          | 7                |              |               |                          |                     |             |                                     | Date/T   |               |    |     |    |        |        |        |                  |           |                         |
| Samples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  |              |               |                          |                     |             |                                     | Date/T   | ime           |    | E   | 08 | 370    | 69     |        |                  | _         |                         |

Document ID: DIV-50-1507.002

| To G                                     | GAT L                 | aborator         | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (6)                                      |                  | Hg           | Hg Cr6+             |                          |                     |             |                                     |          | EPH           |    |     |      |        |        |      |                  |           |                         |
|------------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|----|-----|------|--------|--------|------|------------------|-----------|-------------------------|
| Chain of Cus                             | stody Record          | Emergency Supp   | port Services H       | Hotline 1-855-AGAT 245 (1-855-242-8245)                                                                     |                 | ed Paste                                 |                  | Cr6+         | Total               |                          |                     |             | eived)                              |          | назн/наэп     |    |     |      |        |        |      |                  |           | S                       |
| Report to: Company:                      |                       | Same as          | COC#:                 | -                                                                                                           | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            | HWS-B        | Dissolved Dissolved | er Potability            | andfill             |             | D50 Detailed Salinity (As Received) |          |               |    |     |      |        |        |      | ) DAYS           |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)              | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLI<br>CONTAINMENT                                                           | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals:       | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |    |     |      |        |        |      | HOLD FOR 60 DAYS | PRESERVED | CONTAMINA               |
| 330                                      | GS16-063              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           | Τ                       |
| 331                                      | GS16-064              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 332                                      | GS16-065              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 333                                      | GS16-066              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 334                                      | GS16-067              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 3.35                                     | G\$16-068             | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 336                                      | GS16-069              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 337                                      | GS16-070              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 338                                      | GS16-071              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 3.34                                     | GS16-072              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 340                                      | GS16-073              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 341                                      | GS16-074              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 342                                      | GS16-075              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 343                                      | GS16-076              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 344                                      | GS16-077              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           | Π                       |
| 345                                      | GS16-078              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    | 7   | 16   | . 11 1 | 2      | F    | 6:3              | 18        |                         |
| 346                                      | G\$16-079             | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     | LO   | 0=     |        |      |                  |           |                         |
| 347                                      | G516-080              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  | $\Box$    |                         |
| 348                                      | GS16-081              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        | Ш      |      |                  | $\perp$   |                         |
| 349                                      | GS16-082              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 350                                      | GS16-083              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 373                                      | GS16-084              | Soil             | 19-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 374                                      | GS16-085              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 375                                      | GS16-086              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| 376                                      | GS16-087              | Soil             | 21-Jul-16             |                                                                                                             | 2               |                                          | Х                |              |                     |                          |                     |             |                                     |          |               |    |     |      |        |        |      |                  |           |                         |
| Samples Ballinguished By (Print Name and | i Sign):              | Date/ Time:      |                       | Semples Relinquished By (Print Name and Sign):                                                              | 7               | *                                        |                  |              |                     |                          |                     |             |                                     | Date/ 1  | Time:         | 71 | 25/ | 1-2. | 11/    | $\Box$ | Page | T                | of        | _                       |
| Samples Relinquished By (Print Name and  | S(gn):                | Dete/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  |              |                     |                          |                     |             |                                     | Date/1   | Time:         |    |     | _    |        | _      |      |                  | -         | ī                       |
| Samples Relinquished By (Print Name and  | Sign):                | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  |              |                     |                          |                     |             |                                     | Date/1   | time.         | 7  |     |      |        |        |      |                  |           |                         |

Document ID: DIV-50-1507.002

E 08770



# AGAT Laboratories

# **SAMPLE INTEGRITY RECEIPT FORM**

| RECEIVING BASICS - Shipping                                                                                                               | Temperature (Bottles/Jars only) N/A if only Soil Bags Received                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/Consultant: KaB                                                                                                                   | FROZEN (Please Circle if samples received Frozen)                                                                                              |
| Courier: Canadia North Prepaid Collect                                                                                                    | 1 (Bottle/137) 0 4 +0.6 +0.4 = 0.6 °C 2(Bottle/137) 4 + 0.9 + 0.8 = 1.2 °C                                                                     |
| Waybill# 518 - 760 - 7061 - 5650                                                                                                          | 3 (Bottle/ $tar$ )3.5 +3.6 +3.5 = 3.5 °C 4 (Bottle/ $tar$ )2.3 +2.2 +2.2=2.2 °C                                                                |
|                                                                                                                                           | 5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C                                                                                                        |
| Branch EDM GP FN FM RD VAN LYD FSJ EST Other:                                                                                             | 7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C                                                                                                        |
| If multiple sites were submitted at once: Yes No                                                                                          | 9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C                                                                                                       |
| Custody Seal Intact: Yes No NA                                                                                                            | (If more than 10 coolers are received use another sheet of paper and attach)                                                                   |
| TAT: <24#r 24-48hr 48-72hr Reg Other                                                                                                      | LOGISTICS USE ONLY                                                                                                                             |
| Cooler Quantity:                                                                                                                          | Workorder No:                                                                                                                                  |
| TIME SENSITIVE ISSUES - Shipping                                                                                                          | Samples Damaged: Yes No If YES why?                                                                                                            |
|                                                                                                                                           | No Bubble Wrap Frozen Courier                                                                                                                  |
| ALREADY EXCEEDED HOLD TIME? Yes No                                                                                                        | Other:                                                                                                                                         |
| Inorganic Tests (Please Circle): Mibi, BOD, Nitrate/Nitrite, Turbidity, Microtox, Ortho PO4, Tedlar Bag, Residual Chlorine, Chlorophyll*, | Account Project Manager:have they been notified of the above issues: Yes No                                                                    |
| Chloroamines*                                                                                                                             | Whom spoken to: Date/Time:                                                                                                                     |
| Earliest Expiry:                                                                                                                          | CPM Initial                                                                                                                                    |
| Hydrocarbons: Earliest Expiry 7/26/2016                                                                                                   | General Comments: Missing Samples GS16-078,079 0 80,                                                                                           |
| SAMPLE INTEGRITY - Shipping                                                                                                               | 081,082,083,084,085,086,087. Did not receive.                                                                                                  |
| Hazardous Samples: YES NO Precaution Taken:                                                                                               | GS16-061 only 1x120ml jar recieved. Missing                                                                                                    |
| Legal Samples: Yes No                                                                                                                     |                                                                                                                                                |
| International Samples: Yes No                                                                                                             | Dup jar - GS16-059 reciented 2 x 120ml jar                                                                                                     |
| Tape Sealed: Yes No                                                                                                                       | with this label but no sample inside. Keceivedt, 4x120ml ja                                                                                    |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                                                                                 | of sample not on COC-label as Dup 1, Dup 2, Dup 3 Dus 4.                                                                                       |
| * C                                                                                                                                       | Analysis (See CPM) Dup 5, Dup 6, Dup 7. Each sample name has oliphicalle. 7 samples but 14 jars. Will put Hold with told otherwise page 1 of 1 |
| Date issued: October 05, 2015                                                                                                             | Analysis (see Crivi)                                                                                                                           |
| Document ID: SR-9505.003                                                                                                                  | Page 1 of 1                                                                                                                                    |

Page 20 of 23

Page 21 of 23

From: Sent:

Anthony Espinoza-Torres Monday, July 25, 2016 4:38 PM Anthony Espinoza-Torres; Abegail Benjamino; AGAT Edmonton Env Shipping

Subject: RE: Chain of custody

And please log as 200% RUSH. The client contacted me to upgrade the rush status.

Thank you,

Anthony Espinoza-Torres, B.Sc.

Client Project Manager

Direct: 780-395-2527 AGAT Laboratories

Cell: 780-938-9917

Email: espinoza-torres@agatlabs.com

Canadian Science and Technology in Action, Coast to Coast I

From: Anthony Espinoza-Torres

Sent: July-25-16 4:04 PM

**To:** Abegail Benjamino; AGAT Edmonton Env Shipping **Subject:** RE: Chain of custody

Please log as IEG instead of KCB when they arrive.

Thank you,

Anthony Espinoza-Torres, B.Sc.

Client Project Manager

AGAT Laboratories

Direct: 780-395-2527

Cell: 780-938-9917

Email: espinoza-torres@agatlabs.com

Canadian Science and Technology in Action, Coast to Coast

From: Abegail Benjamino

Sent: July-25-16 3:31 PM

To: Anthony Espinoza-Torres; AGAT Edmonton Env Shipping Subject: RE: Chain of custody

Hey Anthony,

As per our conversation Roy left 15 mins ago to pick up the coolers at Canadian north

Abbey Benjamino Shipping Coordinator Thank you!

AGAT Laboratories Direct: 780.395.2537

Cell: 780.802.8858

Email: benjamino@agatlabs.com

# Your Canadian National Laboratory

From: Anthony Espinoza-Torres Sent: Monday, July 25, 2016 3:00 PM

To: AGAT Edmonton Env Shipping

Subject: FW: Chain of custody

the contact info for Canadian North please forward it to me and I can call to see if they are awaiting pickup FYI There should be samples for pickup at Canadian North. Samples are expiring tomorrow for BTEX/F1. If someone has

Thank you

Anthony Espinoza-Torres, B.Sc.

Client Project Manager

AGAT Laboratories

Cell: 780-938-9917 Direct: 780-395-2527

Email: espinoza-torres@agatlabs.com

# Canadian Science and Technology in Action, Coast to Coast

From: Ross, Konrad [mailto:kross@klohn.com]
Sent: July-25-16 2:56 PM

To: Anthony Espinoza-Torres

Subject: Chain of custody

Hi Anothy,

I tried to send this COC last Friday but I just realized it didn't send. The samples should be and Canadian North now for out tomorrow. pick up. Would you be able to pick them up tomorrow morning. I believe some of the samples hold time may be running

**Konrad Ross** 

Environmental Technician

Klohn Crippen Berger 500-2618 Hopewell Place NE, Calgary Alberta T1Y 7J7, CANADA

T 403.731.6853 | M 403.542.9356 | kross@klohn.com | www.klohn.com

ISO 9001 • ISO 14001 • OHSAS 18001

If you have received this e-mail in error, please delete the original message

This email was Anti Virus checked by Sophos Security Gateway. http://www.sophos.com



CLIENT NAME: IEG CONSULTANTS LTD 500-2618 HOPEWELL PLACE NE CALGARY, AB T1Y7J7

(403) 262-5505

ATTENTION TO: Konrad Ross

PROJECT: A04012A08

AGAT WORK ORDER: 16E123918

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Aug 11, 2016

PAGES (INCLUDING COVER): 25

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

| NOTES |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

\*NOTE O

Page 1 of 25

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### AGAT Western Canada - OC Pesticides (Soil)

|                           |      |             |          | 711 7700101 | II Callada - |          | 400 (0011) |          |                           |
|---------------------------|------|-------------|----------|-------------|--------------|----------|------------|----------|---------------------------|
| DATE RECEIVED: 2016-08-07 |      |             |          |             |              |          |            |          | DATE REPORTED: 2016-08-11 |
|                           |      | SAMPLE DESC | RIPTION: | GS16-155    | GS16-156     | GS16-157 | GS16-158   | GS16-159 |                           |
|                           |      | SAMF        | LE TYPE: | Soil        | Soil         | Soil     | Soil       | Soil     |                           |
|                           |      | DATE S      | AMPLED:  | 8/4/2016    | 8/4/2016     | 8/4/2016 | 8/4/2016   | 8/4/2016 |                           |
| Parameter                 | Unit | G/S         | RDL      | 7756784     | 7756785      | 7756786  | 7756787    | 7756788  |                           |
| DDD (o,p')                | μg/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| pp'-DDD                   | μg/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| DDD (o,p' + p,p' )        | μg/g |             | 0.007    | <0.007      | < 0.007      | < 0.007  | < 0.007    | < 0.007  |                           |
| pp'-DDE                   | ug/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| pp'-DDE                   | μg/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| DDE (Total)               | μg/g |             | 0.007    | <0.007      | < 0.007      | <0.007   | < 0.007    | < 0.007  |                           |
| pp'-DDT                   | μg/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| pp'- DDT                  | μg/g |             | 0.005    | < 0.005     | < 0.005      | < 0.005  | < 0.005    | < 0.005  |                           |
| DDT (Total)               | μg/g | 0.7         | 0.007    | <0.007      | < 0.007      | <0.007   | < 0.007    | < 0.007  |                           |
| Moisture Content          | %    |             | 0.1      | 4.3         | 3.4          | 5.9      | 7.4        | 9.5      |                           |
| Surrogate                 | Unit | Acceptabl   | e Limits |             |              |          |            |          |                           |
| ГСМХ                      | %    | 50-1        | 30       | 62          | 88           | 70       | 54         | 84       |                           |
| Decachlorobiphenyl        | %    | 60-1        | 30       | 66          | 90           | 88       | 66         | 104      |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Western Canada ABT1 Herb\_Pest Soil Lowest Detection Limit

7756784-7756788 Results are based on the dry weight of the soil.





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          | [        | DATE REPORTI | ED: 2016-08-11 |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-078 | GS16-079 | GS16-080 | GS16-081 | GS16-082 | GS16-083     | GS16-084       | GS16-085 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
| I                              |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756707  | 7756708  | 7756709  | 7756710  | 7756711  | 7756712      | 7756713        | 7756714  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | < 0.005  | < 0.005  | < 0.005  | <0.005       | <0.005         | < 0.005  |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05       | <0.05          | 0.26     |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01        | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05       | <0.05          | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10      | <10      | <10      | 90       | <10      | <10          | <10            | <10      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 201      | <10      | <10      | 139      | 31       | 95           | 57             | 62       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 88       | <10      | <10      | 35       | 14       | 42           | <10            | 13       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A          | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 51       | 2        | 2        | 22       | 8        | 36           | 52             | 42       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 98       | 100      | 99       | 98       | 98       | 98           | 98             | 97       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 109      | 89       | 93       | 103      | 91       | 102          | 128            | 114      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 96       | 94       | 98       | 97       | 98       | 95           | 93             | 92       |
| İ                              |       |                     |          |          |          |          |          |              |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          | [        | DATE REPORT | ED: 2016-08-11 |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-086 | GS16-087 | GS16-088 | GS16-089 | GS16-090 | GS16-091    | GS16-092       | GS16-093 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016    | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756715  | 7756716  | 7756717  | 7756718  | 7756719  | 7756720     | 7756721        | 7756722  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | < 0.005  | < 0.005  | < 0.005  | < 0.005  | <0.005      | < 0.005        | < 0.005  |
| Toluene                        | mg/kg | 0.05                | < 0.05   | 0.07     | 0.12     | < 0.05   | 0.16     | < 0.05      | 0.09           | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01       | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | <0.05    | <0.05    | < 0.05   | < 0.05   | <0.05    | < 0.05      | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 66       | 92       | 121      | 22       | 78       | 175         | 30             | 82       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 14       | 40       | 40       | <10      | 22       | 88          | 15             | 26       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A         | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 4        | 43       | 54       | 3        | 31       | 59          | 39             | 59       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 99       | 98       | 98       | 100      | 98       | 97          | 97             | 97       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 97       | 113      | 114      | 92       | 103      | 102         | 119            | 114      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 84       | 88       | 94       | 101      | 102      | 98          | 89             | 88       |
| 1                              |       |                     |          |          |          |          |          |             |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     |          | •        |          | •        | •        |              |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORTI | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-094 | GS16-095 | GS16-096 | GS16-097 | GS16-098 | GS16-099     | GS16-100       | GS16-101 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756723  | 7756724  | 7756725  | 7756726  | 7756727  | 7756728      | 7756729        | 7756730  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | < 0.005  | <0.005   | < 0.005  | <0.005       | <0.005         | <0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05   | 0.23     | < 0.05   | < 0.05   | 0.25     | < 0.05       | 0.10           | 0.42     |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01        | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05       | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C16 - C34 (F3)                 | mg/kg | 10                  | <10      | 239      | 61       | 49       | 247      | 91           | 61             | 255      |
| C34 - C50 (F4)                 | mg/kg | 10                  | <10      | 63       | 29       | 25       | 92       | 45           | 23             | 105      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | NA       | NA           | NA             | NA       |
| Moisture Content               | %     | 1                   | 2        | 53       | 13       | 12       | 58       | 24           | 5              | 45       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 101      | 97       | 97       | 98       | 105      | 106          | 105            | 102      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 95       | 107      | 98       | 101      | 105      | 99           | 84             | 105      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 89       | 81       | 93       | 84       | 98       | 93           | 93             | 95       |
|                                |       |                     |          |          |          |          |          |              |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •        | •        | ,        | •        | ,        |             |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          | [        | DATE REPORT | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-102 | GS16-103 | GS16-104 | GS16-105 | GS16-106 | GS16-107    | GS16-108       | GS16-109 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016    | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756731  | 7756732  | 7756733  | 7756734  | 7756735  | 7756736     | 7756737        | 7756738  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | <0.005   | <0.005   | <0.005   | <0.005      | < 0.005        | < 0.005  |
| Toluene                        | mg/kg | 0.05                | 0.11     | < 0.05   | 0.10     | < 0.05   | 0.78     | 0.20        | < 0.05         | 0.07     |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01       | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | 94          | 46             | 255      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 277      | 78       | 75       | 74       | 95       | 115         | 321            | 279      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 141      | 37       | 22       | 38       | 35       | 45          | 33             | 13       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA          | NA             | NA       |
| Moisture Content               | %     | 1                   | 27       | 17       | 27       | 4        | 30       | 22          | 5              | 22       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 103      | 106      | 104      | 106      | 106      | 106         | 107            | 106      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 78       | 80       | 93       | 84       | 103      | 86          | 83             | 80       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 93       | 95       | 100      | 95       | 99       | 91          | 100            | 93       |
|                                |       |                     |          |          |          |          |          |             |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     |          | •        |          | •        | •        |             |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORT | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-110 | GS16-111 | GS16-112 | GS16-113 | GS16-114 | GS16-115    | GS16-116       | GS16-117 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016    | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756739  | 7756740  | 7756741  | 7756742  | 7756743  | 7756744     | 7756745        | 7756746  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | < 0.005  | <0.005   | <0.005   | <0.005      | <0.005         | <0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 1.33     | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | 0.08     | <0.01    | 0.03     | <0.01       | 0.03           | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 0.50     | < 0.05   | 0.18     | < 0.05      | 0.26           | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | 162      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | 162      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 792      | 1020     | 402      | 341      | 5550     | 1240        | 2010           | 489      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 889      | 851      | 480      | 494      | 434      | 808         | 1200           | 586      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 42       | 21       | 47       | 33       | <10      | 88          | 41             | 18       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA          | NA             | NA       |
| Moisture Content               | %     | 1                   | 14       | 15       | 58       | 18       | 7        | 41          | 21             | 8        |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 106      | 103      | 106      | 112      | 106      | 104         | 106            | 102      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 87       | 93       | 102      | 91       | 99       | 88          | 91             | 75       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 102      | 102      | 106      | 100      | 98       | 94          | 104            | 99       |
|                                |       |                     |          |          |          |          |          |             |                |          |

Certified By:

Jung



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •        | •        | ,        | `        | ,        |              |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORTI | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-118 | GS16-119 | GS16-120 | GS16-121 | GS16-122 | GS16-123     | GS16-124       | GS16-125 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756747  | 7756748  | 7756749  | 7756750  | 7756751  | 7756752      | 7756753        | 7756754  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | 0.037    | <0.005   | 0.021    | 0.023        | 0.015          | 0.015    |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 0.44     | < 0.05   | < 0.05   | < 0.05       | 0.13           | 0.48     |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | 0.29     | 0.08     | 0.12     | 0.02         | 0.21           | 0.21     |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 6.22     | 1.31     | 0.71     | < 0.05       | 1.29           | 2.33     |
| C6 - C10 (F1)                  | mg/kg | 10                  | 10       | 30       | 470      | 160      | <10      | 10           | 110            | 220      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 10       | 30       | 460      | 160      | <10      | 10           | 110            | 220      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1320     | 1440     | 8130     | 2110     | 164      | 157          | 890            | 1700     |
| C16 - C34 (F3)                 | mg/kg | 10                  | 2330     | 1240     | 2790     | 890      | 496      | 185          | 242            | 146      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 57       | 32       | 66       | <10      | 208      | 84           | 17             | 38       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A          | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 16       | 11       | 25       | 7        | 26       | 58           | 16             | 50       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 95       | 91       | 89       | 103      | 93       | 99           | 100            | 98       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 99       | 104      | 72       | 114      | 96       | 82           | 106            | 99       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 122      | 126      | 121      | 118      | 106      | 76           | 106            | 92       |
|                                |       |                     |          |          |          |          |          |              |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,        | `        | ,        | `        | ,        |              |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORTI | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-126 | GS16-127 | GS16-128 | GS16-129 | GS16-130 | GS16-131     | GS16-132       | GS16-133 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756755  | 7756756  | 7756757  | 7756758  | 7756759  | 7756760      | 7756761        | 7756762  |
| Benzene                        | mg/kg | 0.005               | 0.405    | 0.073    | 0.207    | <0.005   | <0.005   | <0.005       | <0.005         | < 0.005  |
| Toluene                        | mg/kg | 0.05                | 20.2     | 1.86     | 3.75     | < 0.05   | < 0.05   | < 0.05       | < 0.05         | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | 6.16     | 0.42     | 0.57     | 0.01     | <0.01    | <0.01        | <0.01          | < 0.01   |
| Xylenes                        | mg/kg | 0.05                | 46.3     | 3.92     | 4.09     | 0.67     | < 0.05   | 0.06         | 0.16           | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | 1920     | 470      | 120      | 110      | 50       | 50           | 40             | 60       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 1850     | 470      | 120      | 110      | 50       | 50           | 40             | 60       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 10400    | 2670     | 682      | 2120     | 1240     | 1700         | 1360           | 2780     |
| C16 - C34 (F3)                 | mg/kg | 10                  | 955      | 950      | 1020     | 1200     | 1160     | 1520         | 1420           | 2120     |
| C34 - C50 (F4)                 | mg/kg | 10                  | 152      | 260      | 467      | 50       | 46       | 102          | 55             | 125      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A          | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 62       | 58       | 28       | 8        | 11       | 13           | 10             | 14       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 89       | 104      | 100      | 97       | 96       | 97           | 100            | 94       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 105      | 100      | 95       | 106      | 103      | 114          | 119            | 120      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 109      | 108      | 105      | 127      | 124      | 127          | 106            | 116      |
|                                |       |                     |          |          |          |          |          |              |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     |          | •        |          | •        | •        |              |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORTI | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-134 | GS16-135 | GS16-136 | GS16-137 | GS16-138 | GS16-139     | GS16-140       | GS16-141 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756763  | 7756764  | 7756765  | 7756766  | 7756767  | 7756768      | 7756769        | 7756770  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | < 0.005  | <0.005   | <0.005   | <0.005       | <0.005         | <0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 0.13     | 0.06     | 0.12     | 0.13         | 0.07           | 0.23     |
| Ethylbenzene                   | mg/kg | 0.01                | 0.04     | <0.01    | 0.01     | <0.01    | <0.01    | <0.01        | 0.03           | <0.01    |
| Xylenes                        | mg/kg | 0.05                | 0.48     | < 0.05   | 0.09     | < 0.05   | < 0.05   | < 0.05       | 0.42           | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | 110      | <10      | 60       | <10      | <10      | <10          | 130            | 20       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 110      | <10      | 60       | <10      | <10      | <10          | 130            | 20       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1600     | 19       | 1640     | 229      | 331      | 228          | 3430           | 1380     |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1120     | 79       | 2040     | 665      | 1470     | 820          | 2610           | 2420     |
| C34 - C50 (F4)                 | mg/kg | 10                  | 62       | 22       | 542      | 275      | 776      | 436          | 284            | 644      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A          | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 15       | 4        | 36       | 29       | 31       | 21           | 16             | 28       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 91       | 94       | 101      | 99       | 96       | 95           | 94             | 99       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 92       | 104      | 113      | 95       | 98       | 100          | 98             | 109      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 120      | 106      | 121      | 111      | 104      | 103          | 108            | 109      |
|                                |       |                     |          |          |          |          |          |              |                |          |





SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,        | `        | ,        | `        | ,        |             |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORT | ED: 2016-08-11 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-142 | GS16-143 | GS16-144 | GS16-145 | GS16-146 | GS16-147    | GS16-148       | GS16-149 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016    | 8/4/2016       | 8/4/2016 |
| Parameter                      | Unit  | G/S RDL             | 7756771  | 7756772  | 7756773  | 7756774  | 7756775  | 7756776     | 7756777        | 7756778  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | 0.009    | <0.005   | < 0.005  | <0.005   | <0.005      | <0.005         | < 0.005  |
| Toluene                        | mg/kg | 0.05                | < 0.05   | 3.83     | 0.17     | < 0.05   | 0.08     | 0.08        | < 0.05         | 0.08     |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | 0.11     | <0.01    | <0.01    | <0.01    | <0.01       | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | 0.51     | < 0.05   | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | 10       | 10       | <10      | <10      | <10      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 10       | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1330     | 344      | 94       | 32       | 47       | 32          | 148            | 317      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1860     | 564      | 558      | 537      | 479      | 741         | 534            | 1000     |
| C34 - C50 (F4)                 | mg/kg | 10                  | 192      | 153      | 282      | 354      | 322      | 466         | 339            | 440      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A         | N/A            | N/A      |
| Moisture Content               | %     | 1                   | 11       | 22       | 21       | 20       | 23       | 26          | 29             | 20       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 98       | 95       | 96       | 93       | 97       | 98          | 98             | 95       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 92       | 96       | 92       | 84       | 86       | 88          | 93             | 96       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 109      | 104      | 102      | 104      | 103      | 97          | 103            | 111      |
|                                |       |                     |          |          |          |          |          |             |                |          |

Certified By:

Jung



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,        | `        | ,        | `        | ,        |              |                |  |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|--|
| DATE RECEIVED: 2016-08-07      |       |                     |          |          |          |          |          | DATE REPORTI | ED: 2016-08-11 |  |
|                                |       | SAMPLE DESCRIPTION: | GS16-150 | DUP - 8  | DUP - 9  | DUP - 10 | DUP - 11 | DUP - 12     | DUP - 13       |  |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           |  |
|                                |       | DATE SAMPLED:       | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016     | 8/4/2016       |  |
| Parameter                      | Unit  | G/S RDL             | 7756779  | 7756791  | 7756792  | 7756793  | 7756795  | 7756802      | 7756803        |  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | <0.005   | < 0.005  | < 0.005  | 0.008    | < 0.005      | < 0.005        |  |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | 0.24     | 0.08     | 0.25     | 0.13         | 0.06           |  |
| Ethylbenzene                   | mg/kg | 0.01                | 0.01     | <0.01    | <0.01    | <0.01    | 0.15     | 0.01         | <0.01          |  |
| Xylenes                        | mg/kg | 0.05                | 0.19     | < 0.05   | < 0.05   | < 0.05   | 6.05     | 0.10         | <0.05          |  |
| C6 - C10 (F1)                  | mg/kg | 10                  | 50       | <10      | <10      | <10      | 540      | 50           | <10            |  |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 50       | <10      | <10      | <10      | 540      | 50           | <10            |  |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1880     | <10      | <10      | 335      | 13000    | 1350         | 32             |  |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1960     | 105      | 774      | 523      | 3830     | 1900         | 503            |  |
| C34 - C50 (F4)                 | mg/kg | 10                  | 162      | 52       | 525      | 63       | 108      | 706          | 331            |  |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A      | N/A      | N/A      | N/A      | N/A      | N/A          | N/A            |  |
| Moisture Content               | %     | 1                   | 12       | 3.2      | 58       | 17       | 18       | 31           | 21             |  |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |  |
| Toluene-d8 (BTEX)              | %     | 50-150              | 95       | 93       | 97       | 99       | 87       | 98           | 101            |  |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 107      | 94       | 72       | 95       | 78       | 100          | 110            |  |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 112      | 104      | 107      | 113      | 120      | 117          | 103            |  |
|                                |       |                     |          |          |          |          |          |              |                |  |





# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

DATE RECEIVED: 2016-08-07 **DATE REPORTED: 2016-08-11** 

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard

7756707-7756746 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34. Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that

hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

CLIENT NAME: IEG CONSULTANTS LTD

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

7756747-7756803 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

C>10 - C16 (F2- Napthalene) is a calculated parameter. The calculated value is F2 - Napthalene (if requested).

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (if requested).

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Extraction and holding times were met for this sample.



SAMPLING SITE:

# Certificate of Analysis

AGAT WORK ORDER: 16E123918

PROJECT: A04012A08

CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

6310 ROPER ROAD

EDMONTON, ALBERTA

ATTENTION TO: Konrad Ross

SAMPLED BY:

| Polychlorinated Biphenyls Analysis - Soil |       |             |           |          |          |          |          |                           |  |  |  |  |  |
|-------------------------------------------|-------|-------------|-----------|----------|----------|----------|----------|---------------------------|--|--|--|--|--|
| DATE RECEIVED: 2016-08-07                 |       |             |           |          |          |          |          | DATE REPORTED: 2016-08-11 |  |  |  |  |  |
|                                           |       | SAMPLE DESC | CRIPTION: | GS16-151 | GS16-152 | GS16-153 | GS16-154 |                           |  |  |  |  |  |
|                                           |       | SAME        | PLE TYPE: | Soil     | Soil     | Soil     | Soil     |                           |  |  |  |  |  |
|                                           |       | DATE S      | SAMPLED:  | 8/4/2016 | 8/4/2016 | 8/4/2016 | 8/4/2016 |                           |  |  |  |  |  |
| Parameter                                 | Unit  | G/S         | RDL       | 7756780  | 7756781  | 7756782  | 7756783  |                           |  |  |  |  |  |
| Aroclor 1242                              | mg/kg |             | 0.05      | <0.05    | < 0.05   | < 0.05   | <0.05    |                           |  |  |  |  |  |
| Aroclor 1254                              | mg/kg |             | 0.05      | < 0.05   | < 0.05   | < 0.05   | < 0.05   |                           |  |  |  |  |  |
| Aroclor 1260                              | mg/kg |             | 0.05      | < 0.05   | < 0.05   | < 0.05   | < 0.05   |                           |  |  |  |  |  |
| Total Polychlorinated Biphenyls           | mg/kg |             | 0.05      | < 0.05   | < 0.05   | < 0.05   | < 0.05   |                           |  |  |  |  |  |
| Surrogate                                 | Unit  | Acceptab    | le Limits |          |          |          |          |                           |  |  |  |  |  |
| Decachlorobiphenyl                        | %     | 50-1        | 50        | 98       | 102      | 103      | 77       |                           |  |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7756780-7756783 Results are based on the dry weight of the sample.



AGAT WORK ORDER: 16E123918

# **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

|                                   |               |               | TTUC        | e Or        | Jarric    | 7 7 11          | <u> </u>          |       |                |          |       |                |          |         |                 |
|-----------------------------------|---------------|---------------|-------------|-------------|-----------|-----------------|-------------------|-------|----------------|----------|-------|----------------|----------|---------|-----------------|
| RPT Date: Aug 11, 2016            |               |               | Г           | UPLICATI    | ≣         |                 | REFEREN           | _     |                | METHOD   |       |                | MAT      | RIX SPI |                 |
| PARAMETER                         | Batch         | Sample        | Dup #1      | Dup #2      | RPD       | Method<br>Blank | Measured<br>Value |       | ptable<br>nits | Recovery |       | ptable<br>nits | Recovery |         | eptable<br>mits |
|                                   |               |               |             |             |           |                 |                   | Lower | Upper          |          | Lower | Upper          |          | Lower   | Upp             |
| Petroleum Hydrocarbons (BTEX      | /F1-F4) in \$ | Soil (CWS)    |             |             |           |                 |                   |       |                |          |       |                |          |         |                 |
| Benzene                           | 1383          | 7756712       | < 0.005     | < 0.005     | NA        | < 0.005         | 101%              | 80%   | 120%           | 87%      | 80%   | 120%           | 86%      | 60%     | 140             |
| Toluene                           | 1383          | 7756712       | < 0.05      | < 0.05      | NA        | < 0.05          | 108%              | 80%   | 120%           | 83%      | 80%   | 120%           | 83%      | 60%     | 140             |
| Ethylbenzene                      | 1383          | 7756712       | < 0.01      | < 0.01      | NA        | < 0.01          | 113%              | 80%   | 120%           | 87%      | 80%   | 120%           | 87%      | 60%     | 140             |
| Xylenes                           | 1383          | 7756712       | < 0.05      | < 0.05      | NA        | < 0.05          | 113%              | 80%   | 120%           | 91%      | 80%   | 120%           | 91%      | 60%     | 140             |
| C6 - C10 (F1)                     | 1383          | 7756712       | < 10        | < 10        | NA        | < 10            | 115%              | 80%   | 120%           | 116%     | 80%   | 120%           | 125%     | 60%     | 140             |
| C10 - C16 (F2)                    | 1013          | 7756712       | < 10        | < 10        | NA        | < 10            | 87%               | 80%   | 120%           | 92%      | 80%   | 120%           | 82%      | 60%     | 140             |
| C16 - C34 (F3)                    | 1013          | 7756712       | 95          | 90          | 5.4%      | < 10            | 89%               | 80%   | 120%           | 83%      | 80%   | 120%           | 75%      | 60%     | 140             |
| C34 - C50 (F4)                    | 1013          | 7756712       | 42          | 41          | NA        | < 10            | 89%               | 80%   | 120%           | 85%      | 80%   | 120%           | 75%      | 60%     | 140             |
| Moisture Content                  | 1013          | 7756712       | 36          | 36          | 0.0%      | < 1             |                   |       |                |          |       |                |          |         |                 |
| Comments: If the RPD value is NA, | the results   | of the duplic | ates are u  | nder 5X the | e RDL and | d will not b    | e calculate       | ed.   |                |          |       |                |          |         |                 |
| Petroleum Hydrocarbons (BTEX      | /F1-F4) in \$ | Soil (CWS)    |             |             |           |                 |                   |       |                |          |       |                |          |         |                 |
| Benzene                           | 4171          | 7756761       | < 0.005     | < 0.005     | NA        | < 0.005         | 108%              | 80%   | 120%           | 114%     | 80%   | 120%           | 99%      | 60%     | 140             |
| Toluene                           | 4171          | 7756761       | < 0.05      | < 0.05      | NA        | < 0.05          | 107%              | 80%   | 120%           | 109%     | 80%   | 120%           | 83%      | 60%     | 140             |
| Ethylbenzene                      | 4171          | 7756761       | < 0.01      | 0.01        | NA        | < 0.01          | 108%              | 80%   | 120%           | 119%     | 80%   | 120%           | 86%      | 60%     | 140             |
| Xylenes                           | 4171          | 7756761       | 0.16        | 0.12        | NA        | < 0.05          | 90%               | 80%   | 120%           | 116%     | 80%   | 120%           | 71%      | 60%     | 140             |
| C6 - C10 (F1)                     | 4171          | 7756761       | 40          | 40          | NA        | < 10            | 89%               | 80%   | 120%           | 87%      | 80%   | 120%           | 79%      | 60%     | 140             |
| C10 - C16 (F2)                    | 907           | 7756761       | 1360        | 1390        | 2.2%      | < 10            | 104%              | 80%   | 120%           | 93%      | 80%   | 120%           | 88%      | 60%     | 140             |
| C16 - C34 (F3)                    | 907           | 7756761       | 1420        | 1450        | 2.1%      | < 10            | 104%              | 80%   | 120%           | 95%      | 80%   | 120%           | 90%      | 60%     | 140             |
| C34 - C50 (F4)                    | 907           | 7756761       | 55          | 64          | 15.1%     | < 10            | 104%              | 80%   | 120%           | 91%      | 80%   | 120%           | 86%      | 60%     | 140             |
| Comments: If the RPD value is NA, | the results   | of the duplic | cates are u | nder 5X the | e RDL and | d will not b    | e calculate       | ed.   |                |          |       |                |          |         |                 |
| Petroleum Hydrocarbons (BTEX      | /F1-F4) in \$ | Soil (CWS)    |             |             |           |                 |                   |       |                |          |       |                |          |         |                 |
| Benzene                           | 4170          | 7756774       | <0.005      | <0.005      | NA        | < 0.005         | 111%              | 80%   | 120%           | 104%     | 80%   | 120%           | 113%     | 60%     | 140             |
| Toluene                           | 4170          | 7756774       | < 0.05      | 0.05        | NA        | < 0.05          | 113%              | 80%   | 120%           | 108%     | 80%   | 120%           | 118%     | 60%     | 140             |
| Ethylbenzene                      | 4170          | 7756774       | <0.01       | <0.01       | NA        | < 0.01          | 107%              | 80%   | 120%           | 119%     | 80%   | 120%           | 125%     | 60%     | 140             |
| Xylenes                           | 4170          | 7756774       | < 0.05      | < 0.05      | NA        | < 0.05          | 102%              | 80%   | 120%           | 115%     | 80%   | 120%           | 119%     | 60%     | 140             |
| C6 - C10 (F1)                     | 4170          | 7756774       | <10         | <10         | NA        | < 10            | 85%               | 80%   | 120%           | 85%      | 80%   | 120%           | 77%      | 60%     | 140             |
| C10 - C16 (F2)                    | 907           | 7756774       | 32          | 46          | NA        | < 10            | 98%               | 80%   | 120%           | 106%     | 80%   | 120%           | 103%     | 60%     | 140             |
| C16 - C34 (F3)                    | 907           | 7756774       | 537         | 469         | 13.5%     | < 10            | 98%               | 80%   | 120%           | 110%     | 80%   | 120%           | 105%     | 60%     | 140             |
| C34 - C50 (F4)                    | 907           | 7756774       | 354         | 311         | 12.9%     | < 10            | 98%               | 80%   | 120%           | 107%     | 80%   | 120%           | 109%     | 60%     | 140             |
| Comments: If the RPD value is NA, | the results   | of the duplic | cates are u | nder 5X the | e RDL and | d will not b    | e calculate       | ed.   |                |          |       |                |          |         |                 |
| Polychlorinated Biphenyls Analy   | /sis - Soil   |               |             |             |           |                 |                   |       |                |          |       |                |          |         |                 |
| Aroclor 1242                      | 100           | 7756780       | < 0.05      | < 0.05      | NA        | < 0.05          | 128%              | 70%   | 130%           | 103%     | 70%   | 130%           | 67%      | 50%     | 150             |
| Aroclor 1254                      | 100           | 7756780       | < 0.05      | < 0.05      | NA        | < 0.05          | 108%              | 70%   | 130%           | 108%     | 70%   | 130%           | 62%      | 50%     | 150             |
| Aroclor 1260                      | 100           | 7756780       | < 0.05      | < 0.05      | NA        | < 0.05          | 90%               | 70%   | 130%           | 96%      | 70%   | 130%           | 88%      | 50%     | 150             |
| Total Polychlorinated Biphenyls   | 100           | 7756780       | < 0.05      | < 0.05      | NA        | < 0.05          | 109%              | 700/  | 130%           | 102%     | 700/  | 130%           | 73%      | 50%     | 150             |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

#### AGAT QUALITY ASSURANCE REPORT (V1)

Page 15 of 25



# **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E123918 PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| Trace Organics Analysis (Continued) |              |              |           |         |     |                 |          |                       |        |          |       |                |             |         |                 |
|-------------------------------------|--------------|--------------|-----------|---------|-----|-----------------|----------|-----------------------|--------|----------|-------|----------------|-------------|---------|-----------------|
| RPT Date: Aug 11, 2016              |              |              | DUPLICATE |         |     |                 | REFEREN  | NCE MA                | TERIAL | METHOD   | BLANK | SPIKE          | MATRIX SPIR |         | KE              |
| PARAMETER                           | Batch        | Sample<br>Id | Dup #1    | Dup #2  | RPD | Method<br>Blank | Measured | Measured Limits Value |        | Recovery | منا ا | ptable<br>nits | Recovery    | 1 1 1 1 | eptable<br>mits |
|                                     |              | Iū           | ·         | ·       |     |                 | value    | Lower                 | Upper  |          | Lower | Upper          |             | l .     | Upper           |
| AGAT Western Canada - OC Pesti      | icides (Soil | )            |           |         |     |                 |          |                       |        |          |       |                |             |         |                 |
| DDD (o,p')                          | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 106%     | 60%                   | 140%   | 84%      | 60%   | 140%           | 88%         | 60%     | 140%            |
| pp'-DDD                             | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 75%      | 60%                   | 140%   | 76%      | 60%   | 140%           | 85%         | 60%     | 140%            |
| DDD $(o,p' + p,p')$                 | 7757177      |              | < 0.007   | < 0.007 | NA  | < 0.007         | 91%      | 60%                   | 140%   | 77%      | 60%   | 140%           | 87%         | 60%     | 140%            |
| op'-DDE                             | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 107%     | 60%                   | 140%   | 86%      | 60%   | 140%           | 96%         | 60%     | 140%            |
| pp'-DDE                             | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 82%      | 60%                   | 140%   | 74%      | 60%   | 140%           | 92%         | 60%     | 140%            |
| DDE (Total)                         | 7757177      |              | < 0.007   | < 0.007 | NA  | < 0.007         | 97%      | 60%                   | 140%   | 79%      | 60%   | 140%           | 94%         | 60%     | 140%            |
| op'-DDT                             | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 107%     | 60%                   | 140%   | 100%     | 60%   | 140%           | 86%         | 60%     | 140%            |
| pp'- DDT                            | 7757177      |              | < 0.005   | < 0.005 | NA  | < 0.005         | 88%      | 60%                   | 140%   | 110%     | 60%   | 140%           | 88%         | 60%     | 140%            |
| DDT (Total)                         | 7757177      |              | < 0.007   | < 0.007 | NA  | < 0.007         | 98%      | 60%                   | 140%   | 105%     | 60%   | 140%           | 87%         | 60%     | 140%            |

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

## **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E123918
PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| SAMPLING SITE.                 |                                 | SAMPLED BY.            |                      |
|--------------------------------|---------------------------------|------------------------|----------------------|
| PARAMETER                      | AGAT S.O.P                      | LITERATURE REFERENCE   | ANALYTICAL TECHNIQUE |
| Trace Organics Analysis        |                                 |                        |                      |
| DDD (o,p')                     | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| pp'-DDD                        | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| DDD (o,p' + p,p' )             | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| op'-DDE                        | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| pp'-DDE                        | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| DDE (Total)                    | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| op'-DDT                        | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| pp'- DDT                       | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| DDT (Total)                    | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| Moisture Content               |                                 | MOE E3139              | BALANCE              |
| тсмх                           | ORG-91-5112                     | EPA SW-846 3541 & 8081 | GC/ECD               |
| Decachlorobiphenyl             | ORG-91-5113                     | EPA SW - 846 3541/8081 | GC/ECD               |
| Benzene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Benzene                        | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| Toluene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene                   | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Toluene                        | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| Xylenes                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| C6 - C10 (F1)                  | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| Ethylbenzene                   | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| C6 - C10 (F1 minus BTEX)       | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| Xylenes                        | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| C10 - C16 (F2)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C6 - C10 (F1)                  | TO 0570                         | CCME Tier 1 Method-S L | GC/FID               |
| C16 - C34 (F3)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C6 - C10 (F1 minus BTEX)       | TO 0570                         | CCME Tier 1 Method-S L | GC/FID               |
| C34 - C50 (F4)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C10 - C16 (F2)                 | TO-0560                         | CCME Tier 1 Method-S H | GC/FID               |
| Gravimetric Heavy Hydrocarbons | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C16 - C34 (F3)                 | TO-0560                         | CCME Tier 1 Method-S H | GC/FID               |
| Moisture Content               | LAB-175-4002                    | CCME Tier 1 Method-S % | GRAVIMETRIC          |
| C34 - C50 (F4)                 | TO-0560                         | CCME Tier 1 Method-S H | GC/FID               |
| Gravimetric Heavy Hydrocarbons | TO-0560                         | CCME Tier 1 Method-S H | GC/FID               |
| Toluene-d8 (BTEX)              | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Moisture Content               | TO-0560                         | CCME Tier 1 Method-S % | GRAVIMETRIC          |
| Ethylbenzene-d10 (BTEX)        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| o-Terphenyl (F2-F4)            | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Toluene-d8 (BTEX)              | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene-d10 (BTEX)        | TO 0570                         | EPA SW-846 8260-S      | GC/MS                |
| o-Terphenyl (F2-F4)            | TO 0560                         | CCME Tier 1 Method-S H | GC/FID               |
| Aroclor 1242                   | TO-0410                         | EPA SW-846 8082        | GC/ECD               |
| Aroclor 1254                   | TO-0410                         | EPA SW-846 8082        | GC/ECD               |
| Aroclor 1260                   | TO-0410                         | EPA SW-846 8082        | GC/ECD               |



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

## Method Summary

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08

AGAT WORK ORDER: 16E123918

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| PARAMETER                       | AGAT S.O.P | LITERATURE REFERENCE | ANALYTICAL TECHNIQUE |
|---------------------------------|------------|----------------------|----------------------|
| Total Polychlorinated Biphenyls | TO-0410    | EPA SW-846 8082      | GC/ECD               |
| Decachlorobiphenyl              | TO-0410    | EPA SW-846 8082      | GC/ECD               |



2910 12 Street NE Calgary, Alberta T2E 7P7 P: 403.735.2005 • F: 403.735.2771

> Date webearth.agatlabs.com

Arrival Temperature: 19500 AGAT Job Number:

| _ |     |       | _ |
|---|-----|-------|---|
| e | and | Time: |   |

| Chain of Ci                        | ustody Record Er       | nergency         | Support Serv                                   | ices Hotline 1-855-AGAT 245 (                                                                 | 1-85       | 5-24              | 2-82           | 245)              |                          | _                   |                                     |                |               |       |         |           |         |                    |           |           |                         |
|------------------------------------|------------------------|------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|-------------------|----------------|-------------------|--------------------------|---------------------|-------------------------------------|----------------|---------------|-------|---------|-----------|---------|--------------------|-----------|-----------|-------------------------|
| Report Informa                     | ition                  | Report           | Information                                    |                                                                                               | Rep        | ort F             | orm            | at                |                          | T                   | ırna                                | arou           | nd T          | ime   | Red     | quire     | ed (T   | AT)                |           |           |                         |
|                                    |                        | 1. Name:         |                                                | Konrad Ross                                                                                   | -          |                   | le Sar         | mple              |                          | R                   | egula                               | ar TAT         | . [           | ] 5-: | 7 Bus   | siness    | s Day   | s                  |           |           |                         |
| Company:                           | IEG                    | Email:           |                                                | Kross@klohn.com                                                                               |            | per               | Page           |                   |                          |                     |                                     |                | [7            |       | cc th   | .an 2.    | 4 Hai   | ırs (20            | ገበፀራ ነ    |           |                         |
| Contact:                           | Konrad Ross            | 2. Name:         |                                                | Nicole Wills                                                                                  |            | Mui               | tiple          |                   |                          | - 1                 | ısh T                               |                |               | _     |         |           |         | ırs (20<br>ırs (10 |           |           |                         |
| Address:                           | 2618 Hopewell Place NE | Email:           |                                                | nwills@klohn.com                                                                              |            |                   | iples i        | per               |                          | (S                  | urch                                | arge)          | L             | _     |         |           |         |                    |           |           |                         |
|                                    | Calgary                | 3. Name:         |                                                |                                                                                               |            | Pag               | е              |                   | - 1                      |                     |                                     |                |               | ] Le  | :55 เก  | an 72     | z nou   | ırs (50            | 190)      |           |                         |
| Phone:                             | 403-464-7677 Fax:      | Email:           |                                                |                                                                                               |            |                   |                |                   |                          | Di                  | te F                                | Requir         | ed:           |       |         |           |         |                    | _         | _         |                         |
| LSD:                               |                        | al II            |                                                | n may impact detection limits)                                                                |            |                   |                | Cr <sup>6</sup> + |                          |                     |                                     |                |               |       |         |           |         |                    |           |           |                         |
| Client Project #:                  | A04012A08              | CCN              | _                                              | AB Tier 1 BC CSR                                                                              |            |                   | 滿              |                   |                          |                     |                                     |                |               |       |         |           |         |                    |           |           |                         |
| Invoice To                         | Same  Yes  No          | I I              | Agricultural<br>ndustrial<br>Residential/ Park | Agricultural AW Industrial IW Residential/ Park LW                                            |            | aste)             |                | Total Hg          |                          |                     | ٤                                   |                | терн/нерн     |       |         |           |         |                    |           |           |                         |
| Company:                           |                        | 11 =             | Commercial<br>Orinking Water                   | Commercial DW                                                                                 |            | <u>6</u>          | <sup>‡</sup> ့ |                   |                          |                     | Į,                                  | ) A            | =             |       |         |           | - 1     |                    |           |           | 'n                      |
| Contact:                           |                        |                  | WAL                                            | Natural Area                                                                                  |            | rate              |                | pa                |                          |                     | 1 2                                 | 2              |               |       |         |           |         |                    |           |           | ño                      |
| Address:                           | ¥-                     |                  |                                                | AB Surface Water                                                                              |            | (Saturated Paste) | ۾              | Dissolved         | ξ                        |                     | /Ac F                               | 3              |               |       |         |           |         |                    |           |           | ZARD                    |
| Phone:<br>PO/AFE#                  | Fax:                   |                  | er:<br>050 (Drilling) [                        | SPIGEC                                                                                        | CONTAINERS | oil Salinity      | s: Hws-B       |                   | Routine Water Potability | 2 Landfill          | DSO Detailed Salinity (As Received) | lieu saillili) | BTEXS/VPH/EPH |       |         |           |         |                    | R 60 DAYS |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)        | SAMPLE IDENTIFICATION  | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED                          | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                | # of CONT  | Detailed Soil     | Soil Metals:   | Water Metals:     | Routine M                | AB Class 2 Landfill | D50 Deta                            | Microtox       | ВТЕХЗ         | F3    | Toluene |           |         |                    | HOLD FOR  | PRESERVED | CONTAM                  |
| 7756707                            | GS16-078               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | х       |           |         |                    |           |           |                         |
| 708                                | GS16-079               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | X     | Х       | _         | $\perp$ |                    |           |           |                         |
| 709                                | GS16-080               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | Х     | х       |           |         |                    |           |           |                         |
| 716                                | GS16-081               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | Х     | х       |           | بامت    | 100                | -7 4      | v is      | C                       |
| 711                                | GS16-082               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | Х     | х       | +         | DHIL    | 10.40              | 1         | 2-1       | -                       |
| 71a                                | GS16-083               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | Х       |           |         |                    |           |           |                         |
| 7/3                                | GS16-084               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | х       |           |         |                    |           |           |                         |
| 714                                | GS16-085               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | Х       |           |         |                    |           |           |                         |
| 7/5                                | GS16-086               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | х       |           |         |                    |           |           |                         |
| 716                                | GS16-087               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | х       |           |         |                    |           |           |                         |
| 717                                | GS16-088               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | х     | х       |           |         |                    |           |           |                         |
| 718                                | GS16-089               | soil             | 4-Aug-16                                       |                                                                                               | 2          |                   |                |                   |                          |                     |                                     |                |               | Х     | х       |           |         |                    |           |           |                         |
| Samples Relinquished By (Print Ne  |                        | Date/ Time:      |                                                | Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): |            |                   |                |                   |                          |                     |                                     | te/Time:       | 170           | 16    |         |           |         | Page               | 1         | of        | 5                       |
| pampies nelinquistied by (FIINL No | and and orgal).        | 20W 35WC         |                                                |                                                                                               |            |                   |                |                   |                          |                     |                                     |                |               | -0    |         | <b></b> , | 200     |                    |           |           |                         |
| Samples Relinquished By (Print Na  | ame and Sign):         | Date/ Time:      |                                                | Samples Relinquished By (Print Name and Sign):                                                |            |                   |                |                   |                          |                     | Dat                                 | te/Time:       |               |       |         | 二(        | 286     | JJU                |           |           |                         |

| h) G                                  | AGAT L                | aboratori        | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | (;                     |                  | ᅍ            | Hg Cr6+       |                                                |             |                                     |          | ЕРН           |    |         |      |         |    |      |             |           |                         |
|---------------------------------------|-----------------------|------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------|--------------|---------------|------------------------------------------------|-------------|-------------------------------------|----------|---------------|----|---------|------|---------|----|------|-------------|-----------|-------------------------|
| Chain of Cu                           | stody Record          | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | (Saturated Paste)      |                  | -5e-         | Total         |                                                |             | seived)                             |          | ] LEРН/НЕРН   |    |         |      |         |    |      |             |           | S                       |
| Report to: Company:                   | IEG                   | Same as          | COC#:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ERS             |                        | F1-F4            |              | Dissolved     | andfill                                        |             | D50 Detailed Salinity (As Received) |          | эн/ерн        |    |         |      |         |    |      | DAYS        |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)           | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine water Foldoning<br>AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | Втехѕ/vPн/еPн | F3 | Toulene | F2   | Xylenes |    |      | HOLD FOR 60 | PRESERVED | CONTAMINA               |
| 7756719                               | GS16-090              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | -  | Х       |      |         |    |      |             |           | П                       |
| 720                                   | GS16-091              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       |      |         |    |      |             |           |                         |
| 721                                   | GS16-092              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       |      |         |    |      |             |           |                         |
| 722                                   | GS16-093              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       |      |         |    |      |             |           |                         |
| 723                                   | GS16-094              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | X  | Х       |      |         |    |      |             |           |                         |
| 724                                   | GS16-095              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       | х    | X       |    |      |             |           |                         |
| 725                                   | GS16-096              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | Х    | Х       |    |      |             |           |                         |
| 726                                   | GS16-097              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | х    | Х       |    |      |             |           |                         |
| 727                                   | GS16-098              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       | х    | Х       |    |      |             |           |                         |
| 728                                   | GS16-099              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | х    | Х       |    |      |             |           |                         |
| 729                                   | GS16-100              | Soil             | 4-Aug-16              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       | Х    | Х       |    |      |             |           |                         |
| 730                                   | GS16-101              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | х    | Х       |    |      |             |           |                         |
| 731                                   | GS16-102              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | Х    | Х       |    |      |             |           |                         |
| 732                                   | GS16-103              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | х  | Х       | Х    | Х       |    |      |             |           |                         |
| 733                                   | GS16-104              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       | Х    | Х       |    |      |             |           |                         |
| 734                                   | GS16-105              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        |                  |              |               |                                                |             |                                     |          |               | Х  | Х       | Х    | х       |    |      |             |           |                         |
| 735                                   | GS16-106              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | П                |              |               |                                                | Π           |                                     |          |               | х  | Х       | х    | Х       |    |      |             |           |                         |
| 736                                   | GS16-107              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | Х                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| 737                                   | GS16-108              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | Х                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| 738                                   | GS16-109              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | х                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| 739                                   | GS16-110              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | Х                |              |               |                                                |             |                                     |          |               |    | 24      | Δ    | 10      | 17 | 10   | :76:        |           |                         |
| 740                                   | GS16-111              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | х                |              |               |                                                |             |                                     |          |               |    | - 6     | 1,13 |         |    | -    | 0.          |           |                         |
| 741                                   | GS16-112              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | х                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| 742                                   | GS16-113              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | x                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| 743                                   | GS16-114              | Soil             | 4-Aug-16              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               |                        | х                |              |               |                                                |             |                                     |          |               |    |         |      |         |    |      |             |           |                         |
| Samples Relinquished By (Print Name a | nd Sign):             | Date/ Time:      |                       | In the second se | ws.             |                        | 10               | RA           | 7             |                                                |             |                                     | Date/T   | lme,          | 8  | 17      | 120  | 16      | 一  | Page | 2           | of        | 5                       |
| Samples Relinquished By (Print Name a | nd Sign):             | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                        |                  | -            |               |                                                |             |                                     | Date/T   |               |    |         |      |         |    |      |             | •         |                         |
| Samples Relinquished By (Print Name a |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                        |                  |              |               |                                                |             |                                     | Date/ T  | lme:          |    |         | E    | 0       | 88 | 31   |             |           |                         |

| G                                      | GAT La                | aborator         | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (e)                    |            | <u>₩</u>     | Hg Cr6+       |                                              |             |                        |          | ЕРН           |    |         |          |         |         |                  |           |                         |
|----------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------|--------------|---------------|----------------------------------------------|-------------|------------------------|----------|---------------|----|---------|----------|---------|---------|------------------|-----------|-------------------------|
| Chain of Cus                           | stody Record          | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | (Saturated Paste)      |            | 1 111        | Total         |                                              |             | seived)                |          | П серн/нерн   |    |         |          |         |         |                  |           | SI                      |
| Report to: Company:                    | IEG                   | Same as          | COC#:                 |                                                                                                             | VERS            | Salinity (Satura       | F1-F4      | 1 111        | S: Dissolved  | er Potability<br>andfill                     |             | Salinity (As Received) |          |               |    |         |          |         |         | 0 DAYS           |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)            | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ | Soil Metals: | Water Metals: | Routine Water Potability AB Class 2 Landfill | BC Landfill | D50 Detailed           | Microtox | BTEXS/VPH/EPH | F3 | Toulene | F2       | Xylenes |         | HOLD FOR 60 DAYS | PRESERVED | CONTAMINA'              |
| 7756744                                | GS16-115              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  |           |                         |
| 745                                    | GS16-116              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  |           |                         |
| 746 ·                                  | G\$16-117             | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  |           |                         |
| 747                                    | GS16-118              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         | $\perp$ | $\bot$           | $\perp$   |                         |
| 748                                    | GS16-119              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         | $\perp$ | $\perp$          | $\perp$   |                         |
| 749                                    | GS16-120              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    | _       | _        | _       | _       | _                | ╨         | $\perp$                 |
| 750                                    | GS16-121              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         | _        |         | _       | $\perp$          | $\perp$   |                         |
| 751                                    | GS16-122              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    | _       | _        |         | _       |                  | $\perp$   | $\perp$                 |
| 752                                    | GS16-123              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         | _        |         | $\perp$ |                  | $\perp$   |                         |
| 753                                    | GS16-124              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         | $\perp$          | _         |                         |
| 754                                    | GS16-125              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         | _       |                  | _         |                         |
| 755                                    | G\$16-126             | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    | _,,     | <i>-</i> |         | 1317    | 10               |           |                         |
| 756                                    | GS16-127              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    | 1       | 0        | IU!     | VI      |                  | -Jb       |                         |
| 757                                    | GS16-128              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  | 1         |                         |
| 758                                    | GS16-129              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  |           |                         |
| 759                                    | G\$16-130             | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          |         |         |                  |           |                         |
| 760                                    | GS16-131              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          | _       |         |                  |           |                         |
| 761                                    | GS16-132              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              | _             |                                              |             |                        |          |               |    |         | _        | _       | _       |                  | $\bot$    | $\perp$                 |
| 762                                    | GS16-133              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              | _             | _                                            | _           |                        |          |               |    | _       | _        | _       | _       |                  | +         | 4                       |
| 763                                    | GS16-134              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         | _        | _       | _       |                  | $\perp$   |                         |
| 764                                    | GS16-135              | Soil             | 4-Aug-16              |                                                                                                             | 2               | _                      | Х          | _            |               |                                              |             |                        |          |               |    | _       |          | _       | _       |                  | $\bot$    | _                       |
| 765                                    | GS16-136              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         |          | _       | _       |                  |           | _                       |
| 766                                    | GS16-137              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        | Ш        |               |    | _       |          | _       | _       |                  | +         |                         |
| 767                                    | GS16-138              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         | _        | _       | _       |                  | 1         | _                       |
| 768                                    | G\$16-139             | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х          |              |               |                                              |             |                        |          |               |    |         | $\perp$  | $\perp$ | ᆚ       |                  |           |                         |
| Samples Relinquished By (Print Name ar | nd Sign):             | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | 61.             | /                      | 11/4       | 10)          | 7.            |                                              |             |                        | Date/T   |               | 41 | 817     | 216      |         | P       | age              | 3 of      | 5                       |
| Samples Relinquished By (Print Name ar |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):  Samples Relinquished By (Print Name and Sign):              |                 |                        | /          |              |               |                                              |             |                        | Date/T   |               |    |         |          |         |         |                  |           |                         |
| Samples Relinquished By (Print Name ar | ad sign):             | Date/ Time:      |                       | Samples Relinduished by (Finit Italite alla Sign).                                                          |                 |                        |            |              | _             |                                              |             |                        | 1000     |               |    | E       | 0        | 88      | 32      |                  |           | 0                       |

| (A)                                                                          | IAT La                | boratori         | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 = F: 403.735.2771<br>webearth.agatlabs.con |                 | (a                                       |                  | #g           | au au                |                     |             |                                     |          | ЧЕРН          |    |         |     |         |              | (QQQ)                                     |                  |                                   |
|------------------------------------------------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|----------------------|---------------------|-------------|-------------------------------------|----------|---------------|----|---------|-----|---------|--------------|-------------------------------------------|------------------|-----------------------------------|
| <b>Chain of Custod</b>                                                       | y Record              | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245                                                                       |                 | ted Past                                 |                  | Crê          | lota                 |                     |             | ceived)                             |          | ] LЕРН/НЕРН   |    |         |     |         |              | DT, DDE,                                  |                  | SI                                |
| Report to:  Company:                                                         | IEG                   | Same as          | COC#:                 |                                                                                                             | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            | ااث          | r Potability         | andfill             |             | D50 Detailed Salinity (As Received) |          | Ы√ЕРН [       |    |         |     |         | mixtures)    | Organo-chlorine pesticide (DDT, DDE, DDD) | 0 DAYS           | PRESERVED CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)                                                  | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: Dissor | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH | F3 | Toulene | F2  | Xylenes | PCB (Aroctor | Organo-chlor                              | HOLD FOR 60 DAYS | PRESERVED<br>CONTAMINA:           |
| 7756769                                                                      | GS16-140              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 770                                                                          | GS16-141              | Soil             | 4-Aug-16              | -                                                                                                           | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 771                                                                          | GS16-142              | Soil             | 4-Aug-16              | 1                                                                                                           | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 772                                                                          | GS16-143              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 773                                                                          | GS16-144              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    | 79      | S.  | 111     | 07           | 1                                         | 7:10             | :                                 |
| 774                                                                          | GS16-145              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         | -            |                                           |                  | 6                                 |
| 775                                                                          | GS16-146              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 776                                                                          | GS16-147              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 777                                                                          | GS16-148              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 778                                                                          | GS16-149              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 779                                                                          | GS16-150              | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| 780                                                                          | GS16-151              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         | Х            |                                           |                  |                                   |
| 781                                                                          | GS16-152              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         | Х            |                                           |                  |                                   |
| 782                                                                          | GS16-153              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     | ;       | Х            |                                           |                  |                                   |
| 783                                                                          | GS16-154              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         | Х            |                                           |                  |                                   |
| 784                                                                          | GS16-155              | Soil             | 5-Aug-16              |                                                                                                             | 3               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | Х                                         |                  |                                   |
| 785                                                                          | GS16-156              | Soil             | 5-Aug-16              |                                                                                                             | 3               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | Х                                         |                  |                                   |
| 786                                                                          | GS16-157              | Soil             | 5-Aug-16              |                                                                                                             | 3               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         | $\Box$       | X                                         |                  | $\perp$                           |
| 787                                                                          | GS16-158              | Soil             | 5-Aug-16              |                                                                                                             | 3               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | Х                                         |                  | $\perp$                           |
| 788                                                                          | GS16-159              | Soil             | 5-Aug-16              |                                                                                                             | 3               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | Х                                         |                  |                                   |
| 789                                                                          | GS16-160              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | ;                                         | ×                |                                   |
| 790                                                                          | GS16-161              | Soil             | 5-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               |    |         |     |         |              | ;                                         | ×                |                                   |
| 741                                                                          | DUP -8                | soil             | 4-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               | х  | х       |     |         |              |                                           |                  |                                   |
| 792                                                                          | Dup - 9               | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          |                  |              |                      |                     |             |                                     |          |               | Х  | Х       | X   | X       |              |                                           |                  |                                   |
| 793                                                                          | Dup -10               | Soil             | 4-Aug-16              |                                                                                                             | 2               |                                          | Х                |              |                      |                     |             |                                     |          |               |    |         |     |         |              |                                           |                  |                                   |
| Samples Relinquished By (Print Name and Sign):                               |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | ،اری            |                                          | 1                | 12           | 2                    |                     |             |                                     | Date/T   | lase:         | 8  | 171     | 701 | 6       |              | Page                                      | 4                | of 5                              |
| Samples Refinquished By (Print Name and Sign):                               |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  |              |                      |                     |             |                                     | Date/1   | illiezz.      |    |         |     |         |              |                                           |                  |                                   |
| Samples Relinquished By (Print Name and Sign):  Document ID: DIV-50-1507,002 |                       | Date/ Time:      |                       | Samples Reilinquished By (Print Name and Sign):                                                             |                 |                                          |                  |              |                      | _                   |             |                                     | Date/ T  | 1038:         | -  |         | E   | 08      | 385          | 33                                        |                  | 1                                 |

|                                                                                  | TGAT Lab              | oorator          | ies                  | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (e)                                      |                  |              | Hg Cr6+       |                                              |             |                                     |          | ЕРН           |    |          |          |               |                        | (DDD)                                     |                  |                                   |
|----------------------------------------------------------------------------------|-----------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------|----------------------------------------------|-------------|-------------------------------------|----------|---------------|----|----------|----------|---------------|------------------------|-------------------------------------------|------------------|-----------------------------------|
| Chain of Cu                                                                      | stody Record          | Emergency Supp   | ort Services H       | Hotline 1-855-AGAT 245 (1-855-242-8245)                                                                     |                 | ted Past                                 |                  | Cre+         | Total         |                                              |             | ceived)                             |          |               |    |          |          |               |                        | DT, DDE,                                  |                  | Su                                |
| Report to: Company:                                                              | IEG                   | Same as          | COC#:                |                                                                                                             | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            |              | Dissolved     | er Potability<br>andfill                     |             | D50 Detailed Salinity (As Received) |          |               |    |          |          |               | mixtures)              | Organo-chlorine pesticide (DDT, DDE, DDD) | 0 DAYS           | PRESERVED CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)                                                      | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLI<br>CONTAINMENT                                                           | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH | F3 | Toulene  | F2       | Xylenes       | PCB (Aroclor mixtures) | Organo-chlor                              | HOLD FOR 60 DAYS | CONTAMINA:                        |
| 7756795                                                                          | Dup 11                |                  |                      |                                                                                                             | 2               |                                          | Х                |              |               |                                              |             |                                     |          |               |    |          |          |               |                        |                                           | $\perp$          |                                   |
| 802                                                                              | Dup 12                |                  |                      |                                                                                                             | 2               |                                          | Х                |              |               |                                              |             |                                     |          |               |    |          |          | $\perp$       | _                      |                                           |                  |                                   |
| 803                                                                              | Dup 13                |                  |                      |                                                                                                             | 2               |                                          | Х                |              |               |                                              |             |                                     |          |               |    |          | _        | _             | _                      | $\perp$                                   | _                | $\perp$                           |
|                                                                                  |                       |                  |                      |                                                                                                             | _               |                                          |                  | _            | 4             |                                              | 1_          | _                                   |          |               |    |          | _        | _             | 4                      | _                                         | _                | _                                 |
|                                                                                  |                       |                  |                      |                                                                                                             |                 |                                          |                  |              |               |                                              |             | _                                   |          |               |    | _        | _        | $\dashv$      | _                      | _                                         | _                | 4                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        | _                |              | _             |                                              | 1           | _                                   |          |               |    | _        | _        | _             | $\dashv$               | _                                         | _                | +                                 |
|                                                                                  |                       |                  | 4                    |                                                                                                             | _               | _                                        |                  |              | _             |                                              | _           | _                                   |          |               |    | _        | _        | _             | $\dashv$               | _                                         | _                | +                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        | _                | _            | _             | _                                            | 1           |                                     |          | Ш             |    | _        | $\dashv$ | _             | $\dashv$               | _                                         | _                | +                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        |                  |              | _             | _                                            | _           | _                                   | _        |               |    |          | _        | $\rightarrow$ | $\dashv$               | $\rightarrow$                             | +                | -                                 |
|                                                                                  |                       |                  |                      |                                                                                                             |                 |                                          |                  |              | _             |                                              | 1           | _                                   |          | Щ             |    | _        | $\dashv$ | _             | $\dashv$               | $\perp$                                   | +                |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        | _                |              |               | _                                            | 1           | _                                   |          |               |    | _        | _        | _             | _                      | _                                         | _                |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             |                 |                                          |                  |              | _             |                                              |             | _                                   |          | Щ             |    | _        | $\dashv$ | _             | $\dashv$               | $\rightarrow$                             | $\perp$          | _                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        |                  |              | _             |                                              | 1           | 1                                   |          |               |    | - 9      | 16       | AUG           | 10                     | 1                                         | 2:3              |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             | _               |                                          | _                |              | _             |                                              |             | _                                   |          |               |    | _        | -        | 14            |                        | 1                                         | _                |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             | <u> </u>        | <u> </u>                                 |                  | _            | _             |                                              | -           |                                     |          | _             |    | _        | 4        | _             | _                      | _                                         | _                |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             | _               | _                                        |                  |              | _             |                                              | 1           | _                                   |          |               |    | _        | _        | _             | _                      | _                                         | 4                | -                                 |
|                                                                                  |                       |                  |                      |                                                                                                             |                 | _                                        |                  |              | 4             |                                              | -           |                                     |          | _             |    | _        | 4        | -             | $\dashv$               | +                                         | +                | _                                 |
|                                                                                  |                       |                  | -                    |                                                                                                             | -               |                                          | _                | _            | -             | -                                            | +           | ₩                                   |          | -             |    | -        | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                | +                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | -               | ⊢                                        | _                | -            | -             | -                                            | ╁           | -                                   | -        | -             | -  | -        | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                |                                   |
|                                                                                  |                       |                  |                      |                                                                                                             | -               | -                                        |                  | -            | +             | -                                            | +           | -                                   |          | $\vdash$      | _  | $\dashv$ | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                | +                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | -               | -                                        |                  | $\dashv$     | +             | -                                            | +           | -                                   | -        | -             |    | -        | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                | +                                 |
|                                                                                  |                       | _                |                      |                                                                                                             | -               | _                                        |                  | $\dashv$     | $\dashv$      | _                                            | +           | -                                   | -        |               | -  | -        | $\dashv$ | $\dashv$      | $\rightarrow$          | +                                         | +                | -                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | -               | -                                        |                  | $\dashv$     | -             | -                                            | -           | -                                   | -        | -             |    | -        | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                | -                                 |
|                                                                                  |                       |                  |                      |                                                                                                             | -               | -                                        |                  | $\dashv$     | $\dashv$      | _                                            | +           | +-                                  | -        | $\vdash$      | _  | -        | $\dashv$ | $\dashv$      | $\dashv$               | +                                         | +                | +                                 |
|                                                                                  |                       |                  | <u> </u>             |                                                                                                             | _               | _                                        | Ш                | $\perp$      |               |                                              | 1_          | 1_                                  | L        | _             |    |          |          |               | _                      | _                                         |                  | 4                                 |
| Samples Relinquished By (Print Name ar                                           |                       | Date/ Time:      |                      | Samples Relinquished By (Print Name and Sign):  Samples Relinquished By (Print Name and Sign):              | ી.              |                                          | //               | Za           | 1             |                                              |             |                                     | Date/    |               | 81 | 7.       | 20       | 16            | F                      | Page                                      | 4                | of 55                             |
| Samples Relinquished By (Print Name ar<br>Samples Relinquished By (Print Name ar |                       | Date/ Time:      |                      | Samples Relinquished by (Print Name and Sign):  Samples Relinquished By (Print Name and Sign):              |                 |                                          |                  |              |               |                                              |             | _                                   | Date/    | - W           | -  |          |          |               |                        |                                           |                  |                                   |
| Decrees the ID. DIV. EQ. 15                                                      |                       |                  |                      | I.                                                                                                          |                 | _                                        | _                |              |               |                                              | _           | _                                   |          |               | -  |          | Ε        | 08            | 383                    | 34                                        |                  |                                   |





# SAMPLE INTEGRITY RECEIPT FORM

| RECEIVING BASICS - Shipping                                                                                                                                                                                                                                                                         | Temperature (Bottles/Jars only) N/A if only Soil Bags Received                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/Consultant:                                                                                                                                                                                                                                                                                 | FROZEN (Please Circle if samples received Frozen) 19.5°C                                                                                                                                                                                                                                                               |
| Courier:                                                                                                                                                                                                                                                                                            | 1 (Bottle/Jar) 47 7+ 60 1+ 25 11 = 17 °C 2 (Bottle/Jar) 19 5+ 19 5 + 19 5 = 17 °C °C 3 (Bottle/Jar) 20 2+ 25 11 + 20 1 = 25 25 °C °C 4 (Bottle/Jar) 4 + 4 = 0 °C 6 (Bottle/Jar) 4 + 4 = 0 °C 7 (Bottle/Jar) 4 + 4 = 0 °C 8 (Bottle/Jar) 4 + 4 = 0 °C °C 9 (Bottle/Jar) 4 + 4 = 0 °C °C 10 (Bottle/Jar) 4 + 4 = 0 °C °C |
| If multiple sites were submitted at once: Yes No                                                                                                                                                                                                                                                    | (If more than 10 coolers are received use another sheet of paper and                                                                                                                                                                                                                                                   |
| Custody Seal Intact: Yes No NA                                                                                                                                                                                                                                                                      | attach)                                                                                                                                                                                                                                                                                                                |
| TAT: <24hr 24-48hr 48-72hr Reg Other                                                                                                                                                                                                                                                                | LOGISTICS USE ONLY                                                                                                                                                                                                                                                                                                     |
| Cooler Quantity:                                                                                                                                                                                                                                                                                    | Workorder No: <u>//6E/239/8</u>                                                                                                                                                                                                                                                                                        |
| TIME SENSITIVE ISSUES - Shipping  ALREADY EXCEEDED HOLD TIME? Yes Mo  Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* , Chloroamines*  Earliest Expiry:  Hydrocarbons: Earliest Expiry 4 111, 2016 | Samples Damaged: Yes No If YES why?  No Bubble Wrap Frozen Courier  Other:                                                                                                                                                                                                                                             |
| SAMPLE INTEGRITY - Shipping                                                                                                                                                                                                                                                                         | / <del></del>                                                                                                                                                                                                                                                                                                          |
| Hazardous Samples: YES NO Precaution Taken:                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |
| Legal Samples: Yes 40                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                        |
| International Samples: Yes                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                        |
| Tape Sealed: Yes No                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                        |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                        |

\* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL COLLECT CHARGES                                                                                                                 | CHARGES AT DESTINATION                                    | FOR CARRIERS USE ONLY AT DESTINATION                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| at (Place)  SIGNATURE OF ISSUING CARRIER OR ITS AGENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/6/2016 10:12<br>(Date) (Time)                                                                                                       | TOTAL COLLECT IN DESTINATION CURRENCY                     | CURRENCY CONVERSION HATES                                         |
| NITIAL APPLICABLE BOX BELOW.  THIS SHIPMENT DOES CONTAIN DANGEROUS GOODS  REGULATED IN AIR TRANSPORT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SIGNATURE OF SHIPPER ABOVE AND INITIAL APPLICABLE BOX BELOW THIS SHIPMENT DOES NOT CONTAIN DANGEROUS GOODS REGULATED IN AIR TRANSPORT | 843.43                                                    | 0.00                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DENATED MALE                                                                                                                          | 0.00                                                      | COD   CAD                                                         |
| RE-WEIGH/DIMENSIONAL WEIGHT AND SHIPPER GUARANTEES ALL CHARGES SUBJECT TO RATE AUDIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RE-WEIGH/DIMENSION                                                                                                                    | IGES DUE CARRIER 194.83                                   | TOTAL OTHER CHARGES DUE CARRIER 0.00 1                            |
| Shipper certifies that the particulars on the face hereof are correct and that insofar as any part of the consignment contains dangerous goods, such part is properly described by name and is in proper condition for carriage by air according to the applicable Dangerous Goods Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shipper certifies that the particulars contains dangerous goods, such pa according to the applicable Danger                           | RGES DUE AGENT 0.00                                       | TOTAL OTHER CHARGES DUE AGENT 0.00                                |
| nada Charge, Fuel S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OTHER CHARGES AND DESCRIPTION  194.83 Nav Car                                                                                         | 40.16                                                     | 0.00                                                              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZONE DELIVERY CHARGES  0.00                                                                                                           | 0.00                                                      | 0.00                                                              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ZONE O:00                                                                                                                             | 608.44                                                    | PREPAID WEIGHT 0.00                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                           | 4 82                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                           |                                                                   |
| 608.44   Soil Samples   DIMS 24x27x28IN (bulk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$7.42                                                                                                                                | GAD 00 82                                                 | 82                                                                |
| ızı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RATE                                                                                                                                  | RATE CLASS CHARGEABLE COMMODITY WEIGHT                    | NO_OF GROSS Kg RJ<br>PIECES WEIGHT Ib                             |
| DUPLICATE COPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | le destination                                                                                                                        | These commodities licensed by US for ultimate destination | HANDLING INFORMATION These of HFPU                                |
| SURANCE INSURANCE - if carrier offers insurance, and such insurance is requested in accordance with the conditions thereof, indicate amount to be insured in figures in box marked "Amount of Insurance".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FLIGHT/DATE 0.00                                                                                                                      | ION FLIGHT/DATE                                           | AIRPORT OF DE                                                     |
| U PPD COLL 0.00 NCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ТО ВУ                                                                                                                                 |                                                           | ROUTING AND DESTINATION TO BY FIRST CARRIER YEG Canadian North    |
| ILITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       | OF FIRST CARRIER) AND REQUESTED ROUTING                   | AGENT'S IATA CODE  AIRPORT OF DEPARTURE (ADDR OF FIRST  Inuvik    |
| ALSO NOTIFY: NAME AND ADDRESS (OPTIONAL ACCOUNTING INFORMATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALSO NOTIFY: N                                                                                                                        |                                                           | ISSUING CARRIER'S AGENT NAME AND CITY                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRINTED NAME                                                                                                                          | 2-9356                                                    | Conrad Ross 403-542-9356                                          |
| asse such limitation of liability by declaring a higher value for carriage and paying a supplemental received in the carriage and paying a supplemental receive | Shipper may incre charge if required charge if required                                                                               | 3P9                                                       | AGAT Laboratories Lt. 6310 Roper Road Edmonton, AB T6B 3P9 Canada |
| SUBJECT TO THE CONDITIONS OF CONTRACT ON THE REVERSE HEREOF ALL GOODS MAY BE CARRIED SUBJECT TO THE MEANS INCLUDING ROLD OR ANY OTHER WARRIER UNLESS SPECIFIC CONTRACY MISTRUCTIONS ARE GIVEN HEREON BY THE SHIPPER, AND THE SHIPPER AGREES THAT THE SHIPMENTS MAY BE CARRIED VIA INTERMEDIATE STOPPING PLACES WHICH THE CARRIER DEEMS APPROPRIATE. THE MAY BE CARRIED VIA INTERMEDIATE STOPPING PLACES WHICH THE CARRIER DEEMS APPROPRIATE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                       | CONSIGNEE'S ACCOUNT NUMBER ACTAL OD CW                    | CONSIGNEE'S NAME AND ADDRESS                                      |
| GST #: R 892440629  GST #: R 892440629  pies 1, 2 and 3 of this Air Waybill are originals and have the same validity.  provide described herein are accorded in apparent good order and condition (except as noted) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co                                                                                                                                    | 7-2426                                                    | FO BOX 1130 Inuvik, NT XOE OTO Canada Fred Bailev 867-777-2426    |
| NBILL 101 3731 52 Ave E MENT NOTE) Edmonton Int Arpt, AB T9E 0V4 Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                       | - 1                                                       | Northwind Industries 146 Navy Rd.                                 |
| Canadiar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NOR 1 78 CW NOT NEGOTIABLE                                                                                                            | SHIPPER'S ACCOUNT NUMBER NOR 1 78CW                       | SHIPPER'S NAME AND ADDRESS                                        |



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

CLIENT NAME: IEG CONSULTANTS LTD 500-2618 HOPEWELL PLACE NE CALGARY, AB T1Y7J7

(403) 262-5505

ATTENTION TO: Konrad Ross

PROJECT: A04012A08

AGAT WORK ORDER: 16E126254

TRACE ORGANICS REVIEWED BY: Laarni Hafso, Laboratory Manager

DATE REPORTED: Aug 17, 2016

PAGES (INCLUDING COVER): 21

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

| NOTES |
|-------|
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
|       |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

\*NOTE O

Page 1 of 21



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |          |          |          |          |          | DATE REPORTE | ED: 2016-08-17 |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-162 | GS16-163 | GS16-164 | GS16-165 | GS16-166 | GS16-167     | GS16-168       | GS16-169 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016     | 8/9/2016       | 8/9/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771425  | 7771426  | 7771427  | 7771428  | 7771429  | 7771430      | 7771431        | 7771432  |
| Benzene                        | mg/kg | 0.005               | <0.005   | < 0.005  | < 0.005  | < 0.005  | < 0.005  | <0.005       | < 0.005        | <0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05       | < 0.05         | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01        | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05       | < 0.05         | 0.36     |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10      | <10      | 10       | 15       | <10      | 919          | 548            | 3040     |
| C16 - C34 (F3)                 | mg/kg | 10                  | 81       | 65       | 144      | 97       | 93       | 718          | 916            | 1260     |
| C34 - C50 (F4)                 | mg/kg | 10                  | 37       | 38       | 72       | 59       | 44       | 35           | 42             | 48       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA           | NA             | NA       |
| Moisture Content               | %     | 1                   | 5        | 6        | 8        | 7        | 6        | 7            | 6              | 6        |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 99       | 96       | 95       | 96       | 97       | 99           | 108            | 107      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 121      | 113      | 125      | 113      | 121      | 125          | 82             | 76       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 80       | 84       | 94       | 81       | 78       | 79           | 96             | 72       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | •        | •        | •        | •        | •        |             |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
| DATE RECEIVED: 2016-08-14      |       |                     |          |          |          |          |          | DATE REPORT | ED: 2016-08-17 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-170 | GS16-171 | GS16-172 | GS16-173 | GS16-174 | GS16-175    | GS16-176       | GS16-177 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016    | 8/9/2016       | 8/9/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771433  | 7771434  | 7771435  | 7771436  | 7771437  | 7771438     | 7771439        | 7771440  |
| Benzene                        | mg/kg | 0.005               | <0.005   | <0.005   | < 0.005  | <0.005   | <0.005   | <0.005      | < 0.005        | <0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01       | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | 0.38     | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 2970     | 2080     | 487      | 226      | 35       | 173         | 656            | 45       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1260     | 1160     | 606      | 304      | 376      | 608         | 703            | 279      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 37       | 47       | 41       | 25       | 208      | 225         | 66             | 137      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA          | NA             | NA       |
| Moisture Content               | %     | 1                   | 7        | 7        | 6        | 7        | 20       | 20          | 7              | 16       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 105      | 95       | 96       | 97       | 96       | 95          | 96             | 96       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 86       | 95       | 107      | 110      | 115      | 105         | 110            | 110      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 74       | 76       | 89       | 92       | 82       | 89          | 82             | 81       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,        | ,        | ,        | •        | ,        |             |                |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|-------------|----------------|----------|
| DATE RECEIVED: 2016-08-14      |       |                     |          |          |          |          |          | DATE REPORT | ED: 2016-08-17 |          |
|                                |       | SAMPLE DESCRIPTION: | GS16-178 | GS16-179 | GS16-180 | GS16-181 | GS16-182 | GS16-183    | GS16-184       | GS16-185 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil        | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016    | 8/9/2016       | 8/9/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771441  | 7771443  | 7771444  | 7771445  | 7771446  | 7771447     | 7771448        | 7771449  |
| Benzene                        | mg/kg | 0.005               | < 0.005  | < 0.005  | < 0.005  | < 0.005  | < 0.005  | < 0.005     | < 0.005        | < 0.005  |
| Toluene                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01    | <0.01       | <0.01          | <0.01    |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | < 0.05   | <0.05    | < 0.05   | < 0.05      | < 0.05         | < 0.05   |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10         | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 35       | 126      | 22       | 19       | 17       | 16          | 13             | 242      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 495      | 470      | 438      | 304      | 272      | 245         | 187            | 526      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 240      | 185      | 240      | 146      | 132      | 119         | 88             | 140      |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA          | NA             | NA       |
| Moisture Content               | %     | 1                   | 22       | 19       | 24       | 23       | 20       | 20          | 17             | 20       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |             |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 95       | 93       | 125      | 126      | 125      | 125         | 123            | 123      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 112      | 101      | 112      | 116      | 109      | 110         | 116            | 104      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 102      | 88       | 83       | 108      | 80       | 77          | 76             | 79       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |          |          |          |          | [        | DATE REPORTE | ED: 2016-08-17 |          |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|----------|--------------|----------------|----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-186 | GS16-187 | GS16-188 | GS16-189 | GS16-190 | GS16-191     | GS16-192       | GS16-193 |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil     | Soil         | Soil           | Soil     |
|                                |       | DATE SAMPLED:       | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016     | 8/9/2016       | 8/9/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771450  | 7771451  | 7771452  | 7771453  | 7771454  | 7771458      | 7771462        | 7771466  |
| Benzene                        | mg/kg | 0.005               | <0.005   | <0.005   | <0.005   | < 0.005  | 0.042    | <0.005       | <0.005         | <0.005   |
| Toluene                        | mg/kg | 0.05                | 0.17     | 0.24     | < 0.05   | < 0.05   | 1.05     | 0.30         | < 0.05         | 0.25     |
| Ethylbenzene                   | mg/kg | 0.01                | 0.02     | <0.01    | <0.01    | <0.01    | 0.09     | 0.07         | <0.01          | 0.06     |
| Xylenes                        | mg/kg | 0.05                | 0.06     | < 0.05   | < 0.05   | < 0.05   | 0.47     | 0.30         | < 0.05         | 0.29     |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10      | <10          | <10            | <10      |
| C10 - C16 (F2)                 | mg/kg | 10                  | 330      | 262      | 61       | <10      | 463      | 221          | 252            | 102      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 180      | 280      | 140      | 38       | 300      | 111          | 137            | 130      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 67       | 108      | 71       | 33       | 96       | 45           | 28             | 54       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA       | NA           | NA             | NA       |
| Moisture Content               | %     | 1                   | 10       | 16       | 9        | 6        | 19       | 8            | 8              | 11       |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |          |              |                |          |
| Toluene-d8 (BTEX)              | %     | 50-150              | 124      | 124      | 127      | 127      | 123      | 121          | 127            | 126      |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 109      | 111      | 112      | 111      | 112      | 95           | 114            | 111      |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 74       | 81       | 92       | 65       | 88       | 74           | 81             | 73       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |          |          |          |          |           | DATE REPORT | ED: 2016-08-17 |           |
|--------------------------------|-------|---------------------|----------|----------|----------|----------|-----------|-------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-194 | GS16-195 | GS16-196 | GS16-197 | GS16-198  | GS16-199    | GS16-200       | GS16-201  |
|                                |       | SAMPLE TYPE:        | Soil     | Soil     | Soil     | Soil     | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/10/2016 | 8/10/2016   | 8/10/2016      | 8/10/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771468  | 7771469  | 7771474  | 7771475  | 7771476   | 7771477     | 7771478        | 7771479   |
| Benzene                        | mg/kg | 0.005               | <0.005   | <0.005   | < 0.005  | <0.005   | <0.005    | <0.005      | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | 0.33     | < 0.05   | < 0.05   | < 0.05   | < 0.05    | < 0.05      | < 0.05         | 0.20      |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01    | <0.01    | <0.01    | <0.01    | <0.01     | 0.06        | <0.01          | 0.13      |
| Xylenes                        | mg/kg | 0.05                | < 0.05   | < 0.05   | <0.05    | < 0.05   | < 0.05    | 0.57        | 0.18           | 0.83      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10       | <10         | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10      | <10      | <10      | <10      | <10       | <10         | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 19       | 12       | 16       | <10      | 64        | 199         | 221            | 1660      |
| C16 - C34 (F3)                 | mg/kg | 10                  | 147      | 107      | 67       | 45       | 93        | 125         | 119            | 212       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 52       | 131      | 41       | 36       | 41        | 26          | 32             | 33        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA       | NA       | NA       | NA       | NA        | NA          | NA             | NA        |
| Moisture Content               | %     | 1                   | 12       | 6        | 7        | 5        | 8         | 6           | 6              | 7         |
| Surrogate                      | Unit  | Acceptable Limits   |          |          |          |          |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 126      | 127      | 127      | 127      | 127       | 128         | 127            | 89        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 111      | 107      | 109      | 109      | 114       | 126         | 124            | 87        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 75       | 95       | 81       | 90       | 77        | 75          | 79             | 69        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |           |           |           |           |           | DATE REPORTE | ED: 2016-08-17 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-202  | GS16-203  | GS16-204  | GS16-205  | GS16-206  | GS16-207     | GS16-208       | GS16-209  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/10/2016 | 8/10/2016 | 8/10/2016 | 8/10/2016 | 8/10/2016 | 8/10/2016    | 8/10/2016      | 8/10/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771480   | 7771481   | 7771482   | 7771483   | 7771484   | 7771485      | 7771486        | 7771487   |
| Benzene                        | mg/kg | 0.005               | 0.042     | <0.005    | < 0.005   | <0.005    | <0.005    | <0.005       | < 0.005        | <0.005    |
| Toluene                        | mg/kg | 0.05                | 0.56      | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | 0.13      | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | 0.85      | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 984       | 738       | 118       | <10       | 875       | 2120         | 2880           | 507       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 138       | 232       | 163       | 37        | 490       | 1060         | 1020           | 129       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 33        | 44        | 34        | 18        | 32        | 60           | 49             | 35        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA        | NA        | NA        | NA        | NA        | NA           | NA             | NA        |
| Moisture Content               | %     | 1                   | 6         | 11        | 10        | 5         | 9         | 11           | 14             | 12        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 85        | 80        | 81        | 82        | 81        | 80           | 76             | 76        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 108       | 104       | 99        | 96        | 108       | 108          | 122            | 117       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 73        | 79        | 74        | 74        | 93        | 92           | 86             | 78        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | `         | ,         | `         | ,         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-08-14      |       |                     |           |           |           |           |           | DATE REPORTE | ED: 2016-08-17 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-210  | GS16-211  | GS16-212  | GS16-213  | GS16-214  | GS16-215     | GS16-216       | GS16-217  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016    | 8/11/2016      | 8/11/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771488   | 7771489   | 7771490   | 7771491   | 7771492   | 7771493      | 7771494        | 7771495   |
| Benzene                        | mg/kg | 0.005               | <0.005    | < 0.005   | < 0.005   | <0.005    | < 0.005   | <0.005       | < 0.005        | <0.005    |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | 11        | <10       | 14        | <10          | <10            | 12        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 40        | 24        | 58        | 32        | 33        | 21           | 50             | 40        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 22        | <10       | 20        | 13        | 10        | <10          | 16             | 15        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA        | NA        | NA        | NA        | NA        | NA           | NA             | NA        |
| Moisture Content               | %     | 1                   | 9         | 12        | 5         | 8         | 5         | 5            | 7              | 8         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 102       | 80        | 81        | 96        | 77        | 82           | 79             | 81        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 107       | 93        | 99        | 104       | 109       | 113          | 106            | 89        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 90        | 79        | 84        | 82        | 88        | 84           | 110            | 96        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | , , ,     | (-        | ,         | ( -       | - /       |             |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|-----------|
| DATE RECEIVED: 2016-08-14      |       |                     |           |           |           |           | Ι         | DATE REPORT | ED: 2016-08-17 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-218  | GS16-219  | GS16-220  | GS16-221  | GS16-222  | GS16-223    | GS16-224       | GS16-225  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016   | 8/11/2016      | 8/11/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771496   | 7771497   | 7771498   | 7771499   | 7771500   | 7771501     | 7771502        | 7771503   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | < 0.005   | < 0.005   | < 0.005   | < 0.005     | < 0.005        | < 0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01       | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05      | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10         | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | <10       | <10       | 1070      | <10       | 43        | 12          | <10            | <10       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 25        | 43        | 426       | 24        | 111       | 69          | 43             | 46        |
| C34 - C50 (F4)                 | mg/kg | 10                  | <10       | 15        | 28        | <10       | 42        | 54          | 32             | 43        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA        | NA        | NA        | NA        | NA        | NA          | NA             | NA        |
| Moisture Content               | %     | 1                   | 6         | 6         | 4         | 3         | 3         | 5           | 5              | 5         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |             |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 96        | 81        | 80        | 79        | 94        | 90          | 95             | 90        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 103       | 99        | 98        | 109       | 103       | 117         | 97             | 112       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 95        | 97        | 92        | 98        | 63        | 79          | 69             | 77        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | •         | ,         | •         | ,         |               |                |               |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|---------------|----------------|---------------|
| DATE RECEIVED: 2016-08-14      |       |                     |           |           |           |           |           | DATE REPORTI  | ED: 2016-08-17 |               |
|                                |       | SAMPLE DESCRIPTION: | GS16-226  | GS16-227  | GS16-228  | GS16-229  | GS16-230  | GS16-109 1.0m | GS16-110 1.0m  | GS16-111 1.0m |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil          | Soil           | Soil          |
|                                |       | DATE SAMPLED:       | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/11/2016 | 8/4/2016      | 8/9/2016       | 8/9/2016      |
| Parameter                      | Unit  | G/S RDL             | 7771504   | 7771505   | 7771506   | 7771507   | 7771508   | 7771509       | 7771510        | 7771511       |
| Benzene                        | mg/kg | 0.005               | <0.005    | < 0.005   | < 0.005   | <0.005    | < 0.005   | <0.005        | <0.005         | <0.005        |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | 0.28      | 0.08      | 0.16      | 0.66          | 6.82           | 2.51          |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | < 0.01    | <0.01         | <0.01          | 0.96          |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | <0.05     | 0.05      | < 0.05    | < 0.05    | < 0.05        | 0.15           | 4.15          |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10           | <10            | 22            |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10           | <10            | 14            |
| C10 - C16 (F2)                 | mg/kg | 10                  | 20        | <10       | 381       | 37        | 28        | 103           | 112            | 2400          |
| C16 - C34 (F3)                 | mg/kg | 10                  | 87        | 102       | 828       | 616       | 499       | 929           | 2710           | 3000          |
| C34 - C50 (F4)                 | mg/kg | 10                  | 40        | 31        | 239       | 312       | 272       | 452           | 1310           | 580           |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA        | NA        | NA        | NA        | NA        | NA            | NA             | NA            |
| Moisture Content               | %     | 1                   | 4         | 4         | 30        | 31        | 27        | 46            | 52             | 37            |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |               |                |               |
| Toluene-d8 (BTEX)              | %     | 50-150              | 92        | 91        | 91        | 92        | 88        | 92            | 95             | 89            |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 103       | 108       | 114       | 114       | 115       | 114           | 105            | 117           |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 66        | 69        | 66        | 72        | 79        | 86            | 83             | 30            |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |               |               |               |               | [             | DATE REPORTI  | ED: 2016-08-17 |               |
|--------------------------------|-------|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|
|                                |       | SAMPLE DESCRIPTION: | GS16-112 1.0m | GS16-113 1.0m | GS16-114 1.0m | GS16-115 1.0m | GS16-116 1.0m | GS16-117 1.0m | GS16-118 1.0m  | GS16-119 1.0n |
|                                |       | SAMPLE TYPE:        | Soil           | Soil          |
|                                |       | DATE SAMPLED:       | 8/9/2016      | 8/9/2016      | 8/9/2016      | 8/9/2016      | 8/9/2016      | 8/9/2016      | 8/9/2016       | 8/9/2016      |
| Parameter                      | Unit  | G/S RDL             | 7771512       | 7771513       | 7771514       | 7771515       | 7771516       | 7771517       | 7771518        | 7771519       |
| Benzene                        | mg/kg | 0.005               | < 0.005       | < 0.005       | <0.005        | <0.005        | 0.444         | < 0.005       | <0.005         | < 0.005       |
| Toluene                        | mg/kg | 0.05                | 0.12          | < 0.05        | 0.06          | 1.04          | 5.26          | 0.18          | 1.49           | 2.02          |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01         | <0.01         | <0.01         | 0.15          | 1.11          | <0.01         | <0.01          | <0.01         |
| Xylenes                        | mg/kg | 0.05                | < 0.05        | < 0.05        | < 0.05        | 0.69          | 6.22          | < 0.05        | < 0.05         | < 0.05        |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10           | <10           | <10           | 21            | 73            | <10           | <10            | <10           |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10           | <10           | <10           | 19            | 60            | <10           | <10            | <10           |
| C10 - C16 (F2)                 | mg/kg | 10                  | 55            | <10           | 32            | 881           | 621           | 108           | 155            | 226           |
| C16 - C34 (F3)                 | mg/kg | 10                  | 492           | <10           | 59            | 1350          | 1190          | 2350          | 783            | 1260          |
| C34 - C50 (F4)                 | mg/kg | 10                  | 280           | 40            | 70            | 469           | 538           | <10           | 401            | 664           |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA             | NA            |
| Moisture Content               | %     | 1                   | 28            | 17            | 14            | 31            | 40            | 48            | 45             | 73            |
| Surrogate                      | Unit  | Acceptable Limits   |               |               |               |               |               |               |                |               |
| Toluene-d8 (BTEX)              | %     | 50-150              | 86            | 97            | 95            | 105           | 104           | 88            | 83             | 96            |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 125           | 102           | 102           | 88            | 101           | 119           | 120            | 114           |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 87            | 71            | 78            | 82            | 86            | 84            | 92             | 87            |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E126254

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-14      |       |                     |               |          |          |          | Г         | DATE REPORTE | D: 2016-08-17 |           |
|--------------------------------|-------|---------------------|---------------|----------|----------|----------|-----------|--------------|---------------|-----------|
| 27.112.11202.1120.12010.00.11  |       | SAMPLE DESCRIPTION: | CC16 120 1 0m | Dun 14   | Dun 15   | Dun 16   |           |              |               | Dun 24    |
|                                |       |                     |               | Dup - 14 | Dup - 15 | Dup - 16 | Dup - 17  | Dup - 18     | Dup - 20      | Dup - 21  |
|                                |       | SAMPLE TYPE:        | Soil          | Soil     | Soil     | Soil     | Soil      | Soil         | Soil          | Soil      |
|                                |       | DATE SAMPLED:       | 8/9/2016      | 8/9/2016 | 8/9/2016 | 8/9/2016 | 8/10/2016 | 8/11/2016    | 8/11/2016     | 8/10/2016 |
| Parameter                      | Unit  | G/S RDL             | 7771520       | 7771521  | 7771522  | 7771523  | 7771524   | 7771525      | 7771526       | 7771527   |
| Benzene                        | mg/kg | 0.005               | 0.471         | <0.005   | <0.005   | <0.005   | < 0.005   | <0.005       | < 0.005       | < 0.005   |
| Toluene                        | mg/kg | 0.05                | 2.36          | < 0.05   | < 0.05   | 0.10     | < 0.05    | < 0.05       | < 0.05        | 0.07      |
| Ethylbenzene                   | mg/kg | 0.01                | 0.56          | <0.01    | <0.01    | 0.02     | <0.01     | <0.01        | <0.01         | <0.01     |
| Xylenes                        | mg/kg | 0.05                | 2.51          | < 0.05   | < 0.05   | 0.06     | < 0.05    | < 0.05       | <0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | 11            | <10      | <10      | 17       | <10       | <10          | <10           | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10           | <10      | <10      | 17       | <10       | <10          | <10           | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 242           | <10      | 18       | 348      | 20        | <10          | 48            | 711       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 550           | 70       | 261      | 185      | 65        | 64           | 143           | 1210      |
| C34 - C50 (F4)                 | mg/kg | 10                  | 176           | 12       | 128      | 60       | 10        | 33           | 28            | 275       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | NA            | NA       | NA       | NA       | NA        | NA           | NA            | NA        |
| Moisture Content               | %     | 1                   | 52            | 6        | 25       | 10       | 7         | 8            | 5             | 31        |
| Surrogate                      | Unit  | Acceptable Limits   |               |          |          |          |           |              |               |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 94            | 91       | 92       | 94       | 93        | 93           | 92            | 93        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 100           | 75       | 89       | 98       | 86        | 78           | 75            | 96        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 97            | 101      | 83       | 88       | 88        | 109          | 88            | 110       |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7771425-7771527 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

AGAT WORK ORDER: 16E126254

### **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

|                                |            |            | Trac    | e Orç    | ganic | s An            | alysi             | S      |                |          |       |                |              |       |                |
|--------------------------------|------------|------------|---------|----------|-------|-----------------|-------------------|--------|----------------|----------|-------|----------------|--------------|-------|----------------|
| RPT Date: Aug 17, 2016         |            |            | С       | UPLICATI | ≣     |                 | REFEREN           | ICE MA | TERIAL         | METHOD   | BLANK | SPIKE          | MATRIX SPIKE |       | KE             |
| PARAMETER                      | Batch      | Sample     | Dup #1  | Dup #2   | RPD   | Method<br>Blank | Measured<br>Value |        | ptable<br>nits | Recovery | Lin   | ptable<br>nits | Recovery     | 1 1:0 | ptable<br>nits |
|                                |            | la         |         |          |       |                 | value             | Lower  | Upper          | ,        | Lower | Upper          | ,            | Lower | Upper          |
| Petroleum Hydrocarbons (BTEX/F | 1-F4) in S | Soil (CWS) |         |          |       |                 |                   |        |                |          |       |                |              |       |                |
| Benzene                        | 1389       | 7771275    | < 0.005 | < 0.005  | NA    | < 0.005         | 115%              | 80%    | 120%           | 84%      | 80%   | 120%           | 100%         | 60%   | 140%           |
| Toluene                        | 1389       | 7771275    | < 0.05  | < 0.05   | NA    | < 0.05          | 108%              | 80%    | 120%           | 80%      | 80%   | 120%           | 98%          | 60%   | 140%           |
| Ethylbenzene                   | 1389       | 7771275    | < 0.01  | < 0.01   | NA    | < 0.01          | 98%               | 80%    | 120%           | 80%      | 80%   | 120%           | 93%          | 60%   | 140%           |
| Xylenes                        | 1389       | 7771275    | < 0.05  | < 0.05   | NA    | < 0.05          | 107%              | 80%    | 120%           | 81%      | 80%   | 120%           | 100%         | 60%   | 140%           |
| C6 - C10 (F1)                  | 1389       | 7771275    | < 10    | < 10     | NA    | < 10            | 103%              | 80%    | 120%           | 119%     | 80%   | 120%           | 134%         | 60%   | 140%           |
| C10 - C16 (F2)                 | 861        | 7771441    | 35      | 49       | NA    | < 10            | 106%              | 80%    | 120%           | 99%      | 80%   | 120%           | 86%          | 60%   | 140%           |
| C16 - C34 (F3)                 | 861        | 7771441    | 467     | 405      | 14.2% | < 10            | 111%              | 80%    | 120%           | 91%      | 80%   | 120%           | 86%          | 60%   | 140%           |
| C34 - C50 (F4)                 | 861        | 7771441    | 240     | 217      | 10.1% | < 10            | 118%              | 80%    | 120%           | 94%      | 80%   | 120%           | 87%          | 60%   | 140%           |
| Moisture Content               | 861        | 7771441    | 22      | 22       | 0.0%  | < 1             |                   |        |                |          |       |                |              |       |                |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| Benzene          | 1390 | 7771491 | < 0.005 | < 0.005 | NA    | < 0.005 | 106% | 80% | 120% | 117% | 80% | 120% | 120% | 60% | 140% |
|------------------|------|---------|---------|---------|-------|---------|------|-----|------|------|-----|------|------|-----|------|
| Toluene          | 1390 | 7771491 | < 0.05  | < 0.05  | NA    | < 0.05  | 99%  | 80% | 120% | 95%  | 80% | 120% | 122% | 60% | 140% |
| Ethylbenzene     | 1390 | 7771491 | < 0.01  | < 0.01  | NA    | < 0.01  | 89%  | 80% | 120% | 92%  | 80% | 120% | 117% | 60% | 140% |
| Xylenes          | 1390 | 7771491 | < 0.05  | < 0.05  | NA    | < 0.05  | 99%  | 80% | 120% | 95%  | 80% | 120% | 124% | 60% | 140% |
| C6 - C10 (F1)    | 1390 | 7771491 | < 10    | < 10    | NA    | < 10    | 111% | 80% | 120% | 85%  | 80% | 120% | 91%  | 60% | 140% |
| C10 - C16 (F2)   | 835  | 7771491 | <10     | <10     | NA    | < 10    | 93%  | 80% | 120% | 112% | 80% | 120% | 113% | 60% | 140% |
| C16 - C34 (F3)   | 835  | 7771491 | 32      | 37      | 14.0% | < 10    | 97%  | 80% | 120% | 99%  | 80% | 120% | 101% | 60% | 140% |
| C34 - C50 (F4)   | 835  | 7771491 | 13      | 14      | 7.0%  | < 10    | 95%  | 80% | 120% | 103% | 80% | 120% | 106% | 60% | 140% |
| Moisture Content | 835  | 7771491 | 8       | 7       | 13.3% | < 1     |      |     |      |      |     |      |      |     |      |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Strhafor



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

## **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E126254
PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| PARAMETER                      | AGAT S.O.P                      | LITERATURE REFERENCE   | ANALYTICAL TECHNIQUE |
|--------------------------------|---------------------------------|------------------------|----------------------|
| Trace Organics Analysis        | •                               |                        | ·                    |
| Benzene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Toluene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene                   | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Xylenes                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| C6 - C10 (F1)                  | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C6 - C10 (F1 minus BTEX)       | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C10 - C16 (F2)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C16 - C34 (F3)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C34 - C50 (F4)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Gravimetric Heavy Hydrocarbons | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Moisture Content               | LAB-175-4002                    | CCME Tier 1 Method-S % | GRAVIMETRIC          |
| Toluene-d8 (BTEX)              | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene-d10 (BTEX)        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| o-Terphenyl (F2-F4)            | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |



2910 12 Street NE Calgary, Alberta T2E 7P7 P: 403.735.2005 • F: 403.735.2771

> Date and Time: webearth.agatlabs.com

| Laboratory Use On    | ly        |  |
|----------------------|-----------|--|
| Arrival Temperature: | 16.6°     |  |
| AGAT Job Number:     | 16E126254 |  |

#### Emergency Support Services Hotline 1-855-AGAT 245 (1-855-242-8245)

| Report Informa                     | tion                   | Report I         | nformation                                   |                                                    | Re         | port                   | For        | nat               |                          | 1                   | Tur         | rnar                                | our        | nd Ti           | ime i | Requ   | ire  | AT) t | (T)     |             |           |                         |
|------------------------------------|------------------------|------------------|----------------------------------------------|----------------------------------------------------|------------|------------------------|------------|-------------------|--------------------------|---------------------|-------------|-------------------------------------|------------|-----------------|-------|--------|------|-------|---------|-------------|-----------|-------------------------|
|                                    |                        | 1. Name:         |                                              | Konrad Ross                                        |            |                        |            | Sample            | •                        |                     | Reg         | ular                                | TAT        |                 | 5-7   | Busir  | ess  | Days  |         |             |           |                         |
| Company:                           | IEG                    | Email:           |                                              | Kross@klohn.com                                    | ∥└         | 1 pei                  | Pag        | е                 |                          | 1                   |             |                                     |            | r               | 1     |        | - 24 | 11    | - (2)   | 2007.       |           |                         |
| Contact:                           | Konrad Ross            | 2. Name:         |                                              | Nicole Wills                                       |            | M                      | Itiple     |                   |                          |                     | Rus         | h TA                                | T          | V               |       | s thar |      |       | •       |             |           |                         |
| Address:                           | 2618 Hopewell Place NE | Email:           |                                              | nwills@klohn.com                                   | Шг         |                        |            | s per             |                          |                     | (Sur        | rchar                               | ge)        |                 |       | s thar |      |       |         |             |           |                         |
|                                    | Calgary                | 3. Name:         |                                              |                                                    |            | Pa                     |            |                   |                          |                     |             |                                     |            |                 | Les   | s thar | 1 72 | Hour  | s (50   | )%)         |           |                         |
| Phone:                             | 403-464-7677 Fax:      | Email:           |                                              |                                                    |            |                        |            |                   |                          |                     | Date        | e Re                                | quire      | ed:             |       |        |      |       |         |             |           |                         |
| LSD:                               |                        | Require          | ments (Selectio                              | on may impact detection limits)                    |            | П                      | T          | t <sub>o</sub>    | T                        | Г                   |             |                                     |            |                 |       |        | T    | T     | Г       | $\Box$      | Г         |                         |
| Client Project #:                  | A04012A08              | CCM              |                                              | ✓ AB Tier 1 □ BC CSR                               |            |                        |            | ~   <u> </u>      | ]                        |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| Invoice To                         | Same  Yes No           | II II R          | gricultural<br>ndustrial<br>esidential/ Park | Agricultural AW Industrial IW Residential/ Park LW |            | iste)                  |            |                   | ]                        |                     |             | _                                   |            | EPH             |       |        |      |       |         |             |           |                         |
| Company:                           |                        |                  | ommercial                                    | Commercial DW                                      |            | P P                    | 1          | 5 F               |                          |                     |             | ived                                |            | =               |       |        |      |       |         |             |           |                         |
| Contact:                           |                        |                  | rinking Water                                | Natural Area                                       |            | ate                    |            | ᆲ                 | ή                        |                     |             | ece                                 |            | ᇤ               |       |        |      |       |         |             |           | Sign                    |
| Address:                           |                        |                  | WAL [                                        | AB Surface Water                                   |            | (Saturated Paste)      | 1          | /S-B<br>Dissolved | ≥                        |                     |             | As R                                |            | Псерн/нерн      |       |        |      |       |         |             |           | ARD(                    |
|                                    |                        | ∏ Oth            | er:                                          |                                                    |            |                        | . 1        | HWS-B             | abili                    | l_                  |             | ity (                               |            | 뒫               |       |        |      |       |         | ĺδ          |           | HZ.                     |
| Phone:                             | Fax:                   |                  |                                              |                                                    | &          | alin                   | F1-F4      | 티드                | <u> </u>                 | Į įį                |             | salir                               |            | E               |       |        |      |       |         | DAYS        |           |                         |
| PO/AFE#                            |                        |                  | 50 (Drilling) [                              | SPIGEC                                             | CONTAINERS | Soil S                 | <u> </u>   | S: L<br>tals:     | /ater                    | 2 Lar               | =           | iled 9                              |            | VP!             |       |        |      |       |         | 3 60        |           | NATE                    |
| LABORATORY USE<br>(LAB ID#)        | SAMPLE IDENTIFICATION  | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED                        | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT     | # of CON   | Detailed Soil Salinity | CCME BIEX/ | Soil Metals:      | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed Salinity (As Received) | Microtox   | ☐ втехѕ/vРн/еРн |       |        |      |       |         | HOLD FOR 60 | PRESERVED | CONTAMINATED/ HAZARDOUS |
| 7771425                            | GS16-162               | soil             | 9-Aug-16                                     |                                                    | 2          | -                      | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| 426                                | GS16-163               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | х          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| 427                                | GS16-164               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       | L       |             |           |                         |
| 428                                | GS16-165               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| 429                                | GS16-166               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| 430                                | GS16-167               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             |           |                         |
| 431                                | GS16-168               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            | Ш               |       |        |      | 1     | Ļ       | $\perp$     | L         | Ш                       |
| 432                                | GS16-169               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       | _      |      |       | $\perp$ | $\perp$     |           |                         |
| 433                                | GS16-170               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            | Ш               |       |        |      |       | L       | <u></u>     | _         |                         |
| 434                                | GS16-171               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        | 16   | AU(   | 11.     | , fû        | 7:1       | Ŭ.                      |
| 435                                | GS16-172               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         |             | L         |                         |
| 436                                | GS16-173               | soil             | 9-Aug-16                                     |                                                    | 2          |                        | x          |                   |                          |                     |             |                                     |            |                 |       |        |      |       |         | $\perp$     |           |                         |
| Samples Relinquished By (Print Nar | ne and Stput:          | Pate/ Time:      |                                              | Samples Relinquished By (Print Name and Sign)      | 2          |                        |            |                   |                          |                     |             | Date/T                              | - Contract | 31              | 14    | 170    | >1 < | P     | age     | 1           | of        | 5                       |
| Samples Relinquished By (Print Nar | ne and Sign):          | Pate/ Time:      |                                              | Samples Relinquished By (Print Name and Sign):     |            |                        |            |                   |                          |                     |             | Date/ T                             | lime:      |                 |       |        |      |       |         |             |           |                         |
| Samples Relinquished By (Print Nar | ne and Sign):          | Date/ Time:      |                                              | Samples Relinquished By (Print Name and Sign):     |            |                        |            |                   |                          |                     |             | Date/ T                             | ime:       |                 | Е     | 08     | 38   | 58    |         |             | _         |                         |

| (5)                                     | igat l                | aboratori        | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (6)                    |                  | Hg           | Hg Cre+       |                          |                     |             |                                     |          | EPH           |    |      |       |     |     |     |                  |                                    | _            |
|-----------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------|--------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|----|------|-------|-----|-----|-----|------------------|------------------------------------|--------------|
| Chain of Cus                            | tody Record           | Emergency Supp   | ort Services H        | lotline 1-855-AGAT 245 (1-855-242-8245)                                                                     |                 | (Saturated Paste)      |                  | Cr6+         | Total         |                          |                     |             | eived)                              |          | ГЕРН/НЕРН     |    |      |       |     |     |     |                  | ٥                                  | 2            |
| Report to: Company:                     | IEG                   | Same as          | COC#:                 |                                                                                                             | ERS             | Salinity (Satural      | F1-F4            | HWS-B        | Dissolved     | er Potability            | ındfill             |             | D50 Detailed Salinity (As Received) |          | эн/ЕРН        |    |      |       |     |     |     | ) DAYS           | PRESERVED CONTAMINATED/ HAZARDOIIS | EU/ PACALION |
| LABORATORY USE (LAB ID#)                | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPL CONTAINMENT                                                               | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |    |      |       |     |     |     | HOLD FOR 60 DAYS | PRESERVED                          | CONTAINING   |
| 7771437                                 | G\$16-174             | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 438                                     | GS16-175              | Soil             | 9-Aug-16              |                                                                                                             | 2               | Γ                      | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 439                                     | GS16-176              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 440                                     | GS16-177              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 441                                     | GS16-178              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 443                                     | GS16-179              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 444                                     | GS16-180              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 445                                     | GS16-181              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 446                                     | GS16-182              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 447                                     | GS16-183              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 448                                     | GS16-184              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 449                                     | GS16-185              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 450                                     | GS16-186              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 451                                     | GS16-187              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 452                                     | GS16-188              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 453                                     | GS16-189              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 454                                     | GS16-190              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          | Ţ                   |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 458                                     | GS16-191              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    | _            |
| 462                                     | G\$16-192             | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 466                                     | G\$16-193             | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 468                                     | GS16-194              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| 469                                     | GS16-195              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    | _            |
| 474                                     | G\$16-196             | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |               |                          |                     |             |                                     |          |               |    | 74   | 61    | MIC | 11/ | 1 0 | 9:3              | g                                  |              |
| 475                                     | GS16-197              | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |               |                          | I                   |             |                                     |          |               |    | Ť    | 100 6 |     |     |     | 2                | .57                                | _            |
| 476                                     | GS16-198              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | х                |              |               |                          |                     |             |                                     |          |               |    |      |       |     |     |     |                  |                                    |              |
| Samples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | · Q             |                        | /                | 1            | 12            | )                        |                     |             |                                     | Date/T   | lme:          | 51 | 1-1/ | 120   | 16  | F   | age | 2                | of                                 |              |
| Samples Relinquished By (Print Name and |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | .,,             |                        |                  |              |               |                          |                     |             |                                     | Date/T   |               |    |      |       |     |     |     |                  |                                    | _            |
| Samples Relinquished By (Print Name and | Sign):                | Date/Time:       |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                        |                  |              |               |                          |                     |             |                                     | Date/ T  | ime:          |    |      | 0     | 00  | EO  | ,   |                  | _                                  | _            |
| Document ID: DIV-50-150                 | 7.002                 |                  |                       |                                                                                                             |                 |                        |                  |              |               |                          |                     |             |                                     |          |               |    |      | U     | 00  | 59  |     |                  |                                    |              |

|                                   | AGAT 1                | _aborator:       | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (e)                    |            | . Hg         | Hg Cre+       |                          |                     |                                                 |                | EPH           |     |         |      |         |           |      |                  |           |                         |
|-----------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------|--------------|---------------|--------------------------|---------------------|-------------------------------------------------|----------------|---------------|-----|---------|------|---------|-----------|------|------------------|-----------|-------------------------|
| Chain of C                        | <b>Custody Record</b> | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | (Saturated Paste)      |            | _]Cr6+       | Total         |                          |                     | (F)                                             |                | LEPH/HEPH     |     |         |      |         |           |      |                  |           | SI                      |
| Report to:<br>Company:            | IEG                   | Same as          | COC#:                 |                                                                                                             | IERS            | Salinity (Satural      | F1-F4      | HWS-B        | S: Dissolved  | er Potability            | andfill             | BC Landfill DS0 Datailed Salinity (As Beceived) | Sau Sch farmes | PH/EPH        |     |         |      |         |           |      | 0 DAYS           |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)       | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill                                     | Microtox       | BTEXS/VPH/EPH | ] E | Toulene | F2   | Xylenes | l s       |      | HOLD FOR 60 DAYS | PRESERVED | CONTAMINA               |
| 7771477                           | GS16-199              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                | L             |     |         |      |         |           |      |                  |           |                         |
| 478                               | GS16-200              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 479                               | GS16-201              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 480                               | G516-202              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 481                               | GS16-203              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 482                               | GS16-204              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 4/83                              | GS16-205              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 484                               | GS16-206              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 485                               | GS16-207              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 486                               | GS16-208              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 487                               | GS16-209              | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 488                               | GS16-210              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         | Ш         |      |                  | Ц         |                         |
| 489                               | GS16-211              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 490                               | GS16-212              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 491                               | GS16-213              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                | $\perp$       |     |         |      |         |           |      |                  |           |                         |
| 492                               | GS16-214              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 493                               | GS16-215              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 494                               | GS16-216              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     | _                                               | 1              | $\perp$       |     | _       |      | Ш       |           |      | $\Box$           |           |                         |
| 495                               | GS16-217              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      | $\Box$           |           |                         |
| 496                               | GS16-218              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     | L       |      | Ш       | Ш         |      | $\Box$           | _         | _                       |
| 497                               | GS16-219              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  |           |                         |
| 498                               | G\$16-220             | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         | $\square$ |      | $\perp$          | $\perp$   |                         |
| 499                               | GS16-221              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         | 4.   |         |           |      |                  | ,,,,      |                         |
| 500                               | GS16-222              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         | Lb   | HU      | FI        | 4 9  | 1.12             | 19        |                         |
| 501                               | G\$16-223             | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х          |              |               |                          |                     |                                                 |                |               |     |         |      |         |           |      |                  | $\Box$    |                         |
| Semples Relinquished By (Print Na | ime and Sign):        | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | J.              | /                      | 220        | -            |               |                          |                     |                                                 | Date           | / Time:       | 8   | 115     | 120, | )6      |           | Page | 3                | of        | 5                       |
| Samples Relinquished By (Print No | ime and Sign):        | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 | -                      |            |              |               |                          |                     |                                                 |                | / Time:       | 10  |         |      |         |           |      |                  |           |                         |
| Document ID: DIV-50               |                       | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                        |            |              |               |                          |                     |                                                 | Date           | / Time:       | _   |         | Е    | 30      | 386       | 30   |                  |           | ( <del>)</del>          |

| G                                     | agat l                | aboratori        | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (6)                    |                  | - F          | Hg Cre+               |                     |             |                                     |          | ЕРН           |    |         |          |         |              | (add                                      |           |                         |
|---------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------|--------------|-----------------------|---------------------|-------------|-------------------------------------|----------|---------------|----|---------|----------|---------|--------------|-------------------------------------------|-----------|-------------------------|
| Chain of Cu                           | stody Record          | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | (Saturated Paste)      |                  | Cret         | lotai                 |                     |             | (peived)                            |          | ] LЕРН/НЕРН   |    |         | -        |         |              | DT, DDE,                                  |           | SI                      |
| Report to: Company:                   | IEG                   | Same as          | COC#:                 |                                                                                                             | ERS             | Salinity (Satural      | F1-F4            |              | : Dolobility          | andfill             |             | D50 Detailed Salinity (As Received) |          | эн/ерн        |    |         |          |         | mixtures)    | Organo-chlorine pesticide (DDT, DDE, DDD) | DAIS      | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)           | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: Dissolv | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | ВТЕХЅ/VРН/ЕРН | F3 | Toulene | F2       | Xylenes | PCB (Aroclor | Organo-chlorine pes                       | PRESERVED | CONTAMINA               |
| 7771502                               | GS16-224              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | х                |              | $\top$                |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 503                                   | GS16-225              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 504                                   | GS16-226              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 505                                   | GS16-227              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 506                                   | GS16-228              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 507                                   | GS16-229              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 508                                   | GS16-230              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 509                                   | GS16-109 1.0m         | Soil             | 4-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 516                                   | GS16-110 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 511                                   | GS16-111 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 5/2                                   | GS16-112 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 513                                   | GS16-113 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 514                                   | GS16-114 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 515                                   | GS16-115 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 516                                   | GS16-116 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 517                                   | GS16-117 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 518                                   | GS16-118 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 519                                   | GS16-119 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         | _            |                                           | $\perp$   |                         |
| 520                                   | GS16-120 1.0m         | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              | $\perp$                                   |           |                         |
| 521                                   | Dup -14               | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 522                                   | Dup -15               | Soil             | 9-Aug-16              | •                                                                                                           | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           | $\perp$   |                         |
| 523                                   | Dup -16               | Soil             | 9-Aug-16              |                                                                                                             | 2               |                        | Ϋ́               |              |                       |                     |             |                                     |          |               |    |         |          |         |              |                                           |           |                         |
| 524                                   | Dup -17               | Soil             | 10-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    | 9.5     |          | 1.17    | 8            | 00                                        | .r        |                         |
| 525                                   | Dup -18               | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    | -       | U II     | na      | 7.4          | 40                                        | 100       |                         |
| 526                                   | Dup - 20              | Soil             | 11-Aug-16             |                                                                                                             | 2               |                        | Х                |              |                       |                     |             |                                     |          |               |    |         | <b>*</b> |         |              |                                           |           |                         |
| Samples Relinquished By (Print Name a | nd Sign):             | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | -1,             |                        | 12               | N            |                       |                     |             |                                     | Date/1   | fime:         | 81 | 191     | 2010     | 6       | F            | Page                                      | 4 01      | f 5                     |
| Samples Relinquished By (Print Name a | nd Sign):             | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                        | 3                |              |                       |                     |             |                                     | Date/1   |               | _  |         |          |         | -            |                                           |           |                         |
| Samples Relinquished By (Print Name a | nd Sign):             | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                        |                  |              |                       |                     |             |                                     | Date/    | lime:         |    |         | F        | ΛA      | 86           | 1                                         |           | _                       |
| Document ID: DIV-50-15                | 507.002               |                  |                       |                                                                                                             |                 |                        |                  |              |                       |                     |             |                                     |          |               |    |         | _        | J       | UU           | 1                                         |           |                         |

|                                    | 2665                  |                  |                      | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7              |                 |                                          |                  |              | Cr6+          | Ī                        |                     | Ī                                                |                   |               |    |         |      |          |                        |                                           |                  |           |                         |
|------------------------------------|-----------------------|------------------|----------------------|------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------|--------------------------|---------------------|--------------------------------------------------|-------------------|---------------|----|---------|------|----------|------------------------|-------------------------------------------|------------------|-----------|-------------------------|
|                                    | AGAT L                | aboratori        | es                   | P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 |                                          |                  | ∏<br>₩       | ₩<br>₩        |                          |                     |                                                  |                   | H             |    |         |      |          |                        | (QQQ                                      |                  |           |                         |
| Chain of Co                        | ustody Record         | Emergency Supp   | ort Services H       | otline 1-855-AGAT 245 (1-855-242-8245)                     |                 | ited Paste                               |                  |              | Total         |                          |                     | (Position                                        | ceived            | ГЕРН/НЕРН     |    |         |      |          |                        | DT, DDE,                                  |                  |           | ns                      |
| Report to:<br>Company:             | IEG                   | Same as (        | COC#:                |                                                            | VERS            | Detailed Soil Salinity (Saturated Paste) | . F1-F4          |              | s: Dissolved  | er Potability            | andtill             | BC Landfill DE0 Potellod Collector (Ac Booglood) | J Sallinty (As Ne |               |    |         |      |          | · mixtures)            | Organo-chlorine pesticide (DDT, DDE, DDD) | O DAYS           |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)        | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPL                          | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill                                      | Microtox          | BTEXS/VPH/EPH | F3 | Toulene | 72   | Xylenes  | PCB (Aroclor mixtures) | Organo-chlo                               | HOLD FOR 60 DAYS | PRESERVED | CONTAMINA               |
| 7771527                            | Dup-21                | 10-Aug-16        |                      |                                                            | 2               |                                          | х                |              |               |                          |                     |                                                  |                   |               |    |         |      |          |                        | $\Box$                                    | $\Box$           | $\perp$   |                         |
|                                    |                       |                  |                      |                                                            | -               | _                                        |                  |              | -             | _                        | 4                   | +                                                | -                 | -             | -  | 1       |      | $\sqcup$ | $\square$              |                                           | $\dashv$         | $\dashv$  | $\Box$                  |
|                                    |                       |                  |                      |                                                            |                 | ╁                                        | H                | -            | $\dashv$      | +                        | +                   | +                                                | +                 | +             | ╫  | ╫       | -    | H        | $\vdash$               | $\dashv$                                  | $\dashv$         | +         |                         |
|                                    |                       |                  |                      |                                                            | ۳               | 1                                        | H                |              |               | -                        | +                   | +                                                | +                 | -             | ╁  | +       | ╁    | H        | $\Box$                 | $\Box$                                    | $\dashv$         | $\dashv$  |                         |
|                                    |                       |                  |                      |                                                            |                 | T                                        |                  |              | $\dashv$      |                          | $\dagger$           |                                                  |                   |               | 1  |         |      |          |                        |                                           |                  |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               |                          |                     |                                                  |                   |               |    |         |      |          |                        |                                           |                  |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               |                          |                     |                                                  |                   |               | 1  |         |      | $\sqcup$ |                        |                                           |                  |           |                         |
|                                    |                       |                  |                      |                                                            |                 | 1_                                       | Ш                | _            | 4             | 4                        | _                   | _                                                |                   |               | 4  | 1       | 1    | Ш        | $\square$              | $\square$                                 | $\dashv$         | _         |                         |
|                                    |                       |                  |                      |                                                            | -               | -                                        | Н                | -            | 4             | +                        | +                   | +                                                | -                 | -             | +  | -       | -    | H        | $\vdash$               | $\vdash$                                  | $\dashv$         | $\dashv$  | _                       |
|                                    |                       |                  |                      |                                                            | +               | -                                        | $\vdash$         | -            | -             |                          | +                   | +                                                | +                 | +             | +  | +       | ╁    | H        | $\vdash$               | $\dashv$                                  | $\dashv$         | $\dashv$  | _                       |
|                                    |                       |                  |                      |                                                            | 1               | $\vdash$                                 | H                | -            | +             | +                        | +                   | +                                                | ╁                 | +             | +  | +       | ╁╴   | H        | $\vdash$               | $\vdash$                                  | $\dashv$         | -         |                         |
|                                    |                       |                  |                      |                                                            |                 | $\vdash$                                 | Н                |              | $\dashv$      | $\top$                   | $\dagger$           | +                                                | +                 | +             | ╅  | +       | ╁    | Н        | $\Box$                 |                                           | $\dashv$         | $\exists$ |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               | T                        | $\dagger$           | +                                                |                   | 1             |    |         |      |          |                        |                                           | $\exists$        |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               |                          | 1                   |                                                  |                   |               |    |         |      |          |                        |                                           |                  |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               |                          |                     |                                                  |                   |               |    |         |      |          |                        |                                           |                  |           |                         |
|                                    |                       |                  |                      |                                                            | -               |                                          |                  | _            | -             | 4                        | +                   | 4                                                | -                 | -             | +  | +       | -    | H        |                        |                                           | -                | -         |                         |
|                                    |                       |                  |                      |                                                            | +               | -                                        | H                | -            | +             | +                        | +                   | +                                                | +                 | -             | +  | +       | +    | H        | $\vdash$               | $\dashv$                                  | $\dashv$         | $\dashv$  | _                       |
|                                    |                       |                  |                      |                                                            | +               |                                          | $\vdash$         | -            | $\dashv$      | +                        | +                   | -                                                | +                 | +             | +  | +       | ╁    | H        | $\vdash$               | $\dashv$                                  | $\dashv$         |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              | -             | +                        | +                   | +                                                | +                 | +             | ╁  | +       | 14 6 | AU       | G 1                    | 4                                         | )9: Z            | 33        |                         |
|                                    |                       |                  |                      |                                                            | +               |                                          |                  |              | +             |                          | +                   |                                                  | +                 |               | +  | +       | -    | 2 1 -40  |                        |                                           | $\dashv$         |           |                         |
|                                    |                       |                  |                      |                                                            |                 |                                          |                  |              |               | $\top$                   | $\dagger$           |                                                  | Ť                 |               | 1  | T       |      |          |                        | $\Box$                                    | $\neg$           | $\dashv$  |                         |
|                                    |                       |                  |                      |                                                            |                 | П                                        |                  |              |               |                          | 1                   |                                                  |                   |               |    |         |      |          |                        |                                           |                  |           |                         |
| Samples Relinquished By (Print Nam | ne and Sign):         | Date/ Time:      |                      | Samples Relinquished By (Print Name and Sign):             | )               | 11                                       |                  | Z)           |               |                          |                     |                                                  | Dat               | e/ Time:      | 5  | 15      | 120  | 16       | $\neg$                 | Page                                      | 4                | of        | 55                      |
| Samples Relinquished By (Print Nam |                       | Date/ Time:      |                      | Samples Normadianed by (1 tine fidule and bigh).           |                 |                                          | e).              |              |               |                          |                     |                                                  |                   | e/ Time:      |    | -       |      |          |                        |                                           |                  |           |                         |
| Samples Relinquished By (Print Nam |                       | Date/ Time:      |                      | Samples Relinquished By (Print Name and Sign):             |                 |                                          | _                |              |               |                          | _                   |                                                  | Dat               | e/ Time:      |    |         |      | E        | 08                     | 862                                       | 2                |           |                         |



# AGAT Laboratories

## SAMPLE INTEGRITY RECEIPT FORM

| RECEIVING BASICS - Shipping                                                                                                                        | Temperature (Bottles/Jars only) N/A if only Soil Bags Received                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company/Consultant: TEG                                                                                                                            | FROZEN (Please Circle if samples received Frozen)                                                                                                                                                                                                                                   |
| Courier: Canadian North Cargo Prepaid Collect                                                                                                      | 1 (Bottle/Jar) $\frac{1}{60} + \frac{16.0 + 16.7 + 16.7 = 10.4}{10.0} $ C 2(Bottle/Jar) $\frac{17.1 + 16.5 + 16.7 = 16.8}{10.0} $ C 3 (Bottle/Jar) $\frac{10.0 + 16.8 + 16.7}{10.0} = \frac{10.8}{10.0} $ C 4 (Bottle/Jar) $\frac{10.0 + 16.8 + 16.7}{10.0} = \frac{10.7}{10.0} $ C |
| Waybill#_ 518 YEV 7061 7341                                                                                                                        |                                                                                                                                                                                                                                                                                     |
| Branch EDM GP FN FM RD VAN LYD FSJ EST Other: NT                                                                                                   | 5 (Bottle/Jar) + + = °C 6 (Bottle/Jar) + + = °C 7 (Bottle/Jar) + + = °C 8 (Bottle/Jar) + + = °C                                                                                                                                                                                     |
| If multiple sites were submitted at once: Yes                                                                                                      | 9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C                                                                                                                                                                                                                                            |
| Custody Seal Intact: Yes No NA                                                                                                                     | (If more than 10 coolers are received use another sheet of paper and attach)                                                                                                                                                                                                        |
| TAT: <24hr 24-48hr 48-72hr Reg Other                                                                                                               | LOGISTICS USE ONLY                                                                                                                                                                                                                                                                  |
| Cooler Quantity:4                                                                                                                                  | Workorder No: 16E126254                                                                                                                                                                                                                                                             |
| TIME SENSITIVE ISSUES - Shipping                                                                                                                   | Samples Damaged: Yes No If YES why? '16 AUG 14 09:2  No Bubble Wrap Frozen Courier                                                                                                                                                                                                  |
| ALREADY EXCEEDED HOLD TIME? Yes No                                                                                                                 | Other:                                                                                                                                                                                                                                                                              |
| Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* , | Account Project Manager: Anthony Espines have they been notified of the above issues: No                                                                                                                                                                                            |
| Chloroamines*                                                                                                                                      | Whom spoken to: Date/Time:                                                                                                                                                                                                                                                          |
| Earliest Expiry:                                                                                                                                   | CPM Initial                                                                                                                                                                                                                                                                         |
| Hydrocarbons: Earliest Expiry                                                                                                                      | General Comments: Sample "G\$16-165" rec'd with 1x                                                                                                                                                                                                                                  |
| SAMPLE INTEGRITY - Shipping                                                                                                                        | 120ml glass jar empty.                                                                                                                                                                                                                                                              |
| Hazardous Samples: YES NO Precaution Taken:                                                                                                        |                                                                                                                                                                                                                                                                                     |
| Legal Samples: Yes No                                                                                                                              |                                                                                                                                                                                                                                                                                     |
| International Samples: Yes (No)                                                                                                                    |                                                                                                                                                                                                                                                                                     |
| Tape Sealed: Yes (No)                                                                                                                              | 3                                                                                                                                                                                                                                                                                   |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                                                                                          |                                                                                                                                                                                                                                                                                     |

\* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

ISSUING CARRIER'S AGENT NAME AND

AGENT'S IATA CODE

AGAT Laboratories Ltd 6310 Roper Road Edmonton, AB T6B 3P9

Canada 780-395-2525

CONSIGNEE'S NAME AND ADDRESS

34

518 YEV | 7061-7 SHIPPER'S NAME AND ADDRESS COPY

DUPLICATE

These commodities licensed by US for ultimate destination

HANDLING INFORMATION

HFPU

Edmonton

ROUTING AND DESTINATION TO BY FIRST CARRIER YEG Canadian North

Inuvik

AIRPORT OF DESTINATION

| NATURE AND QUANTITY OF GOODS (INCL. DIMENSIONS OR VOLUME) | samples<br>24x28x26IN (bulk) |        | 4 OF ORIGIN ADVANCE                                  |        | DESCRIPTION OF DEST. ADVANCE |       | ITEMS PREPAID   ITEMS COLLECT |                | Shipper certifies that the particulars on the face hereof are correct and that insofar as any part of the consignment | contains dangerous goods, such part is properly described by name and is in proper condition for carriage by air<br>according to the applicable Dangerous Goods Regulations. | RE-WEIGH/DIMENSIONAL WEIGHT AND SHIPPER GLIARANTEES ALL CHARGES |                       |            | SIGNATURE                         | THIS SHIPMENT DOES CONTAIN DANGEROUS GOODS REGULATED IN AIR TRANSPORT.      | 992091                                   | SIGNATURE OF ISSUING CARRIER OR ITS AGENT | 518-YEV-7061-734                     |
|-----------------------------------------------------------|------------------------------|--------|------------------------------------------------------|--------|------------------------------|-------|-------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------|------------|-----------------------------------|-----------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|
| NATURE<br>(INCL. I                                        | Soil samp                    |        | RGES DESCRIPTION                                     | 00.00  |                              | 00.00 |                               | le, Fuel S     | prrect and that insofar                                                                                               | y name and is in prop                                                                                                                                                        | SHIPPER GILL                                                    | SUBJECT TO RATE AUDIT |            |                                   |                                                                             |                                          | SIGNAT                                    | 51                                   |
| TOTAL                                                     | 586.18                       | 586.18 | ORIGIN ADVANCE CHARGES DESCRIPTION OF ORIGIN ADVANCE |        | DEST. ADVANCE CHARGES        |       | PTION                         | Canada Charge, | ars on the face hereof are co                                                                                         | part is properly described b<br>erous Goods Regulations.                                                                                                                     | ONA IWEIGHT AND                                                 | SUBJECT TO            |            | Pa you a law of lady lair like of | ONTAIN DANGEROUS GOODS<br>ORT.                                              |                                          | at (Place)                                |                                      |
| RATE / CHARGE                                             | \$7.42                       |        | P-UP PICKUP CHARGES                                  | 00.00  | L DELIVERY CHARGES           | 00.00 | OTHER CHARGES AND DESCRIPTION | 187.71 Nav     | ipper certifies that the particul                                                                                     | contains dangerous goods, such part is properly described according to the applicable Dangerous Goods Regulations.                                                           | RE-WEIGH/DIMENSIC                                               |                       |            | NTED NAME                         | THIS SHIPMENT DOES NOT CONTAIN DANGEROUS GOODS  REGULATED IN AIR TRANSPORT. | EXECUTED ON 8/12/2016 12:36              | (Date) (Time)                             | TOTAL COLLECT CHARGES                |
| CHARGEABLE                                                | ν.<br>Σ                      |        | COLLECT                                              | 586.18 | DEL                          | 00.00 | TO                            | 38.69          |                                                                                                                       | 0.00                                                                                                                                                                         |                                                                 | 187.71                | 00.0       | TOTAL COLLECT                     | 812.58                                                                      | TOTAL COLLECT IN DESTRATION CURRENCY EXI |                                           | CHARGES AT DESTINATION               |
| RATE CLASS COMMODITY ITEM NO.                             | GAD 00                       |        | WEIGHT CHARGE                                        |        | VALUATION CHARGE             |       | TAX                           |                | ARGES DUE A                                                                                                           |                                                                                                                                                                              | RGES DUE CA                                                     |                       |            | TOT                               |                                                                             |                                          | 8                                         | TO SE                                |
| GROSS <sup>Kg</sup><br>WEIGHT lb                          | 700万                         | 4 79   | PREPAID WEIGHT                                       | 00.00  | VALUATIO                     | 00.0  |                               | 00.00          | TOTAL OTHER CHARGES DUE AGENT                                                                                         | 00.0                                                                                                                                                                         | TOTAL OTHER CHARGES DUE CARRIER                                 | 00.0                  | D CURRENCY | TOTAL PREPAID                     | 00.0                                                                        | CURRENCY CONVERSION RATES                |                                           | FOR CARRIERS USE ONLY AT DESTINATION |
| NO. OF<br>PIECES<br>RCP                                   | 7'                           | 4,     |                                                      |        |                              |       |                               |                |                                                                                                                       |                                                                                                                                                                              |                                                                 |                       | COD        |                                   |                                                                             | CURRI                                    | 1                                         | FOR                                  |



6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

CLIENT NAME: IEG CONSULTANTS LTD 500-2618 HOPEWELL PLACE NE CALGARY, AB T1Y7J7

(403) 262-5505

ATTENTION TO: Konrad Ross

PROJECT: A04012A08

AGAT WORK ORDER: 16E128870

TRACE ORGANICS REVIEWED BY: Melinda Guay, Technical Reviewer

DATE REPORTED: Aug 22, 2016

PAGES (INCLUDING COVER): 15

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

| - | *NOTES |  |
|---|--------|--|
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |
|   |        |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | `         | ,         | `         | ,         |              |               |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|---------------|-----------|
| DATE RECEIVED: 2016-08-20      |       |                     |           |           |           |           |           | DATE REPORTE | D: 2016-08-22 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-231  | GS16-234  | GS16-235  | GS16-236  | GS16-237  | GS16-238     | GS16-239      | GS16-240  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil          | Soil      |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016    | 8/18/2016     | 8/18/2016 |
| Parameter                      | Unit  | G/S RDL             | 7789216   | 7789225   | 7789226   | 7789227   | 7789228   | 7789229      | 7789230       | 7789231   |
| Benzene                        | mg/kg | 0.005               | <0.005    | <0.005    | < 0.005   | <0.005    | <0.005    | <0.005       | < 0.005       | <0.005    |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05       | < 0.05        | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | 0.03      | <0.01     | <0.01     | <0.01        | <0.01         | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | 0.39      | 0.36      | 0.06      | < 0.05       | <0.05         | 0.12      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10           | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10           | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 85        | 46        | 2150      | 3100      | 1890      | 340          | <10           | 719       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 157       | 176       | 1070      | 1340      | 1100      | 399          | 33            | 442       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 27        | 41        | 25        | 28        | 30        | 19           | <10           | 23        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A           | N/A       |
| Moisture Content               | %     | 1                   | 6         | 13        | 8         | 9         | 8         | 9            | 6             | 9         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |               |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 101       | 100       | 99        | 98        | 98        | 100          | 100           | 100       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 119       | 101       | 136       | 98        | 81        | 96           | 115           | 118       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 88        | 89        | 101       | 101       | 99        | 94           | 91            | 90        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     |           | (-        |           |           | -,        |           |                          |           |  |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------------------|-----------|--|
| DATE RECEIVED: 2016-08-20      |       | DA                  |           |           |           |           |           |           | ATE REPORTED: 2016-08-22 |           |  |
|                                |       | SAMPLE DESCRIPTION: | GS16-241  | GS16-242  | GS16-243  | GS16-244  | GS16-245  | GS16-246  | GS16-247                 | GS16-248  |  |
|                                |       | SAMPLE TYPE:        | Soil                     | Soil      |  |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016                | 8/18/2016 |  |
| Parameter                      | Unit  | G/S RDL             | 7789232   | 7789233   | 7789234   | 7789235   | 7789236   | 7789237   | 7789238                  | 7789239   |  |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | < 0.005   | <0.005    | < 0.005   | < 0.005   | < 0.005                  | <0.005    |  |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | 0.06      | < 0.05    | < 0.05    | 0.09                     | < 0.05    |  |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | 0.03                     | <0.01     |  |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | < 0.05    | 0.57                     | < 0.05    |  |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10       | <10                      | <10       |  |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10       | <10                      | <10       |  |
| C10 - C16 (F2)                 | mg/kg | 10                  | 668       | 322       | 81        | 16        | 54        | 10        | 113                      | 273       |  |
| C16 - C34 (F3)                 | mg/kg | 10                  | 649       | 531       | 350       | 164       | 190       | 44        | 96                       | 126       |  |
| C34 - C50 (F4)                 | mg/kg | 10                  | 35        | 78        | 116       | 68        | 67        | 25        | 25                       | 26        |  |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A                      | N/A       |  |
| Moisture Content               | %     | 1                   | 9         | 19        | 21        | 13        | 20        | 10        | 10                       | 10        |  |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |           |                          |           |  |
| Toluene-d8 (BTEX)              | %     | 50-150              | 99        | 99        | 99        | 99        | 99        | 100       | 100                      | 100       |  |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 91        | 93        | 89        | 93        | 97        | 95        | 109                      | 130       |  |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 89        | 92        | 99        | 85        | 88        | 89        | 105                      | 85        |  |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-20      |       |                     |           |           |           |           |           | DATE REPORTE | ED: 2016-08-22 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-249  | GS16-250  | GS16-251  | GS16-252  | GS16-253  | GS16-254     | GS16-255       | GS16-256  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016    | 8/18/2016      | 8/18/2016 |
| Parameter                      | Unit  | G/S RDL             | 7789240   | 7789241   | 7789242   | 7789243   | 7789245   | 7789246      | 7789247        | 7789252   |
| Benzene                        | mg/kg | 0.005               | <0.005    | <0.005    | < 0.005   | <0.005    | <0.005    | 0.009        | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | 0.18      | < 0.05    | <0.05     | < 0.05    | < 0.05    | < 0.05       | < 0.05         | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | 0.06      | 0.04      | <0.01     | <0.01     | 0.03      | 0.01         | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | 0.41      | 0.50      | 0.11      | 0.06      | 0.21      | 0.23         | < 0.05         | 0.17      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 748       | 684       | 709       | 611       | 641       | 2180         | 502            | 428       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 170       | 140       | 141       | 209       | 259       | 1120         | 203            | 352       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 38        | 29        | 30        | 50        | 14        | 37           | <10            | 25        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 15        | 15        | 10        | 10        | 10        | 15           | 9              | 8         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 99        | 99        | 99        | 100       | 85        | 86           | 82             | 78        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 78        | 76        | 87        | 108       | 138       | 127          | 112            | 105       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 83        | 81        | 88        | 88        | 104       | 107          | 102            | 127       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-20      |       |                     |           |           |           |           |           | DATE REPORTE | ED: 2016-08-22 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-257  | Dup-22    | Dup-23    | GS16-232  | GS16-233  | GS16-258     | GS16-259       | GS16-260  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016    | 8/18/2016      | 8/18/2016 |
| Parameter                      | Unit  | G/S RDL             | 7789253   | 7789254   | 7789255   | 7789276   | 7789283   | 7789284      | 7789285        | 7789286   |
| Benzene                        | mg/kg | 0.005               | <0.005    | <0.005    | < 0.005   | <0.005    | <0.005    | <0.005       | <0.005         | <0.005    |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | 0.05      | 0.05      | < 0.05    | < 0.05       | 0.15           | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | <0.05     | < 0.05    | < 0.05    | 0.06         | 0.08           | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 41        | 45        | 262       | 213       | 13        | 184          | 150            | 11        |
| C16 - C34 (F3)                 | mg/kg | 10                  | 69        | 67        | 427       | 373       | 297       | 77           | 99             | 31        |
| C34 - C50 (F4)                 | mg/kg | 10                  | 11        | <10       | 73        | 97        | 145       | 19           | 19             | <10       |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 13        | 16        | 28        | 22        | 24        | 10           | 12             | 9         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 86        | 78        | 84        | 80        | 81        | 82           | 82             | 82        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 131       | 106       | 125       | 116       | 122       | 124          | 109            | 117       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 99        | 98        | 101       | 106       | 99        | 101          | 119            | 104       |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | ,         | ,         | ,         | ,         | ,         |              |               |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|---------------|-----------|
| DATE RECEIVED: 2016-08-20      |       |                     |           |           |           |           |           | DATE REPORTE | D: 2016-08-22 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-261  | GS16-262  | GS16-263  | GS16-264  | GS16-265  | GS16-266     | GS16-267      | GS16-268  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil          | Soil      |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016    | 8/18/2016     | 8/18/2016 |
| Parameter                      | Unit  | G/S RDL             | 7789288   | 7789289   | 7789290   | 7789291   | 7789294   | 7789295      | 7789296       | 7789297   |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | < 0.005   | < 0.005   | < 0.005   | <0.005       | < 0.005       | < 0.005   |
| Toluene                        | mg/kg | 0.05                | < 0.05    | 0.10      | 0.11      | 0.06      | < 0.05    | < 0.05       | 0.10          | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | 0.04      | <0.01     | 0.11      | <0.01     | <0.01        | <0.01         | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | 0.16      | 0.11      | 1.45      | < 0.05    | < 0.05       | <0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10           | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10           | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 129       | 172       | 168       | 2080      | <10       | 441          | 43            | <10       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 112       | 168       | 150       | 615       | 39        | 795          | 246           | 176       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 26        | 44        | 41        | 15        | 16        | 161          | 79            | 68        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A           | N/A       |
| Moisture Content               | %     | 1                   | 13        | 15        | 12        | 10        | 14        | 34           | 31            | 28        |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |               |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 81        | 82        | 79        | 82        | 79        | 79           | 80            | 80        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 114       | 106       | 124       | 118       | 107       | 130          | 138           | 126       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 106       | 104       | 100       | 98        | 103       | 104          | 116           | 96        |

Certified By:



SAMPLING SITE:

## Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | · , ,     | (-        | ,         | `         | ,         |              |                |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
| DATE RECEIVED: 2016-08-20      |       |                     |           |           |           |           | [         | DATE REPORTE | ED: 2016-08-22 |           |
|                                |       | SAMPLE DESCRIPTION: | GS16-269  | GS16-270  | GS16-271  | GS16-272  | GS16-273  | GS16-274     | GS16-275       | GS16-276  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016 | 8/18/2016    | 8/18/2016      | 8/18/2016 |
| Parameter                      | Unit  | G/S RDL             | 7789299   | 7789300   | 7789301   | 7789302   | 7789303   | 7789304      | 7789305        | 7789306   |
| Benzene                        | mg/kg | 0.005               | <0.005    | 0.010     | < 0.005   | <0.005    | <0.005    | <0.005       | <0.005         | < 0.005   |
| Toluene                        | mg/kg | 0.05                | 0.09      | < 0.05    | < 0.05    | < 0.05    | < 0.05    | 0.05         | <0.05          | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | 0.02      | <0.01     | <0.01     | 0.03      | 0.01         | <0.01          | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | 0.22      | 0.05      | 0.10      | 0.40      | 0.76         | < 0.05         | < 0.05    |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | 26        | <10       | <10       | <10       | 10           | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | 26        | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 29        | 2470      | 1380      | 1230      | 2350      | 2080         | 95             | 286       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 408       | 1290      | 1360      | 1010      | 1700      | 1340         | 130            | 326       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 213       | 52        | 69        | 57        | 94        | 72           | 35             | 72        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 29        | 9         | 11        | 13        | 17        | 15           | 8              | 9         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 98        | 93        | 95        | 95        | 94        | 95           | 98             | 98        |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 79        | 97        | 66        | 67        | 67        | 71           | 75             | 76        |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 105       | 88        | 84        | 86        | 99        | 89           | 100            | 107       |

Certified By:

Meli-de Lo



SAMPLING SITE:

#### Certificate of Analysis

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

|                                |       |                     | · · · · · · · · · · · · · · · · · · · | a (2 · 2 · 1 · · · · ) · · · · co (2 · · · · · ) |
|--------------------------------|-------|---------------------|---------------------------------------|--------------------------------------------------|
| DATE RECEIVED: 2016-08-20      |       |                     |                                       | DATE REPORTED: 2016-08-22                        |
|                                | 5     | SAMPLE DESCRIPTION: | Dup-24                                |                                                  |
|                                |       | SAMPLE TYPE:        | Soil                                  |                                                  |
|                                |       | DATE SAMPLED:       | 8/18/2016                             |                                                  |
| Parameter                      | Unit  | G/S RDL             | 7789307                               |                                                  |
| Benzene                        | mg/kg | 0.005               | <0.005                                |                                                  |
| Toluene                        | mg/kg | 0.05                | < 0.05                                |                                                  |
| Ethylbenzene                   | mg/kg | 0.01                | 0.02                                  |                                                  |
| Xylenes                        | mg/kg | 0.05                | 0.88                                  |                                                  |
| C6 - C10 (F1)                  | mg/kg | 10                  | 21                                    |                                                  |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | 20                                    |                                                  |
| C10 - C16 (F2)                 | mg/kg | 10                  | 2540                                  |                                                  |
| C16 - C34 (F3)                 | mg/kg | 10                  | 1460                                  |                                                  |
| C34 - C50 (F4)                 | mg/kg | 10                  | 63                                    |                                                  |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A                                   |                                                  |
| Moisture Content               | %     | 1                   | 8                                     |                                                  |
| Surrogate                      | Unit  | Acceptable Limits   |                                       |                                                  |
| Toluene-d8 (BTEX)              | %     | 50-150              | 96                                    |                                                  |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 68                                    |                                                  |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 99                                    |                                                  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7789216-7789307 Results are based on the dry weight of the sample.

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:



AGAT WORK ORDER: 16E128870

#### **Quality Assurance**

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| O/ titil Elito OffE.         | 67 tim 225 5 T. |            |         |         |       |                 |                   |                      |        |          |           |                |          |         |                |
|------------------------------|-----------------|------------|---------|---------|-------|-----------------|-------------------|----------------------|--------|----------|-----------|----------------|----------|---------|----------------|
|                              |                 |            | Trac    | e Or    | ganio | s An            | alysi             | is                   |        |          |           |                |          |         |                |
| RPT Date: Aug 22, 2016       |                 |            |         | UPLICAT | E     |                 | REFEREN           | NCE MA               | TERIAL | METHOD   | BLANK     | SPIKE          | MAT      | RIX SPI | KE             |
| PARAMETER                    | Batch           | Sample     | Dup #1  | Dup #2  | RPD   | Method<br>Blank | Measured<br>Value | Acceptable<br>Limits |        | Recovery | 1 1 1 1 1 | ptable<br>nits | Recovery | Lin     | ptable<br>mits |
|                              |                 | la la      | ·       | ·       |       |                 | value             | Lower                | Upper  |          | Lower     | Upper          |          | Lower   | Upper          |
| Petroleum Hydrocarbons (BTEX | /F1-F4) in      | Soil (CWS) |         |         |       |                 |                   |                      |        |          |           |                |          |         |                |
| Benzene                      | 1019            | 7789216    | < 0.005 | < 0.005 | NA    | < 0.005         | 107%              | 80%                  | 120%   | 100%     | 80%       | 120%           | 99%      | 60%     | 140%           |
| Toluene                      | 1019            | 7789216    | < 0.05  | < 0.05  | NA    | < 0.05          | 114%              | 80%                  | 120%   | 97%      | 80%       | 120%           | 99%      | 60%     | 140%           |
| Ethylbenzene                 | 1019            | 7789216    | < 0.01  | < 0.01  | NA    | < 0.01          | 119%              | 80%                  | 120%   | 89%      | 80%       | 120%           | 90%      | 60%     | 140%           |
| Xylenes                      | 1019            | 7789216    | < 0.05  | < 0.05  | NA    | < 0.05          | 117%              | 80%                  | 120%   | 85%      | 80%       | 120%           | 89%      | 60%     | 140%           |
| C6 - C10 (F1)                | 1019            | 7789216    | < 10    | < 10    | NA    | < 10            | 93%               | 80%                  | 120%   | 113%     | 80%       | 120%           | 135%     | 60%     | 140%           |
| C10 - C16 (F2)               | 1028            | 7789216    | 85      | 72      | 16.6% | < 10            | 84%               | 80%                  | 120%   | 86%      | 80%       | 120%           | 83%      | 60%     | 140%           |
| C16 - C34 (F3)               | 1028            | 7789216    | 157     | 131     | 18.1% | < 10            | 87%               | 80%                  | 120%   | 82%      | 80%       | 120%           | 74%      | 60%     | 140%           |
| C34 - C50 (F4)               | 1028            | 7789216    | 27      | 20      | NA    | < 10            | 87%               | 80%                  | 120%   | 83%      | 80%       | 120%           | 74%      | 60%     | 140%           |
| Moisture Content             | 1028            | 7789216    | 6       | 7       | 15.4% | < 1             |                   |                      |        |          |           |                |          |         |                |
|                              |                 |            |         |         |       |                 |                   |                      |        |          |           |                |          |         |                |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:

Melo-de Cho



# **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E128870

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| o, 2 o 2                       |                                 | O/ ==== =              |                      |
|--------------------------------|---------------------------------|------------------------|----------------------|
| PARAMETER                      | AGAT S.O.P                      | LITERATURE REFERENCE   | ANALYTICAL TECHNIQUE |
| Trace Organics Analysis        |                                 |                        | ·                    |
| Benzene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Toluene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene                   | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Xylenes                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| C6 - C10 (F1)                  | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C6 - C10 (F1 minus BTEX)       | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID               |
| C10 - C16 (F2)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C16 - C34 (F3)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| C34 - C50 (F4)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Gravimetric Heavy Hydrocarbons | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |
| Moisture Content               | LAB-175-4002                    | CCME Tier 1 Method-S % | GRAVIMETRIC          |
| Toluene-d8 (BTEX)              | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| Ethylbenzene-d10 (BTEX)        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                |
| o-Terphenyl (F2-F4)            | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID               |



2910 12 Street NE Calgary, Alberta T2E 7P7

P: 403.735.2005 • F: 403.735.2771

webearth.agatlabs.com

| Laboratory | Use | On | Ŋ |
|------------|-----|----|---|
|------------|-----|----|---|

Arrival Temperature: AGAT Job Number:

| Date and Time: |  |
|----------------|--|
|                |  |
|                |  |

| Chain of Cu                       | ustody Record E       | mergency         | Support Serv                                    | ices Hotline 1-855-AGAT 245 (                      | 1-8        | 55-2                           | 242        | 824          | <b>15</b> )                        |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
|-----------------------------------|-----------------------|------------------|-------------------------------------------------|----------------------------------------------------|------------|--------------------------------|------------|--------------|------------------------------------|--------------------------|---------------------|---------------------------------------------------------------|-------------------------------------|----------|---------------|------|--------|--------|--------|---------|----------------|-----------|-------------------------|--|
| Report Informa                    | tion                  | Report           | Information                                     |                                                    | Re         | por                            | Fo         | ma           | mat Turnaround Time Required (TAT) |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
|                                   |                       | 1. Name:         |                                                 | Konrad Ross                                        |            |                                |            | Sam          | ple                                |                          | F                   | legu                                                          | ılar 1                              | TAT      |               | 5-7  | Busi   | ness   | Days   | 3       |                |           |                         |  |
| Company:                          | IEG                   | _   Email:       |                                                 | Kross@klohn.com                                    | ║┕         | ∟ p                            | er Pa      | ge           |                                    | - 1                      |                     |                                                               |                                     |          | <b>7</b>      | Lac  | e the  | n 24   | Ног    | irc (2) | በበ <b></b> የሌ' | ١         |                         |  |
| Contact:                          | Konrad Ross           | 2. Name:         |                                                 | Nicole Wills                                       |            | M                              | lultip     | le           |                                    |                          | - 1                 | Rush TAT  Less than 24 Hours  (Surpharda)  Less than 48 Hours |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| Address:                          |                       | Email:           |                                                 | nwills@klohn.com                                   |            | _                              |            | es pe        | er                                 | - 1                      | (                   | Surc                                                          | har                                 | ge)      |               |      |        |        |        | _       |                | 1         |                         |  |
|                                   |                       | 3. Name:         |                                                 |                                                    |            | Р                              | age        |              |                                    |                          |                     |                                                               |                                     |          | Ш             | Les  | s tria | 11 /2  | пои    | ırs (50 | J%)            |           |                         |  |
| Phone:                            | 403-542-9356 Fax:     | Emall:           |                                                 |                                                    |            |                                |            |              |                                    |                          |                     | ate                                                           | Rec                                 | ulre     | d:            |      |        |        |        |         |                |           |                         |  |
| LSD:                              |                       | Require          | ements (Selection                               | on may impact detection limits)                    |            | ĺ                              |            |              | Çr <sup>6</sup>                    | T                        |                     | T                                                             |                                     |          |               |      | $\top$ | $\top$ | $\top$ |         |                |           |                         |  |
| Client Project #:                 | A04012A08             |                  |                                                 | AB Tier 1 BC CSR                                   |            |                                |            | Fg           |                                    |                          |                     |                                                               |                                     |          |               |      | 7      | 166    | 1110   | 20      | 11             | e Or      | 1                       |  |
| Invoice To                        | Same                  |                  | Agricultural<br>Industrial<br>Residential/ Park | Agricultural AW Industrial IW Residential/ Park LW |            | ste)                           |            |              | Total Hg                           |                          |                     |                                                               |                                     |          | Hd:           |      |        | ~ 35.1 | 1560   | 4.0     | غ غر<br>ا      |           |                         |  |
| Company:                          |                       | -11 ≒            | Commercial                                      | Commercial DW                                      |            | d Pa                           |            | ్డ్రే        |                                    |                          |                     |                                                               | ived                                |          | Перн/нерн     |      |        |        | Ш      |         |                |           | <b>.</b>                |  |
| Contact:                          |                       |                  | Drinking Water<br>FWAL                          | Natural Area                                       |            | rate                           |            |              | - G                                |                          |                     |                                                               | )<br>Ege                            |          | 直             |      |        |        |        |         |                |           | 8                       |  |
| Address:                          |                       | _   '' '         | rvval [                                         | AB Surface Water                                   |            | (Satu                          |            | m<br>P       | Dissolved                          | lity.                    |                     |                                                               | (As F                               |          |               |      |        |        |        |         |                |           | ZARD                    |  |
| Phone:<br>PO/AFE#                 | Fax:                  |                  | ner:<br>D50 (Drilling)                          | SPIGEC                                             | CONTAINERS | oil Salinity (Saturated Paste) | X/ F1-F4   | s: HWS-B     |                                    | Routine Water Potability | 2 Landfill          |                                                               | D50 Detailed Salinity (As Received) |          | BTEXS/VPH/EPH |      |        |        |        |         | R 60 DAYS      | <br> a    | CONTAMINATED/ HAZARDOUS |  |
| LABORATORY USE<br>(LAB ID#)       | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED                           | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT     | # of CONT  | Detailed Soil                  | CCME BTEX/ | Soil Metals: | Water Metals:                      | Routine V                | AB Class 2 Landfill | BC Landfill                                                   | D50 Deta                            | Microtox | П втехs       |      |        |        |        |         | HOLD FOR       | PRESERVED | CONTAMI                 |  |
| 7789216                           | GS16-231              | Soil             | August 18, 2010                                 | Jars labled as KCB,                                | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 225                               | GS16-234              | Soil             | August 18, 2010                                 | please report as IEG                               | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         | $\perp$        |           |                         |  |
| 226                               | GS16-235              | Soil             | August 18, 2010                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 227                               | GS16-236              | Soil             | August 18, 2010                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 228                               | GS16-237              | Soll             | August 18, 2010                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 229                               | GS16-238              | Soll             | August 18, 2010                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 230                               | GS16-239              | Soll             | August 18, 2010                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 231                               | GS16-240              | Soil             | August 18, 2016                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 232                               | GS16-241              | Soil             | August 18, 2016                                 |                                                    | 2          |                                | Х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 233                               | GS16-242              | Soil             | August 18, 2016                                 |                                                    | 2          |                                | х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 234                               | GS16-243              | Soll             | August 18, 2010                                 |                                                    | 2          |                                | х          |              |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| 235                               | GS16-244              | Soll             | August 18, 2010                                 |                                                    | 2          |                                | X          | $\neg$       |                                    |                          |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |
| Samples Relinquished By (Print Na | me and Sign):         | Date/ Time:      |                                                 | Samples Relinquished By (Print Name and Sign).     | e          | X                              | 100        | vun          | 从                                  | _                        |                     | D                                                             | 20                                  | Åν       | q. [4         | , lu | 02t    | }      |        | Page    | 1              | of        | 2                       |  |
| Samples Relinquished By (Print Na | me and Sign):         | Date/ Time:      |                                                 | Samples Relinquished By (Print Name and Sign):     | 10         |                                | _          | )            | - India                            |                          |                     | D                                                             | Date/ Ti                            | ime:     |               |      |        |        |        |         |                |           |                         |  |
| Samples Relinquished By (Print Na | me and Sign):         | Oute/ Time:      |                                                 | Samples Relinquished By (Print Name and Sign):     |            |                                |            | _            |                                    | Date/Time: N°: AB        |                     |                                                               |                                     |          |               |      |        |        |        |         |                |           |                         |  |

16E128870

| The state of                      | AGAT L                | aboratori        | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (a                     |               |              | Hg Cr6+       |                          |                     |             |                                     |          | TEPH .        |     |     |     |    |          |         |             |           |                         |
|-----------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------|--------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|-----|-----|-----|----|----------|---------|-------------|-----------|-------------------------|
| Chain of C                        | Custody Record        | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | (Saturated Paste)      |               | Cr6+         | Total         | 1                        |                     |             | ceived)                             |          | Перн/нерн     |     |     |     |    | ١        |         |             |           | Sn                      |
| Report to:<br>Company:            | IEG                   | Same as          | COC#:                 | 08910                                                                                                       | IERS            |                        | F1-F4         |              | Dissolved     | er Potability            | andrill             |             | D50 Detailed Salinity (As Received) |          |               |     |     |     |    |          |         | 0 DAYS      |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)       | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/    | Soil Metals: | Water Metals: | Routine Water Potability | Ab class z Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |     |     |     |    |          |         | HOLD FOR 60 | PRESERVED | CONTAMINA               |
| 7789236                           | GS16-245              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | х             |              |               |                          |                     |             |                                     |          |               |     |     |     |    |          |         |             |           |                         |
| 237                               | GS16-246              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     | 1   | E   | AU | 621      | 0 1     | 11          | 02        |                         |
| 238                               | GS16-247              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     |     |     | _  | _        | _       |             | _         |                         |
| 239                               | GS16-248              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               | _   |     |     |    | $\perp$  | _       | $\perp$     |           |                         |
| 240                               | GS16-249              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             | _                                   | _        |               | _   | _   | _   |    | _        | _       | $\dashv$    | _         |                         |
| 241                               | GS16-250              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          | _             |     |     |     |    | $\perp$  | $\perp$ | $\perp$     | _         |                         |
| 242                               | GS16-251              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     | _   |     |    | _        | _       | $\perp$     | Ц         | _                       |
| 243                               | GS16-252              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     |     |     |    | _        |         | $\perp$     | $\Box$    |                         |
| 245                               | GS16-253              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | х             |              |               |                          | 1                   |             |                                     |          |               | _   | _   |     |    | _        | _       | $\perp$     | _         |                         |
| 246                               | GS16-254              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | х             |              |               |                          |                     |             |                                     |          |               |     | _   |     |    | $\perp$  | _       | $\perp$     |           |                         |
| 247                               | GS16-255              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     |     | _   |    | _        | 4       | _           | _         |                         |
| 252                               | GS16-256              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     | _   | _   | _  | _        | _       | _           | _         |                         |
| 253                               | GS16-257              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     |     |     |    | $\perp$  | $\perp$ | $\perp$     | $\Box$    |                         |
| 254                               | Dup-22                | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          | $\perp$             |             |                                     |          |               |     | _   |     |    |          |         | _           |           |                         |
| 255                               | Dup-23                | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х             |              |               |                          |                     |             |                                     |          |               |     |     |     |    |          | $\Box$  | $\perp$     |           |                         |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               |              |               |                          | $\perp$             |             | _                                   |          |               |     | _   | _   | _  | _        | _       | _           | $\perp$   | _                       |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               |              |               |                          |                     |             |                                     |          | $\perp$       |     |     |     |    |          |         |             | $\perp$   |                         |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               |              | _             |                          |                     | _           | _                                   | _        | _             | _   | _   | _   | _  | _        | _       | _           | _         | ш                       |
|                                   |                       |                  |                       |                                                                                                             | _               | _                      |               |              | _             | _                        | 4                   | _           | _                                   |          | _             | _   | 4   | _   | _  | 4        | 4       | 4           | $\dashv$  |                         |
|                                   |                       |                  |                       |                                                                                                             | 1               |                        |               | _            | _             | _                        | _                   | 4           | _                                   | _        | _             | _   | _   | _   | _  | _        | _       | _           | $\dashv$  |                         |
|                                   |                       |                  |                       |                                                                                                             | _               |                        |               |              | _             |                          | 4                   | _           | _                                   | _        | _             | _   | _   | 4   | _  | _        | _       | _           | $\dashv$  | _                       |
|                                   |                       |                  |                       |                                                                                                             | _               |                        |               |              | _             | _                        | 4                   | 4           | 4                                   | _        | _             | 4   | _   | _   | _  | _        | _       | _           | _         | _                       |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               |              |               |                          | 1                   | _           | _                                   | _        | _             | _   | _   | _   |    | _        | _       | _           | $\perp$   | Ш                       |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               |              | $\perp$       |                          | 4                   | _           | _                                   | _        | _             | _   | _   | 4   | _  | _        | _       | _           | _         | _                       |
|                                   |                       |                  |                       |                                                                                                             |                 |                        |               | 1            |               | 7                        |                     |             |                                     |          |               |     |     |     |    |          |         |             | $\perp$   |                         |
| Samples Relinquished By (Print No | ame and Sign):        | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | mo              | de                     | 1             | \$           | لنبرو         | W.                       | -                   |             | _                                   | Date/ Ti | me: 2         | OΑμ | 0.2 | 014 | li | 524      | age     | 2           | of        | 2                       |
| Samples Relinquished By (Print No |                       | Date/Time:       |                       | Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):               |                 | /                      | $\subset$     |              | )             | <u> </u>                 |                     |             |                                     | Date/Ti  |               |     |     |     |    | $\dashv$ |         |             |           | N.                      |
| Samples Relinquished By (Print No | ame and Sign):        | Date/ Time:      |                       | pampios italinquistiau by (Fallic Haliffe allu Sigir):                                                      |                 |                        | $\overline{}$ |              |               |                          | _                   |             |                                     |          | -             | -   |     |     |    | 1        | N°: A   | 10          |           |                         |

Document ID: DIV-50-1507.002

16E128870

|                                    | AGAT La               | boratori         | es                    | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P: 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 | (6)                    |            | g <sub>H</sub> | Hg Cr6+       |                          |                     |             |                                     |          | ЕРН           |      |           |        |           |                |               |                  |               |                |
|------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------|----------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|------|-----------|--------|-----------|----------------|---------------|------------------|---------------|----------------|
| Chain of C                         | ustody Record         | Emergency Supp   | ort Services H        | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | (Saturated Paste)      |            | Cr6+           | Total         |                          |                     |             | ceived)                             |          |               |      |           |        |           |                |               |                  |               | SI             |
| Report to:<br>Company:             | IEG                   | Same as          | COC#:                 | 08910                                                                                                       | IERS            |                        | F1-F4      | HWS-B          | : Dissolved   | er Potability            | andfill             |             | D50 Detailed Salinity (As Received) |          | _             |      |           |        |           |                |               | 0 DAYS           |               | TED/ HAZARDOUS |
| LABORATORY USE<br>(LAB ID#)        | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil Salinity | CCME BTEX/ | Soil Metals:   | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | BTEXS/VPH/EPH |      |           |        |           |                |               | HOLD FOR 60 DAYS | PRESERVED     | CONTAMINATED/  |
| 9276                               | GS16-232              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               |                  |               |                |
| 283                                | G\$16-233             | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               |                  |               |                |
| 284                                | GS16-258              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               |                  | $\perp$       |                |
| 285                                | GS16-259              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               |                  |               |                |
| 286                                | GS16-260              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               |                  |               |                |
| 288                                | GS16-261              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           | F      | ΔΙ        | 69             | $G_{-}$       | 3:5              |               |                |
| 289                                | GS16-262              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | -313             | A 1           |                |
| 290                                | GS16-263              | Soil             | 18-Aug-16             |                                                                                                             | 2               | L                      | х          |                |               |                          |                     |             |                                     |          |               |      |           | Ш      | Ш         |                |               | $\dashv$         | _             |                |
| 291                                | G\$16-264             | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                | $\Box$        | $\perp$          |               |                |
| 294                                | GS16-265              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      | Ш         | Ш      | Ш         | Ш              | $\perp$       | $\dashv$         | $\dashv$      |                |
| 295                                | GS16-266              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | $\perp$          | $\perp$       |                |
| 296                                | GS16-267              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          | _             | _    | Ш         | Ш      | $\square$ | Ш              | _             | 4                | _             |                |
| 297                                | GS16-268              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | X          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | _                | _             |                |
| 299                                | GS16-269              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | $\perp$          | _             |                |
| 300                                | G\$16-270             | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        | $\square$ |                |               | _                | _             |                |
| 301                                | GS16-271              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | _                | $\perp$       |                |
| 302                                | GS16-272              | Soil             | 18-Aug-16             |                                                                                                             | 2               | L                      | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        |           |                |               | _                | _             |                |
| 303                                | GS16-273              | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               | _                        |                     |             |                                     |          |               |      | $\square$ |        |           | $\Box$         | $\dashv$      | $\dashv$         | $\dashv$      |                |
| 304                                | GS16-274              | Soil             | 18-Aug-16             |                                                                                                             | 2               | _                      | Х          |                |               |                          |                     |             |                                     | _        | _             |      |           |        | $\square$ | $\blacksquare$ | $\rightarrow$ | _                | _             | _              |
| 305                                | GS16-275              | Soil             | 18-Aug-16             |                                                                                                             | 4               | _                      | Х          |                |               |                          |                     |             | _                                   | _        |               |      | Ш         | Ш      | $\square$ | $\square$      | $\dashv$      | $\dashv$         | $\rightarrow$ |                |
| 306                                | GS16-276              | Soil             | 18-Aug-16             |                                                                                                             | 2               | _                      | X          |                |               |                          |                     | _           | _                                   | _        | _             | _    | $\sqcup$  |        |           |                | $\dashv$      | _                | $\dashv$      | _              |
| 307                                | Dup-24                | Soil             | 18-Aug-16             |                                                                                                             | 2               |                        | Х          |                |               |                          |                     |             |                                     |          |               |      |           |        | $\square$ | $\square$      | $\Box$        | 4                | 4             |                |
|                                    |                       |                  |                       |                                                                                                             | _               |                        |            |                | _             |                          |                     | _           |                                     |          |               |      | $\square$ |        |           | $\blacksquare$ | _             | _                | _             | _              |
|                                    |                       |                  |                       |                                                                                                             |                 |                        |            |                |               |                          |                     |             |                                     |          |               |      | Ш         |        |           | $\Box$         | $\perp$       | $\rightarrow$    | _             | _              |
|                                    |                       |                  |                       |                                                                                                             |                 | $oxed{oxed}$           | L_         |                |               |                          |                     |             |                                     |          |               |      | Ш         | $\Box$ |           |                |               | $\perp$          | $\perp$       |                |
| Samples Relinquished By (Print Nar | ne and Sign):         | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              | do              | a.L                    |            | 16             | 6             | a                        |                     |             |                                     |          |               | 20   | H         | ng     | 16        | ,              | Page          | 2                | of            | 2              |
| Samples Relinquished By (Print Nar |                       | Date/Time:       |                       | Semples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):               |                 |                        |            | (              | /_            |                          |                     |             |                                     | Date/    | (Waters)      | -161 |           | J      |           |                |               |                  |               |                |
| Samples Relinquished By (Print Nar | ne and Sign):         | Date/ Time:      |                       | panipies reiniquistiad by (Print Maria and Sign):                                                           |                 |                        |            |                |               |                          |                     |             |                                     | Jane,    |               |      |           |        |           |                |               |                  |               |                |

Document ID: DIV-50-1507.002

E 08912



# AGAT Laboratories

# SAMPLE INTEGRITY RECEIPT FORM

| 100 to 10 | <u> </u>                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| RECEIVING BASICS - Shipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temperature (Bottles/Jars only) N/A if only Soil Bags Received                                |
| Company/Consultant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FROZEN (Please Circle if samples received Frozen)                                             |
| Courier: Canadian North Cargo Prepaid Collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 (Bottle (Jar) -0, 4, -0, 3, + -0, 1 = -0, 3 °C 2 (Bottle (Jar) 5, 0 + 3, 8 + 1, 0 = 3, 3 °C |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++_=°C                                                      |
| Waybill#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C                                                       |
| Branch EDM GP FN FM RD VAN LYD FSJ EST Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C                                                       |
| If multiple sites were submitted at once: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++_=°C                                                     |
| Custody Seal Intact: Yes No NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (If more than 10 coolers are received use another sheet of paper and attach)                  |
| TAT: <24hr 24-48hr 48-72hr Reg Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOGISTICS USE ONLY                                                                            |
| Cooler Quantity:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Workorder No: <u>16E128870</u>                                                                |
| TIME SENSITIVE ISSUES - Shipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Samples Damaged: Yes (No) If YES why?                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No Bubble Wrap Frozen Courier                                                                 |
| ALREADY EXCEEDED HOLD TIME? Yes (No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other:                                                                                        |
| Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Account Project Manager:have they been notified of the above issues: Yes No                   |
| Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* , Chloroamines*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78.72440                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Whom spoken to: Date/Time:                                                                    |
| Earliest Expiry: AVA-25,70(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CPM Initial                                                                                   |
| Hydrocarbons: Earliest Expiry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Comments: (OC count incorrect for samples                                             |
| SAMPLE INTEGRITY - Shipping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G616-275 > states 4 but received 2.                                                           |
| Hazardous Samples: YES NO Precaution Taken:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CS16-276 COC states 2 but received 4.                                                         |
| Legal Samples: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |
| International Samples: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Noted in SIR.                                                                                 |
| Tape Sealed: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                             |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |

\* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

| CREADER WINES                          | 518-70618376  SERVICE BACK THE LINES TERRITOR OF BACK THE SERVICE BEST  | AIR WAYBUA<br>LETTRE DV. TRANSPORT AFRIEN<br>ACCINCED OF POLICIANT<br>BUIDE DE PARAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WISTELLIND MOS                         | FRANCEED PROGRETY FRANCEASE GARANTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Charles Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LANDERSON CONTRACTOR OF THE SON        | DENVELOPE DENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Christians, or Christ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | INSPERANCE ASSURANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The carrier is liability in the enemy of lens, during the exercise is to causes the the original terms of the enemy of the energy of the energy of the energy of the enemy of |
| 3/17-ROPER ROAD NILL                   | ENGINE SERVICE | washed in the time of issuing of the displaced the shapes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DIVINITON ABOUT 3683C                  | Transmer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASSESSMENT ASSESSMENT OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 600 001 9756                           | Will be a second of the second | ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (20 CH )                               | CONFERNTS / DESCRIPTION OF CONTENU REQUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X / 1/1/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SCA 9 KG SOLL SAMP                     | CONFERNTS / DESCRIPTION OF CONTENU REQUIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X / A / A / A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



CLIENT NAME: IEG CONSULTANTS LTD 500-2618 HOPEWELL PLACE NE CALGARY, AB T1Y7J7 (403) 262-5505

**ATTENTION TO: Konrad Ross** 

**PROJECT: A04012A08** 

AGAT WORK ORDER: 16E131607

SOIL ANALYSIS REVIEWED BY: Shanna Mills, Inorganics Manager

TRACE ORGANICS REVIEWED BY: Ngoc (Ruby) Vu, Lab Technician

DATE REPORTED: Sep 03, 2016

PAGES (INCLUDING COVER): 14

**VERSION\*: 1** 

Should you require any information regarding this analysis please contact your client services representative at (780) 395-2525

| <u>*N</u> | *NOTES |  |
|-----------|--------|--|
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
|           |        |  |
| L         |        |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

Page 1 of 14

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



**SAMPLING SITE:** 

## **Certificate of Analysis**

AGAT WORK ORDER: 16E131607

**PROJECT: A04012A08** 

**ATTENTION TO: Konrad Ross** 

**SAMPLED BY:** 

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Landfill - Inorganics - Class II

DATE RECEIVED: 2016-08-27 DATE REPORTED: 2016-09-03

| DATE RECEIVED. 2010 00 27      |          |           |           |           | DATE NEI GRIED. 2010 00 00 |
|--------------------------------|----------|-----------|-----------|-----------|----------------------------|
|                                | S        | AMPLE DES | CRIPTION: | GS16-295  |                            |
|                                |          | SAME      | PLE TYPE: | Soil      |                            |
|                                |          | DATE S    | SAMPLED:  | 8/22/2016 |                            |
| Parameter                      | Unit     | G/S       | RDL       | 7808878   |                            |
| pH (1:1 Water:Soil extraction) | pH Units | 2.0-12.5  |           | 7.55      |                            |
| Free Liquid                    | Pos/Neg  | Neg       | N/A       | Neg       |                            |
| Antimony - Leachate            | mg/L     | 500       | 0.5       | <0.5      |                            |
| Arsenic - Leachate             | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Barium - Leachate              | mg/L     | 100       | 0.5       | <0.5      |                            |
| Beryllium - Leachate           | mg/L     | 5.0       | 0.5       | <0.5      |                            |
| Boron - Leachate               | mg/L     | 500       | 0.5       | 0.6       |                            |
| Cadmium - Leachate             | mg/L     | 1.00      | 0.5       | <0.5      |                            |
| Chromium - Leachate            | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Cobalt - Leachate              | mg/L     | 100       | 0.5       | <0.5      |                            |
| Copper - Leachate              | mg/L     | 100       | 0.5       | <0.5      |                            |
| Iron - Leachate                | mg/L     | 1000      | 0.5       | 2.2       |                            |
| Lead - Leachate                | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Mercury - Leachate             | mg/L     | 0.200     | 0.1       | <0.1      |                            |
| Nickel - Leachate              | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Selenium - Leachate            | mg/L     | 1.00      | 0.5       | <0.5      |                            |
| Silver - Leachate              | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Thallium - Leachate            | mg/L     | 5.00      | 0.5       | <0.5      |                            |
| Uranium - Leachate             | mg/L     | 2.00      | 0.5       | <0.5      |                            |
| Vanadium - Leachate            | mg/L     | 100       | 0.5       | <0.5      |                            |
| Zinc - Leachate                | mg/L     | 500       | 1         | <1        |                            |
| Zirconium - Leachate           | mg/L     | 500       | 0.5       | <0.5      |                            |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Class 2 Landfill

7808878 Analysis based on "as received"

Certified By:





### **Certificate of Analysis**

**AGAT WORK ORDER: 16E131607** 

**PROJECT: A04012A08** 

**ATTENTION TO: Konrad Ross** 

**SAMPLED BY:** 

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Landfill - Organics - Class II

| DATE RECEIVED: 2016-08-27 |       |            |            |           | DATE REPORTED: 2016-09-03 |
|---------------------------|-------|------------|------------|-----------|---------------------------|
|                           | ;     | SAMPLE DES | CRIPTION:  | GS16-295  |                           |
|                           |       | SAM        | PLE TYPE:  | Soil      |                           |
|                           |       | DATE       | SAMPLED:   | 8/22/2016 |                           |
| Parameter                 | Unit  | G/S        | RDL        | 7808878   |                           |
| Flash point (Closed Cup)  | Deg C | 61.0 -     |            | >100      |                           |
| Benzene - Leachable       | mg/L  | 0.5        | 0.005      | < 0.005   |                           |
| Toluene - Leachable       | mg/L  | 0.5        | 0.005      | <0.005    |                           |
| Ethylbenzene - Leachable  | mg/L  | 0.5        | 0.005      | <0.005    |                           |
| Xylenes - Leachable       | mg/L  | 0.5        | 0.005      | < 0.005   |                           |
| Surrogate                 | Unit  | Acceptal   | ole Limits |           |                           |
| Toluene-d8 (BTEX)         | %     | 50-        | 150        | 96        |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Class 2 Landfill

7808878 Flashpoint corrected to Sea Level.

**CLIENT NAME: IEG CONSULTANTS LTD** 

**SAMPLING SITE:** 

Zero Headspace Extraction for Leachable BTEX.

Xylenes - Leachable is a calculated parameter. The calculated value is the sum of m&p-Xylenes - Leachable + o-Xylene - Leachable.

Certified By:

Jun



**SAMPLING SITE:** 

## **Certificate of Analysis**

**AGAT WORK ORDER: 16E131607** 

**PROJECT: A04012A08** 

**ATTENTION TO: Konrad Ross** 

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-27      |       |                     |           |           |           |           | DATE REPORTED: 2016-09-03 |           |           |           |  |  |  |  |  |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|---------------------------|-----------|-----------|-----------|--|--|--|--|--|
|                                |       | SAMPLE DESCRIPTION: | GS16-277  | GS16-278  | GS16-279  | GS16-280  | GS16-281                  | GS16-282  | GS16-283  | GS16-284  |  |  |  |  |  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil                      | Soil      | Soil      | Soil      |  |  |  |  |  |
|                                |       | DATE SAMPLED:       | 8/22/2016 | 8/22/2016 | 8/22/2016 | 8/22/2016 | 8/22/2016                 | 8/22/2016 | 8/22/2016 | 8/22/2016 |  |  |  |  |  |
| Parameter                      | Unit  | G/S RDL             | 7808860   | 7808861   | 7808862   | 7808863   | 7808864                   | 7808865   | 7808866   | 7808867   |  |  |  |  |  |
| Benzene                        | mg/kg | 0.005               | < 0.005   | < 0.005   | < 0.005   | <0.005    | <0.005                    | <0.005    | < 0.005   | < 0.005   |  |  |  |  |  |
| Toluene                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | <0.05     | < 0.05                    | <0.05     | 0.07      | < 0.05    |  |  |  |  |  |
| Ethylbenzene                   | mg/kg | 0.01                | 0.05      | <0.01     | <0.01     | <0.01     | <0.01                     | <0.01     | <0.01     | <0.01     |  |  |  |  |  |
| Xylenes                        | mg/kg | 0.05                | 0.25      | 0.21      | 0.30      | < 0.05    | < 0.05                    | < 0.05    | < 0.05    | < 0.05    |  |  |  |  |  |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10                       | <10       | <10       | <10       |  |  |  |  |  |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10                       | <10       | <10       | <10       |  |  |  |  |  |
| C10 - C16 (F2)                 | mg/kg | 10                  | 1320      | 3240      | 5140      | 1000      | 604                       | 146       | 103       | <10       |  |  |  |  |  |
| C16 - C34 (F3)                 | mg/kg | 10                  | 890       | 1250      | 2410      | 731       | 544                       | 192       | 65        | 46        |  |  |  |  |  |
| C34 - C50 (F4)                 | mg/kg | 10                  | 15        | 33        | 34        | 21        | 23                        | 19        | 18        | 14        |  |  |  |  |  |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A                       | N/A       | N/A       | N/A       |  |  |  |  |  |
| Moisture Content               | %     | 1                   | 12        | 7         | 11        | 10        | 10                        | 8         | 8         | 7         |  |  |  |  |  |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |                           |           |           |           |  |  |  |  |  |
| Toluene-d8 (BTEX)              | %     | 50-150              | 98        | 99        | 98        | 104       | 100                       | 99        | 99        | 100       |  |  |  |  |  |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 78        | 125       | 115       | 132       | 136                       | 145       | 107       | 84        |  |  |  |  |  |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 75        | 80        | 86        | 74        | 90                        | 84        | 90        | 85        |  |  |  |  |  |

Certified By:

Jun



**SAMPLING SITE:** 

## **Certificate of Analysis**

**AGAT WORK ORDER: 16E131607** 

**PROJECT: A04012A08** 

**ATTENTION TO: Konrad Ross** 

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-27      |       |                     |           |           |           |           | ı         | DATE REPORTI | ED: 2016-09-03 |           |
|--------------------------------|-------|---------------------|-----------|-----------|-----------|-----------|-----------|--------------|----------------|-----------|
|                                |       | SAMPLE DESCRIPTION: | GS16-285  | GS16-286  | GS16-287  | GS16-288  | GS16-289  | GS16-290     | GS16-291       | GS16-292  |
|                                |       | SAMPLE TYPE:        | Soil      | Soil      | Soil      | Soil      | Soil      | Soil         | Soil           | Soil      |
|                                |       | DATE SAMPLED:       | 8/22/2016 | 8/22/2016 | 8/22/2016 | 8/22/2016 | 8/22/2016 | 8/22/2016    | 8/22/2016      | 8/22/2016 |
| Parameter                      | Unit  | G/S RDL             | 7808868   | 7808869   | 7808870   | 7808871   | 7808872   | 7808873      | 7808874        | 7808875   |
| Benzene                        | mg/kg | 0.005               | <0.005    | <0.005    | < 0.005   | <0.005    | <0.005    | <0.005       | < 0.005        | <0.005    |
| Toluene                        | mg/kg | 0.05                | 0.11      | < 0.05    | 0.30      | 0.14      | < 0.05    | < 0.05       | 0.15           | < 0.05    |
| Ethylbenzene                   | mg/kg | 0.01                | <0.01     | <0.01     | <0.01     | <0.01     | <0.01     | <0.01        | 0.03           | <0.01     |
| Xylenes                        | mg/kg | 0.05                | < 0.05    | < 0.05    | < 0.05    | 0.11      | < 0.05    | < 0.05       | 0.17           | 0.11      |
| C6 - C10 (F1)                  | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                  | <10       | <10       | <10       | <10       | <10       | <10          | <10            | <10       |
| C10 - C16 (F2)                 | mg/kg | 10                  | 21        | 34        | 163       | 121       | 354       | 314          | 620            | 467       |
| C16 - C34 (F3)                 | mg/kg | 10                  | 77        | 67        | 186       | 128       | 126       | 115          | 180            | 141       |
| C34 - C50 (F4)                 | mg/kg | 10                  | 28        | 21        | 63        | 38        | 20        | 21           | 16             | 23        |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                | N/A       | N/A       | N/A       | N/A       | N/A       | N/A          | N/A            | N/A       |
| Moisture Content               | %     | 1                   | 8         | 7         | 13        | 9         | 6         | 5            | 9              | 7         |
| Surrogate                      | Unit  | Acceptable Limits   |           |           |           |           |           |              |                |           |
| Toluene-d8 (BTEX)              | %     | 50-150              | 101       | 100       | 100       | 99        | 101       | 100          | 100            | 102       |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150              | 139       | 122       | 132       | 131       | 137       | 149          | 145            | 120       |
| o-Terphenyl (F2-F4)            | %     | 50-150              | 90        | 91        | 81        | 79        | 82        | 78           | 77             | 81        |

Certified By:

Jun



SAMPLING SITE:

#### **Certificate of Analysis**

**AGAT WORK ORDER: 16E131607** 

**PROJECT: A04012A08** 

**ATTENTION TO: Konrad Ross** 

SAMPLED BY:

6310 ROPER ROAD EDMONTON, ALBERTA CANADA T6B 3P9 TEL (780)395-2525 FAX (780)462-2490 http://www.agatlabs.com

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| DATE RECEIVED: 2016-08-27      |       |                                     |                  |                  | DATE REPORTED: 2016-09-03 |
|--------------------------------|-------|-------------------------------------|------------------|------------------|---------------------------|
|                                |       | SAMPLE DESCRIPTION:<br>SAMPLE TYPE: | GS16-293<br>Soil | GS16-294<br>Soil |                           |
|                                |       | DATE SAMPLED:                       | 8/22/2016        | 8/22/2016        |                           |
| Parameter                      | Unit  | G/S RDL                             | 7808876          | 7808877          |                           |
| Benzene                        | mg/kg | 0.005                               | < 0.005          | <0.005           |                           |
| Toluene                        | mg/kg | 0.05                                | < 0.05           | < 0.05           |                           |
| Ethylbenzene                   | mg/kg | 0.01                                | <0.01            | <0.01            |                           |
| Xylenes                        | mg/kg | 0.05                                | < 0.05           | < 0.05           |                           |
| C6 - C10 (F1)                  | mg/kg | 10                                  | <10              | <10              |                           |
| C6 - C10 (F1 minus BTEX)       | mg/kg | 10                                  | <10              | <10              |                           |
| C10 - C16 (F2)                 | mg/kg | 10                                  | 63               | 78               |                           |
| C16 - C34 (F3)                 | mg/kg | 10                                  | 70               | 58               |                           |
| C34 - C50 (F4)                 | mg/kg | 10                                  | 22               | <10              |                           |
| Gravimetric Heavy Hydrocarbons | mg/kg | 1000                                | N/A              | N/A              |                           |
| Moisture Content               | %     | 1                                   | 6                | 6                |                           |
| Surrogate                      | Unit  | Acceptable Limits                   |                  |                  |                           |
| Toluene-d8 (BTEX)              | %     | 50-150                              | 101              | 100              |                           |
| Ethylbenzene-d10 (BTEX)        | %     | 50-150                              | 133              | 89               |                           |
| o-Terphenyl (F2-F4)            | %     | 50-150                              | 89               | 83               |                           |
|                                |       |                                     |                  |                  |                           |

Comments: 7808860-7808877 Results are based on the dry weight of the sample.

RDL - Reported Detection Limit; G / S - Guideline / Standard

The C6-C10 (F1) fraction is calculated using toluene response factor.

The C10 - C16 (F2), C16 - C34 (F3), and C34 - C50 (F4) fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons (F4g) are not included in and cannot be added to the Total C6-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present.

Total C6 - C50 results are corrected for BTEX and PAH contributions (if requested).

Quality control data is available upon request.

Assistance in the interpretation of data is available upon request.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

The chromatogram returned to baseline by the retention time of nC50.

Extraction and holding times were met for this sample.

C6 -C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

Xylenes is a calculated parameter. The calculated value is the sum of m&p-Xylenes + o-Xylene.

Certified By:



#### **Quality Assurance**

**CLIENT NAME: IEG CONSULTANTS LTD** 

PROJECT: A04012A08

**SAMPLING SITE:** 

AGAT WORK ORDER: 16E131607 ATTENTION TO: Konrad Ross

SAMPLED BY:

| SAMPLING STIL.                   |                         |         |        |          |          |                 |                   |        |                |          |       |                |          |         |                |
|----------------------------------|-------------------------|---------|--------|----------|----------|-----------------|-------------------|--------|----------------|----------|-------|----------------|----------|---------|----------------|
| Soil Analysis                    |                         |         |        |          |          |                 |                   |        |                |          |       |                |          |         |                |
| RPT Date: Sep 03, 2016           |                         |         |        | UPLICATI | <b>E</b> |                 | REFEREN           | NCE MA | TERIAL         | METHOD   | BLANK | SPIKE          | MAT      | RIX SPI | KE             |
| PARAMETER                        | PARAMETER Batch Samp Id |         | Dup #1 | Dup #2   | RPD      | Method<br>Blank | Measured<br>Value |        | ptable<br>nits | Recovery | Lie   | ptable<br>nits | Recovery |         | ptable<br>nits |
|                                  |                         | 14      |        |          |          |                 | Value             | Lower  | Upper          |          | Lower | Upper          |          | Lower   | Upper          |
| Landfill - Inorganics - Class II |                         |         |        |          |          |                 |                   |        |                |          |       |                |          |         |                |
| pH (1:1 Water:Soil extraction)   | 242                     | 7809564 | 10.31  | 10.39    | 0.8%     | <               | 100%              | 90%    | 110%           |          |       |                |          |         |                |
| Free Liquid                      | 242                     | 7809564 | Neg    | Neg      | 0.0%     | N/A             |                   |        |                |          |       |                |          |         |                |
| Antimony - Leachate              | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 96%               | 80%    | 120%           |          |       |                | 98%      | 80%     | 120%           |
| Arsenic - Leachate               | 243                     | 7809564 | <0.5   | < 0.5    | NA       | < 0.5           | 109%              | 80%    | 120%           |          |       |                | 102%     | 80%     | 120%           |
| Barium - Leachate                | 243                     | 7809564 | 2.7    | 2.9      | 5.7%     | < 0.5           | 93%               | 80%    | 120%           |          |       |                | 104%     | 80%     | 120%           |
| Beryllium - Leachate             | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 95%               | 80%    | 120%           |          |       |                | 107%     | 80%     | 120%           |
| Boron - Leachate                 | 243                     | 7809564 | 0.7    | 1.1      | NA       | < 0.5           | 99%               | 80%    | 120%           |          |       |                | 103%     | 80%     | 120%           |
| Cadmium - Leachate               | 243                     | 7809564 | <0.5   | < 0.5    | NA       | < 0.5           | 102%              | 80%    | 120%           |          |       |                | 104%     | 80%     | 120%           |
| Chromium - Leachate              | 243                     | 7809564 | <0.5   | < 0.5    | NA       | < 0.5           | 97%               | 80%    | 120%           |          |       |                | 105%     | 80%     | 120%           |
| Cobalt - Leachate                | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 97%               | 80%    | 120%           |          |       |                | 95%      | 80%     | 120%           |
| Copper - Leachate                | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 94%               | 80%    | 120%           |          |       |                | 104%     | 80%     | 120%           |
| Iron - Leachate                  | 243                     | 7809564 | 5.6    | 5.5      | 1.6%     | < 0.5           | 104%              | 80%    | 120%           |          |       |                | 106%     | 80%     | 120%           |
| Lead - Leachate                  | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 102%              | 80%    | 120%           |          |       |                | 100%     | 80%     | 120%           |
| Mercury - Leachate               | 243                     | 7809564 | <0.1   | <0.1     | NA       | < 0.1           | 111%              | 80%    | 120%           |          |       |                | 106%     | 80%     | 120%           |
| Nickel - Leachate                | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 102%              | 80%    | 120%           |          |       |                | 104%     | 80%     | 120%           |
| Selenium - Leachate              | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 106%              | 80%    | 120%           |          |       |                | 107%     | 80%     | 120%           |
| Silver - Leachate                | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 93%               | 80%    | 120%           |          |       |                | 91%      | 80%     | 120%           |
| Thallium - Leachate              | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 99%               | 80%    | 120%           |          |       |                | 107%     | 80%     | 120%           |
| Uranium - Leachate               | 243                     | 7809564 | <0.5   | < 0.5    | NA       | < 0.5           | 98%               | 80%    | 120%           |          |       |                | 96%      | 80%     | 120%           |
| Vanadium - Leachate              | 243                     | 7809564 | <0.5   | <0.5     | NA       | < 0.5           | 95%               | 80%    | 120%           |          |       |                | 105%     | 80%     | 120%           |
| Zinc - Leachate                  | 243                     | 7809564 | <1     | <1       | NA       | < 1             | 105%              | 80%    | 120%           |          |       |                | 100%     | 80%     | 120%           |
| Zirconium - Leachate             | 243                     | 7809564 | < 0.5  | < 0.5    | NA       | < 0.5           | 107%              | 80%    | 120%           |          |       |                | 103%     | 80%     | 120%           |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

Certified By:

gmills



AGAT WORK ORDER: 16E131607

## **Quality Assurance**

**CLIENT NAME: IEG CONSULTANTS LTD** 

PROJECT: A04012A08 ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| Trace Organics Analysis        |       |         |         |          |          |                      |         |                            |        |          |                      |       |          |           |                |
|--------------------------------|-------|---------|---------|----------|----------|----------------------|---------|----------------------------|--------|----------|----------------------|-------|----------|-----------|----------------|
| RPT Date: Sep 03, 2016         |       |         | D       | UPLICATE | <b>E</b> |                      | REFEREN | ICE MA                     | TERIAL | METHOD   | BLANK                | SPIKE | MAT      | RIX SPI   | KE             |
| PARAMETER                      | Batch | Sample  | Dup #1  | Dup #2   | RPD      | Method<br>Blank      |         | Acceptable Measured Limits |        | Recovery | Acceptable<br>Limits |       | Recovery | 1 1 1 1 1 | ptable<br>nits |
|                                |       | ld      |         |          |          | Blank Measured Value |         | Lower                      | Upper  |          | Lower                | Upper |          | Lower     | Upper          |
| Landfill - Organics - Class II |       |         |         |          |          |                      |         |                            |        |          |                      |       |          |           |                |
| Flash point (Closed Cup)       | 1505  | Butanol | 39      | 40       | 2.5%     | <                    | 111%    | 80%                        | 120%   |          |                      |       |          |           |                |
| Benzene - Leachable            | 1402  | 7808859 | < 0.005 | < 0.005  | NA       | < 0.005              | 111%    | 80%                        | 120%   | 118%     | 80%                  | 120%  | 125%     | 70%       | 130%           |
| Toluene - Leachable            | 1402  | 7808859 | < 0.005 | < 0.005  | NA       | < 0.005              | 96%     | 80%                        | 120%   | 103%     | 80%                  | 120%  | 103%     | 70%       | 130%           |
| Ethylbenzene - Leachable       | 1402  | 7808859 | < 0.005 | < 0.005  | NA       | < 0.005              | 82%     | 80%                        | 120%   | 82%      | 80%                  | 120%  | 86%      | 70%       | 130%           |
| Xylenes - Leachable            | 1402  | 7808859 | < 0.005 | < 0.005  | NA       | < 0.005              | 85%     | 80%                        | 120%   | 90%      | 80%                  | 120%  | 95%      | 60%       | 140%           |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

#### Petroleum Hydrocarbons (BTEX/F1-F4) in Soil (CWS)

| Benzene          | 1030 | 7808862 | < 0.005 | < 0.005 | NA    | < 0.005 | 84%  | 80% | 120% | 116% | 80% | 120% | 124% | 60% | 140% |
|------------------|------|---------|---------|---------|-------|---------|------|-----|------|------|-----|------|------|-----|------|
| Toluene          | 1030 | 7808862 | < 0.05  | < 0.05  | NA    | < 0.05  | 91%  | 80% | 120% | 114% | 80% | 120% | 128% | 60% | 140% |
| Ethylbenzene     | 1030 | 7808862 | < 0.01  | < 0.01  | NA    | < 0.01  | 85%  | 80% | 120% | 120% | 80% | 120% | 125% | 60% | 140% |
| Xylenes          | 1030 | 7808862 | 0.30    | 0.37    | 20.9% | < 0.05  | 88%  | 80% | 120% | 116% | 80% | 120% | 127% | 60% | 140% |
| C6 - C10 (F1)    | 1030 | 7808862 | < 10    | < 10    | NA    | < 10    | 100% | 80% | 120% | 93%  | 80% | 120% | 78%  | 60% | 140% |
| C10 - C16 (F2)   | 932  | 7808862 | 5140    | 3950    | 26.2% | < 10    | 84%  | 80% | 120% | 105% | 80% | 120% | 72%  | 60% | 140% |
| C16 - C34 (F3)   | 932  | 7808862 | 2410    | 1850    | 26.3% | < 10    | 93%  | 80% | 120% | 90%  | 80% | 120% | 69%  | 60% | 140% |
| C34 - C50 (F4)   | 932  | 7808862 | 34      | 28      | NA    | < 10    | 96%  | 80% | 120% | 98%  | 80% | 120% | 80%  | 60% | 140% |
| Moisture Content | 932  | 7808862 | 11      | 11      | 0.0%  | < 1     |      |     |      |      |     |      |      |     |      |

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

Certified By:





# **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

AGAT WORK ORDER: 16E131607

PROJECT: A04012A08

ATTENTION TO: Konrad Ross

SAMPLING SITE: SAMPLED BY:

| PARAMETER                      | AGAT S.O.P               | LITERATURE REFERENCE          | ANALYTICAL TECHNIQUE |
|--------------------------------|--------------------------|-------------------------------|----------------------|
|                                | AGAT 5.0.P               | LITERATURE REFERENCE          | ANALT HEAL TECHNIQUE |
| Soil Analysis                  |                          |                               |                      |
| pH (1:1 Water:Soil extraction) | INOR-171-6207            | HENDERSHOT 2007               | PH METER             |
| Free Liquid                    | INOR-171-6012            | EPA SW- 846-9095B             | Paint Filter Test    |
| Antimony - Leachate            | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Arsenic - Leachate             | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Barium - Leachate              | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Beryllium - Leachate           | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Boron - Leachate               | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Cadmium - Leachate             | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Chromium - Leachate            | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Cobalt - Leachate              | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Copper - Leachate              | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Iron - Leachate                | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Lead - Leachate                | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Mercury - Leachate             | SOIL 0420; INST 0140     | In-House Leachate; EATON 2005 | ICP/OES              |
| Nickel - Leachate              | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Selenium - Leachate            | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Silver - Leachate              | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Thallium - Leachate            | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Uranium - Leachate             | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Vanadium - Leachate            | INOR-171-6011, INOR-6201 | In-House Leachate;EATON 2005  | ICP/OES              |
| Zinc - Leachate                | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |
| Zirconium - Leachate           | INOR-171-6011, INOR-6201 | In-House Leachate; EATON 2005 | ICP/OES              |



# **Method Summary**

CLIENT NAME: IEG CONSULTANTS LTD

PROJECT: A04012A08

**SAMPLING SITE:** 

AGAT WORK ORDER: 16E131607 ATTENTION TO: Konrad Ross

SAMPLED BY:

| 07 tilli 21110 0112.           |                                 | O/ (IIII) 225 5 1 1    |                           |  |  |  |  |  |
|--------------------------------|---------------------------------|------------------------|---------------------------|--|--|--|--|--|
| PARAMETER                      | AGAT S.O.P                      | LITERATURE REFERENCE   | ANALYTICAL TECHNIQUE      |  |  |  |  |  |
| Trace Organics Analysis        |                                 |                        |                           |  |  |  |  |  |
| Flash point (Closed Cup)       | ORG-170-5210                    | ASTM D93-02A           | PENSKY-MARTENS CLOSED CUP |  |  |  |  |  |
| Benzene - Leachable            | ORG-170-5100/5430/5440          | In-House Leachate      | GC/MS                     |  |  |  |  |  |
| Toluene - Leachable            | ORG-170-5100/5430/5440          | In-House Leachate      | GC/MS                     |  |  |  |  |  |
| Ethylbenzene - Leachable       | ORG-170-5100/5430/5440          | In-House Leachate      | GC/MS                     |  |  |  |  |  |
| Xylenes - Leachable            | ORG-170-5100/5430/5440          | In-House Leachate      | GC/MS                     |  |  |  |  |  |
| Toluene-d8 (BTEX)              | ORG-170-5100/5430/5440          | In-House Leachate      | GC/MS                     |  |  |  |  |  |
| Benzene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| Toluene                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| Ethylbenzene                   | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| Xylenes                        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| C6 - C10 (F1)                  | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID                    |  |  |  |  |  |
| C6 - C10 (F1 minus BTEX)       | ORG-170-<br>5110/5140/5430/5440 | CCME Tier 1 Method-S L | GC/FID                    |  |  |  |  |  |
| C10 - C16 (F2)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID                    |  |  |  |  |  |
| C16 - C34 (F3)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID                    |  |  |  |  |  |
| C34 - C50 (F4)                 | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID                    |  |  |  |  |  |
| Gravimetric Heavy Hydrocarbons | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID                    |  |  |  |  |  |
| Moisture Content               | LAB-175-4002                    | CCME Tier 1 Method-S % | GRAVIMETRIC               |  |  |  |  |  |
| Toluene-d8 (BTEX)              | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| Ethylbenzene-d10 (BTEX)        | ORG-170-<br>5110/5140/5430/5440 | EPA SW-846 8260-S      | GC/MS                     |  |  |  |  |  |
| o-Terphenyl (F2-F4)            | ORG-170-5120/5300               | CCME Tier 1 Method-S H | GC/FID                    |  |  |  |  |  |



2910 12 Street NE Calgary, Alberta T2E 7P7 P: 403.735.2005 • F: 403.735.2771

webearth.agatlabs.com

Laboratory Use Only

Date and Time:

Arrival Temperature: AGAT Job Number:

|  | T design | 6 | ΑU | 100 | 2 | 7 1 | 0:4 | 5 |
|--|----------|---|----|-----|---|-----|-----|---|
|--|----------|---|----|-----|---|-----|-----|---|

| Chain of Custody Record Emergency Support Services Hotline 1-855-AGAT 2 |                                                                      |                                                 |                                                                                                                    |                                                  |                    |                                               | 242-       | <b>3245</b>  | )             |             |                      |                                     |          |               |                            | 11.6           | AU                 | 0.27 | 110              | ð:4:      | 3             |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|-----------------------------------------------|------------|--------------|---------------|-------------|----------------------|-------------------------------------|----------|---------------|----------------------------|----------------|--------------------|------|------------------|-----------|---------------|
| Report Informa                                                          | ation                                                                | Report                                          | Information                                                                                                        |                                                  | R€                 | por                                           | t For      | nat          |               |             | Tur                  | nar                                 | our      | ıd Tir        | ne R                       | equir          | ed (               | TAT) |                  |           |               |
| Company:<br>Contact:<br>Address:<br>Phone:                              | IEG  Konrad Ross  2618 Hopewell Place NE  Calgary  403-464-7677 Fax: | 1. Name: Emall: 2. Name: Email: 3. Name: Emall: | 7                                                                                                                  |                                                  | _ p,<br>_ м<br>_ S | ingle :<br>er Pag<br>Iultiple<br>ample<br>age | 9          |              |               | Rus<br>(Sur | ular<br>h TA<br>char | T<br>ge)                            |          | Less<br>Less  | than 2<br>than 4<br>than 7 | 24 Ho<br>48 Ho | ours (2<br>ours (1 | 100% |                  | _         |               |
| LSD:                                                                    |                                                                      | Require                                         | ements (Selection                                                                                                  | on may impact detection limits)                  |                    | П                                             | П          | Į.           | Т             |             |                      | П                                   |          |               |                            |                |                    |      | T                | T         | Г             |
| Client Project #:                                                       | A04012A08                                                            | CCI                                             | ME [                                                                                                               | ✓ AB Tier 1 □ BC CSR                             |                    |                                               |            | Hg<br>       |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| Invoice To  Company: Contact: Address:                                  | Same Yes No                                                          |                                                 |                                                                                                                    |                                                  |                    |                                               |            |              | Potability    | 2 Landfill  |                      | D50 Detailed Salinity (As Received) |          | 4/ЕРН         |                            |                |                    |      | DAYS             |           | :D/ HAZARDOUS |
| PO/AFE#                                                                 |                                                                      |                                                 | D50 (Drilling) SPIGEC                                                                                              |                                                  |                    |                                               |            | : HWS-B      | ater          | Lan         |                      | ed S                                |          | YP.           |                            |                |                    |      | 8                |           | ATE           |
| LABORATORY USE<br>(LAB ID#)                                             | SAMPLE IDENTIFICATION                                                | SAMPLE<br>MATRIX                                | DATE/ TIME<br>SAMPLED                                                                                              | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT   | # of CONTA         | Detailed Soil Salinity                        | CCME BTEX/ | Soil Metals: | Routine Water | AB Class 2  | BC Landfill          | D50 Detail                          | Microtox | BTEXS/VPH/EPH |                            |                |                    |      | HOLD FOR 60 DAYS | PRESERVED | CONTAMINATED/ |
| 7808860                                                                 | GS16-277                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | Х          |              | T             |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 861                                                                     | GS16-278                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 862                                                                     | GS16-279                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           | Г             |
| 863                                                                     | GS16-280                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 864                                                                     | GS16-281                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 865                                                                     | GS16-282                                                             | Soll                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      | П                |           |               |
| 866                                                                     | GS16-283                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | Х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 867                                                                     | GS16-284                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | Х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 868                                                                     | GS16-285                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 869                                                                     | GS16-286                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 870                                                                     | GS16-287                                                             | Soll                                            | 22-Aug-16                                                                                                          |                                                  | 2                  |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| 871                                                                     | GS16-288                                                             | Soil                                            | 22-Aug-16                                                                                                          |                                                  | , 8                |                                               | х          |              |               |             |                      |                                     |          |               |                            |                |                    |      |                  |           |               |
| Samples Relinquished By (Print No<br>Samples Relinquished By (Print No  |                                                                      |                                                 | Semples Relinquished By (Print Name and Sign)    Oscon   Fasmork     Samples Relinquished By (Print Name and Sign) | L MARK                                           | *                  |                                               |            |              |               |             | Date/T<br>Date/T     | Ime:                                | n.20     | ψ             | 1040                       | <b>7</b> th    | Page               |      | of               |           |               |
|                                                                         |                                                                      | Date / Times                                    |                                                                                                                    | Complet Balloquished By (Brint Magne and Circl). |                    |                                               |            |              |               |             | -                    | Pinte / T                           | res n    |               |                            |                |                    |      |                  |           |               |

Document ID: DIV-50-1507.003

E 08954

|                                       | agat l                | aborator         | ies                   | 2910 12 Street NE<br>Calgary, Alberta T2E 7P7<br>P; 403.735.2005 • F: 403.735.2771<br>webearth.agatlabs.com |                 |                                          |                  | <u>ळ</u>     | Hg Cr6+       |                          |                     |             |                                     |          | ЕРН           |                   |      |          | to the second se |    |                     |           |                         |
|---------------------------------------|-----------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------|--------------|---------------|--------------------------|---------------------|-------------|-------------------------------------|----------|---------------|-------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|-----------|-------------------------|
| Chain of Cu                           | stody Record          | Emergency Supp   | oort Services H       | otline 1-855-AGAT 245 (1-855-242-8245)                                                                      |                 | ted Paste                                |                  | cre+         | Total         |                          |                     |             | ceived)                             |          | П СЕРН/НЕРН   |                   |      |          | Control of the contro |    |                     |           | St                      |
| Report to:<br>Company:                |                       | Same as          | COC#:                 |                                                                                                             | ERS             | Detailed Soil Salinity (Saturated Paste) | F1-F4            | H III        | Dissolved     | er Potability            | ındfill             |             | D50 Detailed Salinity (As Received) |          |               | sis               |      |          | Apple<br>Call<br>Speed<br>10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | DAYS                |           | CONTAMINATED/ HAZARDOUS |
| LABORATORY USE (LAB ID#)              | SAMPLE IDENTIFICATION | SAMPLE<br>MATRIX | DATE/ TIME<br>SAMPLED | COMMENTS- SITE SAMPLE INFO, SAMPLE CONTAINMENT                                                              | # of CONTAINERS | Detailed Soil                            | CCME BTEX/ F1-F4 | Soil Metals: | Water Metals: | Routine Water Potability | AB Class 2 Landfill | BC Landfill | D50 Detailed                        | Microtox | ВТЕХЅ/VPH/EPH | Landfill analysis |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | HOLD FOR 60 DAYS    | PRESERVED | CONTAMINAT              |
| 7808872                               | GS16-289              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          | Ì                   |             |                                     |          |               |                   |      | $\dashv$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1                   |           |                         |
| 873                                   | GS16-290              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| 874                                   | GS16-291              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| 875                                   | GS16-292              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | Х                |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| 876                                   | GS16-293              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| 877                                   | GS16-294              | Soil             | 22-Aug-16             |                                                                                                             | 2               |                                          | х                |              |               |                          |                     |             |                                     |          |               |                   |      | $\Box$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| 878                                   | GS16-295              | Soil             | 25-Aug-16             |                                                                                                             | 4               |                                          |                  |              |               |                          |                     |             |                                     |          |               | Х                 |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I  |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| ľ                                     |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          | _                   |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              |               |                          |                     |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
|                                       |                       |                  |                       |                                                                                                             |                 |                                          |                  |              | J             | 1                        | $\sqrt{1}$          |             |                                     |          |               |                   |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |           |                         |
| Samples Relinquished By (Print Name o | ind Sign):            | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign): Jacon                                                        | 7               | raci                                     | non              | k            | 5             | Yau                      |                     | 1           |                                     | Date/T   | inve 27       | 7-Au              | 3.20 | 6        | 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pa | ge                  | of        |                         |
| Samples Relinquished By (Print Name s | ind Sign):            | Date/ Time:      |                       | Samples Relinquished By (Print Name and Sign):                                                              |                 |                                          |                  | K            |               |                          | V                   | -           |                                     | Date/T   | lme;          |                   | , _  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | TABLE OF THE STREET |           |                         |

Document ID: DIV-50-1507.002



# AGAT Laboratories

# SAMPLE INTEGRITY RECEIPT FORM

| RECEIVING BASICS - Shipping                                                 | Temperature (Bottles/Jars only) N/A if only Soil Bags Received               |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Company/Consultant:                                                         | FROZEN (Please Circle if samples received Frozen)                            |
| Courier: Canadian North Cargo Prepaid Collect                               | 1 (Bottle/Jar) ++ =°C                                                        |
| Waybill# 518 - YEV - 7061 - 9555                                            | 3 (Bottle/Jar) + + = °C 4 (Bottle/Jar) + + = °C                              |
|                                                                             | 5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C                                      |
| Branch EDM GP FN FM RD VAN LYD FSJ EST Other:                               | 7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C                                      |
| If multiple sites were submitted at once: (Yes) No                          | 9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C                                     |
| Custody Seal Intact: Yes No NA                                              | (If more than 10 coolers are received use another sheet of paper and attach) |
| TAT: <24hr 24-48hr 48-72hr (Reg) Other                                      | LOGISTICS USE ONLY                                                           |
| Cooler Quantity:                                                            | Workorder No: <u>16E131607</u>                                               |
| TIME SENSITIVE ISSUES - Shipping                                            | Samples Damaged: Yes No If YES why?                                          |
| Thire Selective 1330E3 - Shipping                                           | No Bubble Wrap Frozen Courier                                                |
| ALREADY EXCEEDED HOLD TIME? Yes (No)                                        | Other:                                                                       |
| Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , | Account Project Manager:have they been notified of the above issues: Yes No  |
| Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* ,      |                                                                              |
| Chloroamines*                                                               | Whom spoken to: Date/Time:                                                   |
| Earliest Expiry:                                                            | CPM Initial                                                                  |
| Hydrocarbons: Earliest Expiry Scot . 29,2016                                | General Comments:                                                            |
| SAMPLE INTEGRITY - Shipping                                                 |                                                                              |
| Hazardous Samples: YES NO Precaution Taken:                                 |                                                                              |
| Legal Samples: Yes No                                                       |                                                                              |
| International Samples: Yes No                                               | -                                                                            |
| Tape Sealed: Yes (No)                                                       |                                                                              |
| Coolant Used: Icepack Bagged Ice Free Ice Free Water None                   |                                                                              |

\* Subcontracted Analysis (See CPM)

Date issued: October 05, 2015 Document ID: SR-9505.003

Page 14 of 14

| SIGNATURE OF ISSUING CARRIER OR ITS AGENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at (Place)                                                                                                                                                                                                                                                 | OI FOT CHARGES                                                                                                                                         | TOTAL (                                  | S AT DESTINATION                                          | CHARGE                         | FOR CARRIERS USE ONLY AT                                                                      | FOR                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|------------------------------|
| 995107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            | 2016 12:48                                                                                                                                             |                                          | A CAST CONTRACTOR DESIRENTIAN CONSENSA                    |                                | COLUMN TINOLOGIA DOLLA                                                                        | 00 4                         |
| THIS SHIPMENT DOES CONTAIN DANGEROUS GOODS REGULATED IN AIR TRANSPORT.                                                                                                                                                                                                                                                                                                                                                                                                                                   | THIS SHIPMENT DOES NOT CONTINUE AFFICIANCE DOES BELOW.  THIS SHIPMENT DOES NOT CONTINUE AFFICIANCE DOES  THIS SHIPMENT DOES NOT CONTINUE AFFICIANCE DOES  WE CHEED ON.                                                                                     | SHIPMENT DOES NOT CON<br>ILATED IN AIR TRANSPORT                                                                                                       | n — ,                                    | 0.00                                                      |                                | 143.30                                                                                        |                              |
| SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                            |                                                                                                                                                        | PRINTED NA                               | TOTAL COLLECT                                             | 101                            | TOTAL PREPAID                                                                                 | Н                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                          | 0.00                                                      | ļ¥                             | D UCAD                                                                                        | COD                          |
| PER GUARANTEES ALL CHARGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RE-WEIGH/DIMENSIONAL WEIGHT AND SHIPPER GUARANTEES SUBJECT TO RATE AUDIT                                                                                                                                                                                   | EIGH/DIMENSION                                                                                                                                         | RE-WI                                    | 0.00                                                      | ARGES DUE CA                   | 31.50                                                                                         |                              |
| and its in proper condition for carriage by air                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on the centures that the particulars on the lack fire correct and first financiar as any part or contains dangerous goods, such part is properly described by name and is in proper condition for according to the applicable Dangerous Goods Regulations. | ingerous goods, such par<br>o the applicable Dangero                                                                                                   | contains da<br>according to              | 0.00                                                      |                                | 0.00                                                                                          |                              |
| our citar a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | carrada, Fuel Sul                                                                                                                                                                                                                                          | tifies that the particulars                                                                                                                            | Shipper Car                              | - 1                                                       | CHARGES DUE A                  |                                                                                               |                              |
| ITEMS PREPAID TEMS COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | המלא היהם                                                                                                                                                                                                                                                  | OTHER CHARGES AND DESCRIPTION                                                                                                                          | OTHER CH/                                | 0 00                                                      | TAX                            | 6.82                                                                                          |                              |
| DESCRIPTION OF DEST. ADVANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEST, ADVANCE CHARGES 0.00                                                                                                                                                                                                                                 | DELIVERY CHARGES 0.00                                                                                                                                  | ZONE DELI                                | 0.00                                                      | VALUATION CHARGE               | 0 . 00                                                                                        |                              |
| DESCRIPTION OF ORIGIN ADVANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                    | ZONE PICK                                | 0.00                                                      | 98                             | 104.98                                                                                        |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                          |                                                           | 200                            | 29                                                                                            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                          |                                                           |                                |                                                                                               |                              |
| 24x13x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            |                                                                                                                                                        | = 1                                      |                                                           |                                |                                                                                               |                              |
| NATURE AND QUANTITY OF GOODS (INCL. DIMENSIONS OR VOLUME)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω Ω                                                                                                                                                                                                                                                        | CHARGE                                                                                                                                                 | BLE RATE                                 | CHARGEA<br>WEIGH                                          | COMMODITY<br>ITEM NO<br>GCR 35 | GROSS WEIGHT Ib                                                                               | PIECES<br>RCP                |
| DUPLICATE COPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                          |                                                           |                                | COOL                                                                                          | HFPU                         |
| requested in accordance with the conditions thereof, indicate amount to be insured in figures in box marked "Amount of Insurance",                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                            | ATE                                                                                                                                                    | +LIGHI/I                                 | These commodities licensed by US for ultimate destination | se commodities I               | Edmonton HANDLING INFORMATION The                                                             | Edm                          |
| DECLARED VALUE FOR NCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                            | BY COMPRENDY CHCS WTIVAL COMPRENDY CHCS WITHOUT OF INSURANCE | TO T | TO BY TO BY                                               | orth                           | TO BY FIRST CARRIER YEG Canadian North AIRPORT OF DESTINATION                                 | TO<br>YEG                    |
| OR OTHER CLARGER UNLESS SHIPPER GIVES OTHER INSTRUCTIONS HEREDN.                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO EVENTE MOVEMENT, SHIPMENT MAY BE DIVERTED TO MOTOR OR OTHER DOMESTIC LIABILITY:                                                                                                                                                                         |                                                                                                                                                        | STED ROUTIN                              | ACCOUNT NO.  CARRIER) AND REQUESTED ROUTING               | RST                            | AGENTS IATA CODE<br>AIRPORT OF DEPARTURE (ADDR OF FIRST<br>I DUVİK                            | AGENTS IAT AIRPORT OF Inuvik |
| (OPTIONAL ACCOUNTING INFORMATION)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALSO NOTIFY: NAME AND ADDRESS (OPTIONAL ACC                                                                                                                                                                                                                | ALSO NOTIFY: N                                                                                                                                         |                                          |                                                           | AME AND CITY                   | ISSUING CARRIER'S AGENT NAME AND CITY                                                         | ISSUIN                       |
| IN GOOD ORDER PLACE DATE/TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RECEIVED                                                                                                                                                                                                                                                   | SIGNATURE PRINTED NAME                                                                                                                                 |                                          |                                                           | -735-2745                      | 542 9356 403-                                                                                 | 403                          |
| CARRIED BY ANY OTHER MEANS INCLUDING ROAD OR ANY OTHER CARRIER UNLESS SPECIFIC CONTRARY INSTRUCTIONS ARE GIVEN HERROUN BY THE SHIPPER, AND THE SHIPPER AGREES THAT THE SHIPMENT MAY BE CARRIED VIA INTERNEDIATE STOPPING PLACES WHICH THE CARRIER DEEMS APPROPRIATE. THE SHIPPERS ATTENTION IS DRAWN TO THE MOTICE CONCERNING CARRIERS LIMITATION OF LURBILITY. Shipper may increase such limitation of liability by declaring a higher value for carriage and paying a supplemental change if required. | (OTHER MEANS INCLUDING ROADO RE GIVEN HEREGON BY THE SHIPPE O VAN INTERMEDIATE STOPPING PLA WITON IS DRAWN TO THE NOTICE O. Base such limitation of liability by declarity                                                                                 | 1000                                                                                                                                                   | COUNT NUME<br>AGA1                       | CONSIGNEE'S ACCOUNT NUMBER<br>AGAI 00 CW                  | ° C.                           | CONSIGNEE'S NAME AND ADDRESS AGAT Laboratories Lt 6310 Roper Road Edmonton, AB T6B 3P: Canada | CONSI                        |
| Il are originals and have the same validity.  in apparent good order and condition (except as noted) for CT ON THE REVERSE HEREOF. ALL GOODS MAY BE                                                                                                                                                                                                                                                                                                                                                      | Copies 1, 2 and 3 of this Air Waybill are originals and have the the goods described herein are accepted in apparent good order and condect TO THE CONDITIONS OF CONTRACT ON THE REVERSE HEREON                                                            |                                                                                                                                                        |                                          |                                                           | 777-2426                       | Canada<br>Fred Bailey 867-777<br>Registered                                                   | Canada<br>Fred B<br>Regist   |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Canada<br>6st#: R 892                                                                                                                                                                                                                                      |                                                                                                                                                        |                                          |                                                           | 70                             | PO Box 1130<br>Inuvik, NT X0E 0T0                                                             | PO Box<br>Inuvík,            |
| North 52 Ave E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Canadian<br>101 3731                                                                                                                                                                                                                                       | AIR WAYBILL                                                                                                                                            | NOR1                                     | NOR178CW                                                  | cies Inc.                      | SHIPPER'S NAME AND ADDRESS Northwind Industries                                               | Nort                         |
| 518-YEV-7061-9555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            |                                                                                                                                                        | THE WILLIAM                              | OVE SIGNATURE                                             | -9555                          | 518 YEV 7061-9                                                                                | 2T C                         |

518-YEV-7061-9555