

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Chantal Vincent, Customer Solutions Representative

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

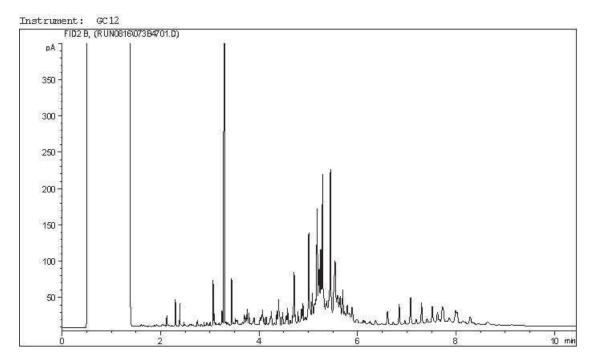
Gita Pokhrel, Laboratory Supervisor

Junzhi Gras

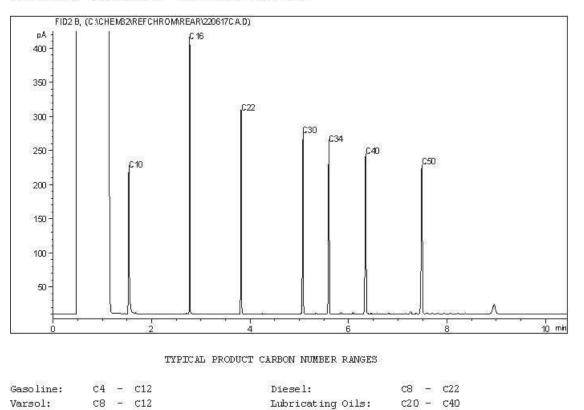
Janet Gao, B.Sc., QP, Supervisor, Organics

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

1/ennicatelk


Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics

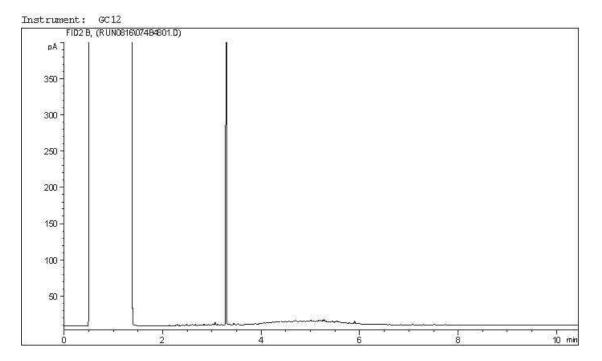
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


° å∦	**	~ 2	2	2		1		45 1						a an	1 and 1		Carlos Carlos		No.				X		C	and			1942
																war	5			wknife	PI	0	7	y			ICH	2 ×	
of _									d Time (TAT)	APO OT	apply	3 Day	DD MM	_	t to:	ald SHELL DOR Dearis LC	ald i ol-equisauso com	the code	>	in Yellow	SUS	0:0	700 21	1-50	2 5		HW SNOITIONE	Temperature reading by:	
-	2 09:00					100			Turnaroun		Surcharges apply		W	Comments	report to:	SULDOR	-equise	hadility	41259544	alved i	J.M	0	AUD	Jah	Temp:		TERMS AND C		
Page	12-Aug-22 09:00	Iapen	Gant	C260016		INS-0001			Ĺ			Ved 2 Day	4 Day	Required:	email	ald SHI	addiol.	Unload	112	Ren	By:			22	Te		ANCE OF OUR	1 2	†
	12	Стипу Нареп		C26		IKA		55 FF 05 0F		_		. ANALYZE MBUZ 29 MPLE	aniatn	# OE CO	3	3	m	3	5	20	5	5	5				IT AND ACCEPT	ې ۱	MW O O O
	Ē				I	IK IK	-					avale	1410	queri								\checkmark					NOWLEDGMER	Kes No	₹Û
Y RECORD)13v3			104	0		NT		vanier k					nel II 22	elo oize8						~				_			UMENT IS AČK DRTAIN A COPY		8 2
CHAIN OF CUSTODY RECORD ENV COC - 00013v3	rmation	Shell	22525414-\$100-\$104	22525414-3000	NA	CV WEST CHANNEL, NT	NT	ord, Hannanieet Kaur					t	Mercury Viinits Sieve (7													CUSTODY DOC	LAB USE ONLY It dla present	A MM
CHAIN	Project Information		2252	22	Man Farrene Men	Saw 45		1655	*		рәл	lossib - sli	stem be	0 0 - 94											1		UREAL VERTIAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACYNOMIEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH Horner Burn Conditioned And Conditionis Orbio Cantus The Largebring VISED ABOUT TO ORTANI A COPY.	LAB USE ON Seal present Seal intact Cooling media present	7.03
		#	ä		Conc	8	5	"Mell	0			IATO1 Is - total	vater	MUIRA8 9nituoR atslup98					\sim				\wedge				SIGNING OF		Delan
X		Quotation #:	P.O. #/ AFE#	Project #:	K3 Site #:	Site Location:	Site Location Province:	Sampled By:	-				-	втех ғ <u>т</u> . РАНS	×	X	\rightarrow	$\mathbf{>}$			\mathbf{x}	\times	×				ID CONDITION	2	Signature/Print) SORA
$\langle 0 \rangle$					al T2P 4K3		won		n		đ	I BEQUIRI ED	10ITAA														ARD TERMS AN	°C	Received by: (Signature/ Erint)
47	from involce)	sociates	llavance		Postal Code:		BUN-O	1 was	1					Matrix FIELD FII				1	11	01	1	N	11				FRITAS STAND	Yes No	R.
hoose location: — Calgary, AB: 4000 19th St. NE, TZE 6PB Toll Free (800) 386-7247 — Edmonitor, AB: 9331-48 St. TGB 204 Toll Free (800) 386-7247 — Winnipeg, MB: D-675 Berry St. R3H 1A7 Toll Free (866) 800-6208	Report Information (if differs from involce)	Golder Associates	Aurelie Bellavance		AB	403-299-5600	aurelie bellavance aur-o.com	peter tanowsp. com		nitoba	RD	AU VERITAS	Time (24hr)	MM	80 Sail	10 501	10 Soi	00 Soil	20 Soi	00	to Sni	30 5	Ho Soil						
TZE 6P8 Toll Fra B 2R4 Toll Free R3H 1A7 Toll F	Report Inform				Calgary		oplie.be	eter. tav		Drinking Water - Manitoba	M other AMSRP	IVERY TO BURE		HH QQ I	1900	1 13	1 (3	- 13	115	15	15	15	15 15	-	2		HAIN OF CUSTODY IS SUBJECT TO ABE AUALI ABLE FOR MEMORY AT	LAB USE ONLY LAB USE ONLY Seal present Seal Intact Cooling media present	HH MW OO OO
00 19th St. NE, 9331-48 St. T6		Company:	Contact Name:	Street Address:			Email: AU	Copies: PE		Drink	M Othe	NG UNTIL DEL	Date Sampled	WM YY	22.09												CHAIN OF CUST	A Seal Seal 3 Cooli	8 <u>0</u>
Choose Location: Calgary, AB: 400 Edmonton, AB: Winnipeg, MB: 1				Str	5	Æ	E	3	Regulatory Criteria	Canada	Alberta	ME OF SAMPLI															LIED ON THIS	50	72 08
Ϋ́́Ϋ́́		er Associat	Suite 3300		Postal Code:		nt Payable		Regu	Drinking Water - Canada	Drinking Water - Alberta	10°C) FROM TI		5							2		IJ				WORK SUBMI	<u>_ری</u> ،	-20
	Invoice to (requires report)	Client #254, Golder Associates	237 - 4 Ave SW Suite 3300		Prov: AB		Canada Account Payable		R			E KEPT COOL (<		Sample Identification	203)	29-02	Q	-25-03	-25-01	-25-02	5-04	5-0				TO IN WRITING	Yes No	(Signature/ Print) Melissa Lord
www.BVNA.com	P	Client	237		Calgary F		Ca			CCME	hewan	SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VE		Sam	29	Fo	à	BH22-29-01	22-25	0	N	22	BH 22-25-05				RWISE AGREED	ONLY rresent	Relinquished by: (Signature/ Print)
	Invoice Information	Company :	Contact Name:	Street		Phone:	Email:	Copies:		TTI	Saskatchewan	SAT			1 BH 77-	2 DUF	3 PH 2	· BH3	= BH	° BH2	, BH	* BH :	• BH	10	11	12	*UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTOPY IS SUBJECT TO ARE SUMM AND CORPORED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTOPY IS SUBJECT TO	LAB USE ONLY Seal present Seal Intact Cooling media present	

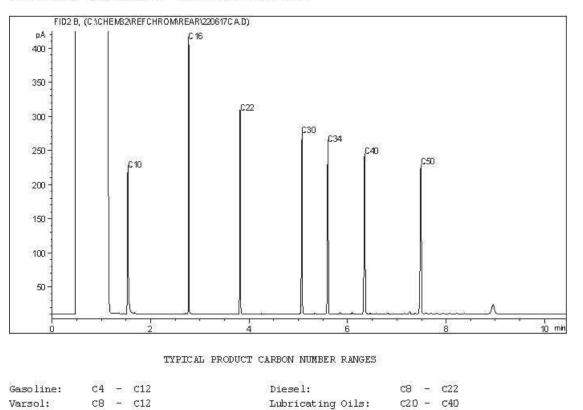
GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAREWELL,NT Client ID: BH22-29-03

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram



Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


c7 - c16

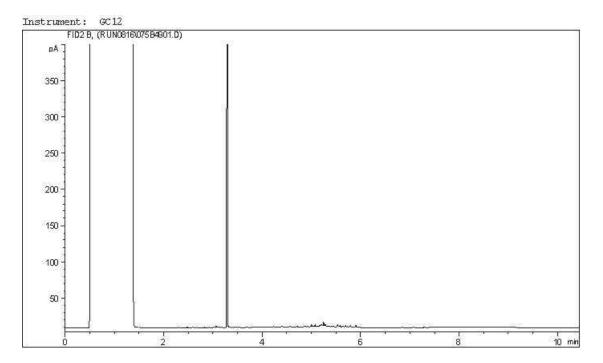
Kerosene:

Crude Oils:

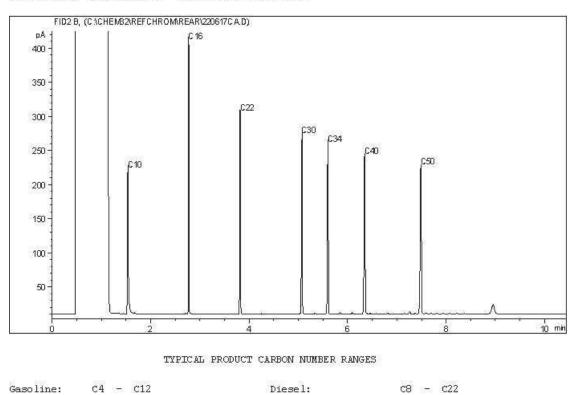
Carbon Range Distribution - Reference Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Varsol:


Kerosene:

C8 - C12


c7 - c16

Crude Oils:

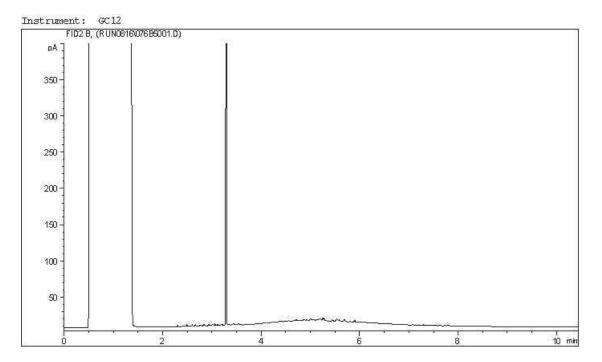
c20 - c40

Carbon Range Distribution - Reference Chromatogram

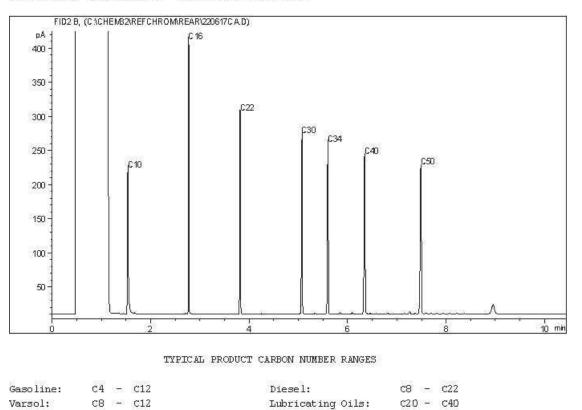
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Varsol:

Kerosene:


C8 - C12

c7 - c16


Lubricating Oils:

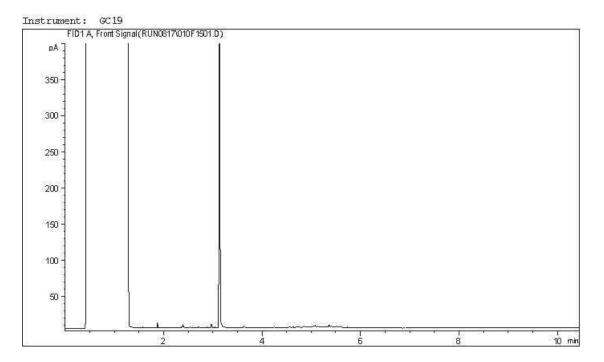
Crude Oils:

c20 - c40

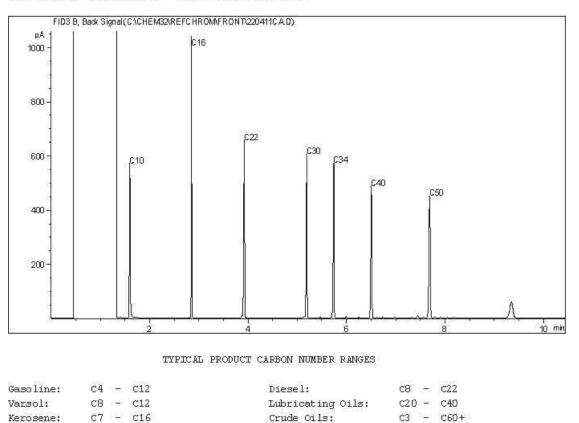
Carbon Range Distribution - Reference Chromatogram

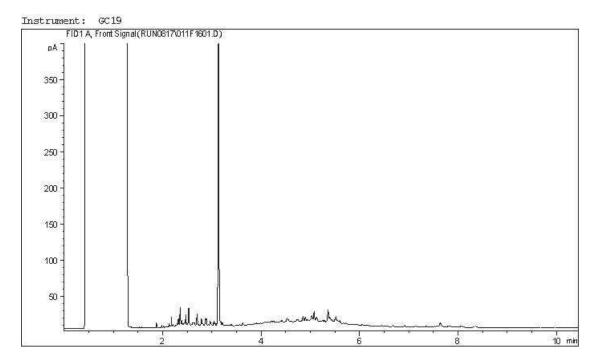
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Varsol:

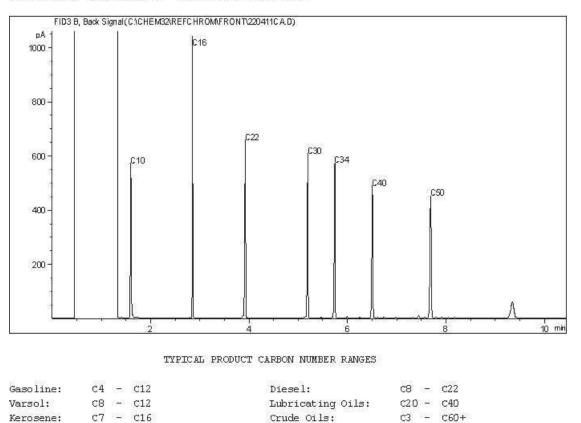

Kerosene:

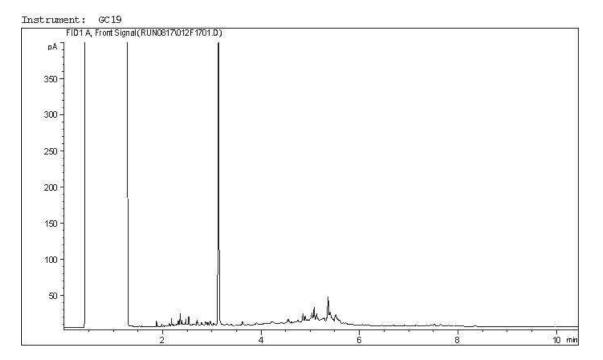
C8 - C12

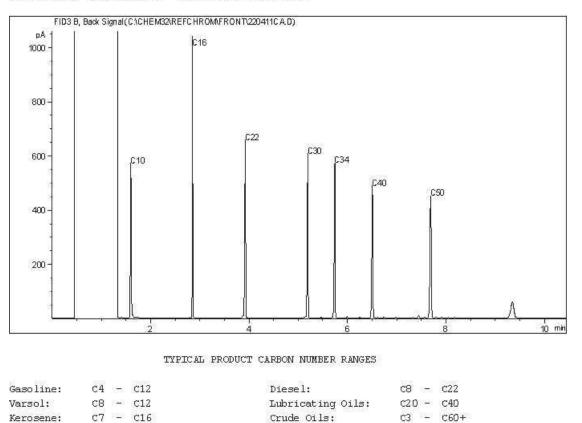

c7 - c16

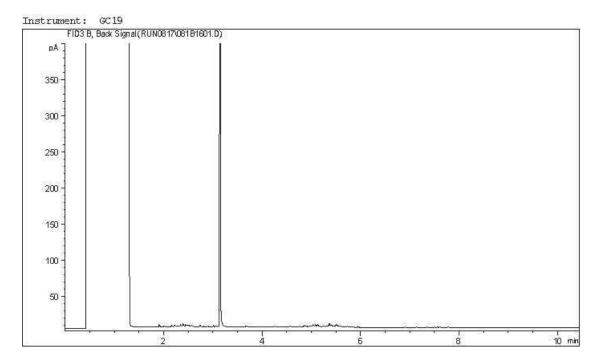

Crude Oils:

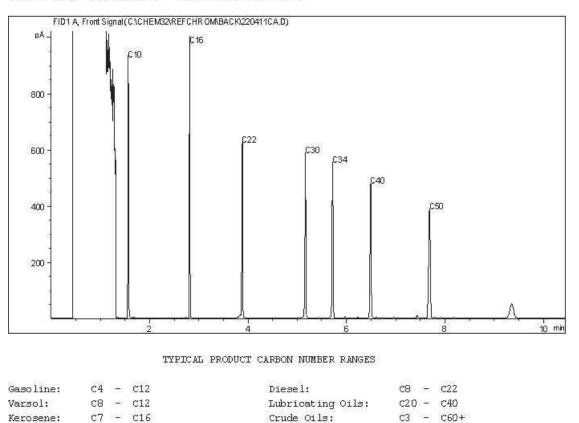
c20 - c40

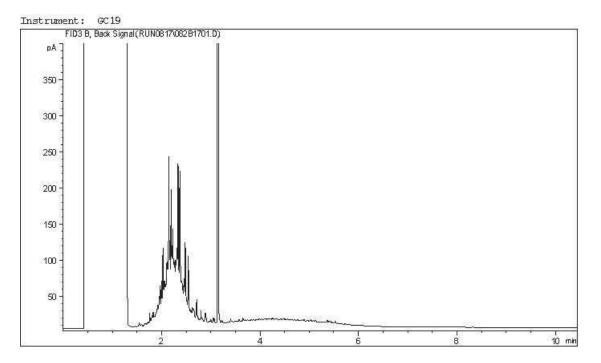


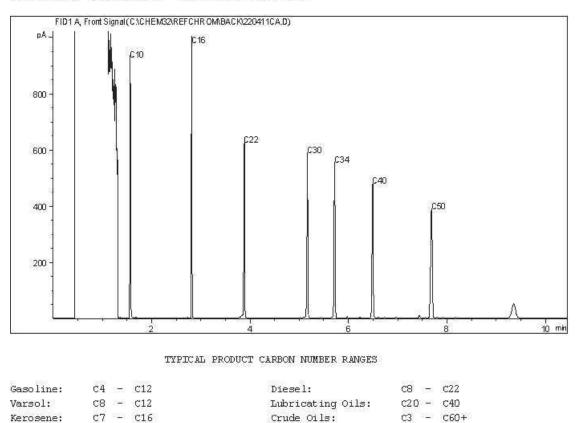

Carbon Range Distribution - Reference Chromatogram




Carbon Range Distribution - Reference Chromatogram




Carbon Range Distribution - Reference Chromatogram



Carbon Range Distribution - Reference Chromatogram

Carbon Range Distribution - Reference Chromatogram

August 19, 2022

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Chromatogram Interpretation of CAMP FAREWELL, NT; Project 22525414-1000 Bureau Veritas Job No.: C260016

Bureau Veritas was retained by Golder Associates Ltd. to provide hydrocarbon interpretations concerning the likely origin of hydrocarbons quantified within CCME fraction(s) F2, F3 and/or F4.

Analytical Method

Petroleum hydrocarbon analyses at Bureau Veritas are conducted in accordance with the analytical specifications required by the prescriptive and performance-based (where appropriate) elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples.

Chromatogram Interpretation

A comprehensive qualitative assessment of the resultant gas chromatograms in the F2-F4 ranges was performed. The chromatograms were inspected for specific peak profiles that would indicate the possible origin of the hydrocarbons present in the sample. The presence and nature of specific aliphatic compounds (n-alkanes), the presence of characteristic unresolved complex mixtures (UCMs) or "humps" and the relative abundance (ratios) of specific compounds are reviewed as part of the evaluation.

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

Data Interpretation

Table 1. Qualitative Data Summary – Chromatogram Interpretation

Lab ID	Sample ID	Chromatogram Interpretation
AZM175	BH22-29-03	The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.
AZM183	BH22-25-5	The CCME F2-F4 chromatographic peak profile is consistent with a weathered middle distillate petroleum product (e.g. Diesel #1/Kerosene). These are typically characterized by evenly distributed peaks between C10 and C24, representing the simple straight chain aliphatic compounds (n-alkanes). These peaks will decrease in height, relative to the unresolved complex mixture (UCM or "hump") with increased weathering of the product material.

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Laboratories

Michael Sheppard, B.Sc., P.Bio., QP Consulting Scientist Environmental Services

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager – Western Canada Environmental Services

Disclaimer

Hydrocarbon Resemblance

Characterization by way of visual evaluation of the sample chromatogram may not be conclusive and is only indicative of substances that may be present. The resemblance information must be regarded as approximate and qualitative.

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC 2021 - 41ST STREET NE Calgary, AB T2E6P2 (403) 291-3077 ATTENTION TO: Cynny Hagen PROJECT: C260016 AGAT WORK ORDER: 22C940433 SOIL ANALYSIS REVIEWED BY: Loan Nguyen, Senior Analyst DATE REPORTED: Sep 06, 2022 PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

*Notes	
Disclaimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22C940433

PROJECT: C260016

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC

SAMPLING SITE:

OANII EINO OTE.															
				Metals	s - Barium b	y Fusion IC	CP								
DATE RECEIVED: 2022-09-01									DATE REPORTED: 2022-09-06						
				AZM179-BH22-	AZM180-BH22-	AZM181-BH22-	AZM182-BH22-	AZM183-BH22	-						
		SAMPLE DESCR	RIPTION:	25-03	25-01	25-02	25-04	25-5							
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	Soil							
		DATE SA	AMPLED:	2022-09-01 15:20	2022-09-01 15:00	2022-09-01 15:10	2022-09-01 15:30	2022-09-01 15:40							
Parameter	Unit	G / S	RDL	4266731	4266735	4266736	4266737	4266738							
True Barium by Fusion ICP	mg/kg		50	3560	36400	9770	3770	1960							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard 4266731-4266738 Result is based on the dry weight of the sample.

Analysis performed at AGAT Calgary (unless marked by *)

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatilabs.com

ATTENTION TO: Cynny Hagen

SAMPLED BY:

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC

PROJECT: C260016

AGAT WORK ORDER: 22C940433

ATTENTION TO: Cynny Hagen

SAMPLING SITE:

SAMPLED BY:

	Soil Analysis														
RPT Date: Sep 06, 2022		C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lir	ptable nits	Recovery	Lie	ptable nits
		là					Value	Lower	Upper		Lower	Upper		Lower	Upper
Metals - Barium by Fusion ICP Barium by Fusion ICP-OES	4266587		976	977	0.0%	< 40	95%	70%	130%				NA	70%	130%

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Method Summary

CLIENT NAME: BUREAU VERITAS CANA	DA (2019) INC	AGAT WORK ORDER: 22C940433								
PROJECT: C260016		ATTENTION TO: Cynny Hagen								
SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis										
True Barium by Fusion ICP	SOIL- 0620, INST- 0140	ASTM D4503.08	ICP/OES							

1 -SEP '22 PM12:10

BUREAU

141

Sent To: AGAT - Calgary 2910 12th Street NE Calgary AB T2E 787

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

COC # C260016-CAGT-01-01

Page 01 of 01

Calgary, AB, T2E 7P7 Tel: (403) 735-2005

22	69	40	433	
----	----	----	-----	--

REP	PORT INFORMATI	ORT INFORMATION								ANALYSIS REQUESTED									
Coi	mpany:	Bureau Veritas									1								
Ad	dress:	4000 19st N.E, Calgary, Alberta	, T2E 6P8	}															
Cor	ntact Name:	Cynny Hagen						ction											
Em	ail:	Cynny. HAGEN@bureauveritas.	com, Cus	tomersolution	swest@bu	reauverita	s.co	Fusion Extraction											
Pho	Phone: (403) 735-2273							usion											
Lab	Lab Project #: C260016							using F											Ē
#	SAMPLE ID		MATRIX	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	SAMPLER INITIALS	# CONT.	Barium on ICP u							2			ADDITIONAL SAM	IPLE INFORMATION
1	AZM179-BH22	2-25-03	SOIL	2022/08/09	15:20	ML	1	X									(P:01)		
2	AZM180-BH22	2-25-01	SOIL	2022/08/09	15:00	ML	1	X									(P: 01)		
3	AZM181-BH22	2-25-02	SOIL	2022/08/09	15:10	ML	1	X									(P:01)		
4	AZM182-BH22	2-25-04	SOIL	2022/08/09	15:30	ML	1	×									(P:01)		
5	AZM183-BH22	2-25-5	SOIL	2022/08/09	13:40	ML	1	X									(P:01)		
6																			
7																	_		
8																			
9																			
10																			r
REG	SULATORY CRITER	RIA		SPECIAL INSTR															TURNAROUND TIME
				Please inform • You are no • The hold ti **Please retur	it accredited me is appro	I for the rec aching for f	uest the re	ed test equest	ed test((s).									X Rush Required
				[_					les et							Date Required
Cust Cust							Ter (°	np: C)	10	2	9	Custoc	ER ID: ly Seal Pr ly Seal In g Media	tact	YES	Те	mp: °C) VA		Please inform us if rush charges will be incurred.
REL	INQUISHED BY: (S			(YYYY/MM/DD)	TIME: (I		REC	EIVED		N & PRI	-		1	9		1	MM/DD)	TIME: (HH:MM)	
200	2 AR	obel Mebrenn	201	109101	09:	30	1. 2.		la	int (Ru	1	tan	2	2	02/0	20101	12:10	

A REAL VIEW A	SAMPLE INTEGRITY RECEIPT
agat Lab	
RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A only Soil Bags Received
RECEIVING BASICS - Shipping Company/Consultant: Durcu Veptors Courier: Durcu Veptors Prepaid Collect Waybill# Branch: EDM GP FN FM RD VAN LYD FSJ EST SASK Other: If multiple sites were submitted at once: Yes No Custody Seal Intact: Yes No TAT: 24-48hr 48-72hr Reg Other	Temperature (Bottles/Jars only)/N/A/ only Soli Bags ReceivedFROZEN (Please Circle if samples received Frozen)1 (Bottle/Jar) N S_{O1} =OC2 (Bottle/Jar)++ =OC2 (Bottle/Jar)++ =OC3 (Bottle/Jar)+ + =OC4 (Bottle/Jar)+ + =OC5 (Bottle/Jar)+ + =OC6 (Bottle/Jar)+ + =OC7 (Bottle/Jar)+ + =OC8 (Bottle/Jar)+ + =OC9 (Bottle/Jar)+ + =OC10 (Bottle/Jar)+ + =OC(If more than 10 coolers are received use another sheet of paper and attach)LOGISTICS USE ONLY
Cooler Quantity:	Workorder No:
TIME SENSITIVE ISSUES - Shipping ALREADY EXCEEDED HOLD TIME? Yes No Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Color , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* ,	Samples Damaged: Yes No If YES why? No Bubble Wrap Frozen Courier Other:
Chloroamines* Earliest Expiry: Hydrocarbons: Earliest Expiry	Whom spoken to: Date/Time: CPM Initial General Comments:
SAMPLE INTEGRITY - Shipping Hazardous Samples: YES NO Legal Samples: Yes No International Samples: Yes No Tape Sealed: Yes No Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

25.192

14

ころう	COURIER www.jazoocourier.com	JSE ONLY	Sample Reception Billed To: Bureau Veritas	Bureau Veritas Calgary	Lange Cooler, 1 Medium Cooler			Jeb/PO/Reference #:	JSE ONLY		D/O Time:	Surcharge		Jong	D/O Driver Name:	her ()	HOTSHOT DETAILS	Or Total Charge (\$):	OFFICE USE ONLY	Invoiced By:	مۇ مازىمىمۇمار، مۇلام مۇلام مۇلام يىمىنى	ct disparch at the city hearest you: Fort McMurray 587-645-6364	Grande Prairie 587-297-8406	THANK YOU FOR SUPPORTING LOCAL AND CHOOSING JAZOO EXPRESS COURIER.
- NI - (JAZOO EXPRESS COURIER	CLIENT USE ONLY	Sender Robel Mebrahmu Receiver Sample	Date: 202109101 Delivery From: Bureau	Item Description.	# Items: 2 envelope, envelope, sm/med/lg box, cooler,	etc.	Authorized Shipper Signature:	DRIVER USE ONLY	P/U Driver And	# Items P/U Time:	# Of Overweight # Of TDG	Additional Info:		Total # Items Dropped Off: D/	Authorized Receiver Signature:	нотенот	Total Km: Or Tota		Verified By: Inv	To schedule a nickun nlags contac	o sciedure a pickup piease contact aisparch at the city nearest you: Calgary 403-660-5504 Fort McMurray 587-645-6364	Edmonton 780-903-3628	THANK YOU FOR SUPPORTING LOCAL ANI

REC

 $\alpha = 1 - \infty = 4$

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAREWELL,NT Your C.O.C. #: 1 of 1

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/09/06 Report #: R3226629 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260031 Received: 2022/08/12, 09:00

Sample Matrix: Soil # Samples Received: 9

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Boron (Hot Water Soluble)	9	2022/08/16	2022/08/16	AB SOP-00034 / AB SOP- 00042	EPA 6010d R5 m
BTEX/F1 by HS GC/MS/FID (MeOH extract) (2)	9	N/A	2022/08/16	AB SOP-00039	CCME CWS/EPA 8260d m
F1-BTEX	9	N/A	2022/08/16		Auto Calc
Hexavalent Chromium (3)	5	2022/08/16	2022/08/16	AB SOP-00063	SM 23 3500-Cr B m
Hexavalent Chromium (3)	4	2022/08/17	2022/08/17	AB SOP-00063	SM 23 3500-Cr B m
Barium on ICP using Fusion Extraction (1)	1	N/A	2022/09/06		
CCME Hydrocarbons (F2-F4 in soil) (4)	1	2022/08/15	2022/08/15	AB SOP-00036	CCME PHC-CWS m
CCME Hydrocarbons (F2-F4 in soil) (4)	8	2022/08/15	2022/08/16	AB SOP-00036	CCME PHC-CWS m
Elements by ICPMS - Soils	9	2022/08/16	2022/08/17	AB SOP-00001 / AB SOP- 00043	EPA 6020b R2 m
Moisture	9	N/A	2022/08/16	AB SOP-00002	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 25

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAREWELL,NT Your C.O.C. #: 1 of 1

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/09/06 Report #: R3226629 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C260031 Received: 2022/08/12.09:00

(1) This test was performed by AGAT - Calgary, 2910 12th Street NE , Calgary, AB, T2E 7P7

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.

(3) Some soil samples may react with the Cr(VI) spike reducing it to Cr(III). These samples are highly unlikely to contain native hexavalent chromium. Thus a failed spike recovery does not invalidate a negative result on the native sample.

(4) All CCME results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Validation of Performance-Based Alternative Methods September 2003. Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Bureau Veritas AUTHORIZED REPORT RAPPORT AUTORISÉ

06 Sep 2022 17:28:05

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Cynny Hagen, Key Account Specialist

Email: Cynny.HAGEN@bureauveritas.com

Phone# (403)735-2273

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZM277	AZM278	AZM279	AZM280	AZM281	AZM282		
Sampling Date		2022/08/08	2022/08/08	2022/08/08	2022/08/08	2022/08/08	2022/08/08		
		13:30	13:30	13:40	13:45	13:50	13:00		
COC Number		1 of 1							
	UNITS	DUP E	BH22-20-04	BH22-20-03	BH22-20-02	BH22-20-01	BH22-18-01	RDL	QC Batch
Ext. Pet. Hydrocarbon									
F2 (C10-C16 Hydrocarbons)	mg/kg	41	100	300	14	94	18	10	A681077
F3 (C16-C34 Hydrocarbons)	mg/kg	81	130	670	<50	400	310	50	A681077
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	<50	260	<50	160	140	50	A681077
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	Yes	Yes	Yes	N/A	A681077
Physical Properties						•			
Moisture	%	16	18	40	5.4	14	38	0.30	A681090
Volatiles						•		•	•
Xylenes (Total)	mg/kg	<0.045	<0.045	<0.045	<0.045	0.16	<0.045	0.045	A679841
F1 (C6-C10) - BTEX	mg/kg	<10	<10	<10	<10	<10	<10	10	A679841
Field Preserved Volatiles						•		•	•
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.022	<0.0050	0.0050	A680852
Toluene	mg/kg	<0.050	<0.050	<0.050	<0.050	0.12	<0.050	0.050	A680852
Ethylbenzene	mg/kg	<0.010	<0.010	<0.010	<0.010	0.026	<0.010	0.010	A680852
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	<0.040	0.13	<0.040	0.040	A680852
o-Xylene	mg/kg	<0.020	<0.020	<0.020	<0.020	0.032	<0.020	0.020	A680852
F1 (C6-C10)	mg/kg	<10	<10	<10	<10	<10	<10	10	A680852
Surrogate Recovery (%)									
1,4-Difluorobenzene (sur.)	%	98	97	97	98	97	97	N/A	A680852
4-Bromofluorobenzene (sur.)	%	100	100	100	100	99	101	N/A	A680852
D10-o-Xylene (sur.)	%	101	102	99	105	83	86	N/A	A680852
D4-1,2-Dichloroethane (sur.)	%	103	102	103	103	102	104	N/A	A680852
O-TERPHENYL (sur.)	%	96	98	108	98	101	104	N/A	A681077
RDL = Reportable Detection Lir	nit								
N/A = Not Applicable									

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZM283	AZM284	AZM284	AZM285		
Sampling Date		2022/08/08	2022/08/08	2022/08/08	2022/08/08		
Sampling Date		13:10	13:15	13:15	13:20		
COC Number		1 of 1	1 of 1	1 of 1	1 of 1		
	UNITS	BH22-18-02	BH22-18-03	BH22-18-03 Lab-Dup	BH22-18-04	RDL	QC Batch
Ext. Pet. Hydrocarbon							
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	<10	<10	<10	10	A681077
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	<50	<50	<50	50	A681077
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	<50	<50	<50	50	A681077
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	Yes	N/A	A681077
Physical Properties				•			
Moisture	%	20	15	N/A	17	0.30	A681090
Volatiles							
Xylenes (Total)	mg/kg	<0.045	<0.045	N/A	<0.045	0.045	A679841
F1 (C6-C10) - BTEX	mg/kg	<10	<10	N/A	<10	10	A679841
Field Preserved Volatiles							
Benzene	mg/kg	<0.0050	<0.0050	N/A	<0.0050	0.0050	A680852
Toluene	mg/kg	<0.050	<0.050	N/A	<0.050	0.050	A680852
Ethylbenzene	mg/kg	<0.010	0.025	N/A	<0.010	0.010	A680852
m & p-Xylene	mg/kg	<0.040	<0.040	N/A	<0.040	0.040	A680852
o-Xylene	mg/kg	<0.020	<0.020	N/A	<0.020	0.020	A680852
F1 (C6-C10)	mg/kg	<10	<10	N/A	<10	10	A680852
Surrogate Recovery (%)							
1,4-Difluorobenzene (sur.)	%	96	97	N/A	96	N/A	A680852
4-Bromofluorobenzene (sur.)	%	101	100	N/A	101	N/A	A680852
D10-o-Xylene (sur.)	%	108	107	N/A	103	N/A	A680852
D4-1,2-Dichloroethane (sur.)	%	105	104	N/A	106	N/A	A680852
O-TERPHENYL (sur.)	%	101	101	100	101	N/A	A681077
RDL = Reportable Detection Lin Lab-Dup = Laboratory Initiated N/A = Not Applicable		te					

CCME REGULATED METALS - SOILS (SOIL)

Bureau Veritas ID		AZM277	AZM278	AZM279		AZM280		AZM281		
Sampling Date		2022/08/08 13:30	2022/08/08 13:30	2022/08/08 13:40		2022/08/08 13:45		2022/08/08 13:50		
COC Number										
COC Number		1 of 1	1 of 1	1 of 1		1 of 1		1 of 1		
	UNITS	DUP E	BH22-20-04	BH22-20-03	QC Batch	BH22-20-02	QC Batch	BH22-20-01	RDL	QC Batch
Elements										
Soluble (Hot water) Boron (B)	mg/kg	0.20	<0.10	0.31	A683007	0.23	A683007	0.65	0.10	A683000
Hex. Chromium (Cr 6+)	mg/kg	<0.080	<0.080	<0.080	A683972	<0.080	A682697	<0.080	0.080	A683972
Total Antimony (Sb)	mg/kg	<0.50	<0.50	<0.50	A682611	<0.50	A682611	1.9	0.50	A683223
Total Arsenic (As)	mg/kg	7.3	6.8	5.3	A682611	4.7	A682611	4.7	1.0	A683223
Total Barium (Ba)	mg/kg	360	140	120	A682611	380	A682611	2200	1.0	A683223
Total Beryllium (Be)	mg/kg	<0.40	<0.40	<0.40	A682611	<0.40	A682611	<0.40	0.40	A683223
Total Cadmium (Cd)	mg/kg	0.12	0.10	0.24	A682611	0.091	A682611	0.25	0.050	A683223
Total Chromium (Cr)	mg/kg	21	8.7	10	A682611	42	A682611	12	1.0	A683223
Total Cobalt (Co)	mg/kg	4.7	4.8	12	A682611	2.5	A682611	2.8	0.50	A683223
Total Copper (Cu)	mg/kg	7.9	5.6	9.6	A682611	6.3	A682611	56	1.0	A683223
Total Lead (Pb)	mg/kg	7.8	4.2	5.2	A682611	9.0	A682611	110	0.50	A683223
Total Mercury (Hg)	mg/kg	<0.050	<0.050	0.051	A682611	<0.050	A682611	<0.050	0.050	A683223
Total Molybdenum (Mo)	mg/kg	1.7	0.93	0.74	A682611	1.6	A682611	1.6	0.40	A683223
Total Nickel (Ni)	mg/kg	17	13	32	A682611	21	A682611	9.1	1.0	A683223
Total Selenium (Se)	mg/kg	<0.50	<0.50	0.86	A682611	<0.50	A682611	<0.50	0.50	A683223
Total Silver (Ag)	mg/kg	<0.20	<0.20	<0.20	A682611	<0.20	A682611	<0.20	0.20	A683223
Total Thallium (Tl)	mg/kg	<0.10	<0.10	<0.10	A682611	<0.10	A682611	<0.10	0.10	A683223
Total Tin (Sn)	mg/kg	<1.0	<1.0	<1.0	A682611	<1.0	A682611	1.5	1.0	A683223
Total Uranium (U)	mg/kg	0.69	0.51	2.3	A682611	0.29	A682611	0.37	0.20	A683223
Total Vanadium (V)	mg/kg	18	17	21	A682611	15	A682611	13	1.0	A683223
Total Zinc (Zn)	mg/kg	32	32	28	A682611	22	A682611	73	10	A683223
RDL = Reportable Detection Lir	nit									

CCME REGULATED METALS - SOILS (SOIL)

Bureau Veritas ID		AZM282	AZM282	AZM283		AZM284		AZM285		
Sampling Date		2022/08/08	2022/08/08	2022/08/08		2022/08/08		2022/08/08		
Sampling Date		13:00	13:00	13:10		13:15		13:20		
COC Number		1 of 1	1 of 1	1 of 1		1 of 1		1 of 1		
	UNITS	BH22-18-01	BH22-18-01 Lab-Dup	BH22-18-02	QC Batch	BH22-18-03	QC Batch	BH22-18-04	RDL	QC Batch
Elements										
Soluble (Hot water) Boron (B)	mg/kg	2.1	2.2	0.17	A683007	<0.10	A683000	<0.10	0.10	A683007
Hex. Chromium (Cr 6+)	mg/kg	<0.080	N/A	<0.080	A682697	<0.080	A682697	<0.080	0.080	A682697
Total Antimony (Sb)	mg/kg	<0.50	N/A	<0.50	A682611	<0.50	A683223	<0.50	0.50	A682611
Total Arsenic (As)	mg/kg	5.6	N/A	6.9	A682611	5.2	A683223	5.2	1.0	A682611
Total Barium (Ba)	mg/kg	300	N/A	130	A682611	89	A683223	76	1.0	A682611
Total Beryllium (Be)	mg/kg	<0.40	N/A	<0.40	A682611	<0.40	A683223	<0.40	0.40	A682611
Total Cadmium (Cd)	mg/kg	0.086	N/A	0.055	A682611	0.078	A683223	0.056	0.050	A682611
Total Chromium (Cr)	mg/kg	20	N/A	7.7	A682611	4.8	A683223	6.4	1.0	A682611
Total Cobalt (Co)	mg/kg	3.1	N/A	3.9	A682611	2.8	A683223	3.1	0.50	A682611
Total Copper (Cu)	mg/kg	6.0	N/A	2.8	A682611	2.7	A683223	3.2	1.0	A682611
Total Lead (Pb)	mg/kg	6.2	N/A	3.7	A682611	3.2	A683223	2.7	0.50	A682611
Total Mercury (Hg)	mg/kg	0.064	N/A	<0.050	A682611	<0.050	A683223	<0.050	0.050	A682611
Total Molybdenum (Mo)	mg/kg	1.4	N/A	0.54	A682611	0.54	A683223	0.57	0.40	A682611
Total Nickel (Ni)	mg/kg	12	N/A	8.4	A682611	7.0	A683223	8.5	1.0	A682611
Total Selenium (Se)	mg/kg	0.56	N/A	<0.50	A682611	<0.50	A683223	<0.50	0.50	A682611
Total Silver (Ag)	mg/kg	<0.20	N/A	<0.20	A682611	<0.20	A683223	<0.20	0.20	A682611
Total Thallium (Tl)	mg/kg	<0.10	N/A	<0.10	A682611	<0.10	A683223	<0.10	0.10	A682611
Total Tin (Sn)	mg/kg	<1.0	N/A	<1.0	A682611	<1.0	A683223	<1.0	1.0	A682611
Total Uranium (U)	mg/kg	0.52	N/A	0.26	A682611	0.26	A683223	0.29	0.20	A682611
Total Vanadium (V)	mg/kg	21	N/A	16	A682611	9.7	A683223	13	1.0	A682611
Total Zinc (Zn)	mg/kg	19	N/A	23	A682611	20	A683223	22	10	A682611
RDL = Reportable Detection Lin Lab-Dup = Laboratory Initiated		te				-				

N/A = Not Applicable

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		AZM281	
Sampling Date		2022/08/08 13:50	
COC Number		1 of 1	
	UNITS	BH22-20-01	QC Batch
Parameter			
Subcontract Parameter	N/A	ATTACHED	A705741

GENERAL COMMENTS

Each te	emperature is the	average of up t	o three cooler temperatures taken at receipt
	Package 1	4.0°C	
Versior	2: Report reissue	d to include Ch	romatogram analysis on sample AZM279/BH22-20-03as per client request received 2022/08/18.
Versior	3: Report reissue	d to include res	ults for Barium - True Total on sample BH22-20-01/AZM281 as per client request received 2022/08/24.
Sample	AZM281 [BH22-2	20-01] : Please	see attachment for Barium on ICP using Fusion Extraction results.
Result	s relate only to the	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A680852	D01	Matrix Spike	1,4-Difluorobenzene (sur.)	2022/08/16	value	91	%	50 - 140
A000032	001	Wath Spike	4-Bromofluorobenzene (sur.)	2022/08/16		102	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/16		99	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/16		102	%	50 - 140
			Benzene	2022/08/16		91	%	50 - 140
			Toluene	2022/08/16		86	%	50 - 140
			Ethylbenzene	2022/08/16		89	%	50 - 140
			m & p-Xylene	2022/08/16		89	%	50 - 140
			o-Xylene	2022/08/16		92	%	50 - 140
			F1 (C6-C10)	2022/08/16		91	%	60 - 140
A680852	D01	Spiked Blank	1,4-Difluorobenzene (sur.)	2022/08/16		93	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/16		102	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/16		94	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/16		114	%	50 - 140
			Benzene	2022/08/16		98	%	60 - 130
			Toluene	2022/08/16		90	%	60 - 130
			Ethylbenzene	2022/08/16		89	%	60 - 130
			m & p-Xylene	2022/08/16		89	%	60 - 130
			o-Xylene	2022/08/16		92	%	60 - 130
			F1 (C6-C10)	2022/08/16		106	%	60 - 140
A680852	DO1	Method Blank	1,4-Difluorobenzene (sur.)	2022/08/16		96	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/16		101	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/16		85	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/16		105	%	50 - 140
			Benzene	2022/08/16	<0.0050		mg/kg	
			Toluene	2022/08/16	<0.050		mg/kg	
			Ethylbenzene	2022/08/16	<0.010		mg/kg	
			m & p-Xylene	2022/08/16	<0.040		mg/kg	
			o-Xylene	2022/08/16	<0.020		mg/kg	
			F1 (C6-C10)	2022/08/16	<10		mg/kg	
A680852	D01	RPD	Benzene	2022/08/16	NC		%	50
			Toluene	2022/08/16	NC		%	50
			Ethylbenzene	2022/08/16	NC		%	50
			m & p-Xylene	2022/08/16	NC		%	50
			o-Xylene	2022/08/16	NC		%	50
			F1 (C6-C10)	2022/08/16	NC		%	30
A681077	GG3	Matrix Spike [AZM284-02]	O-TERPHENYL (sur.)	2022/08/15		81	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/15		77	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/15		77	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/15		72	%	60 - 140
A681077	GG3	Spiked Blank	O-TERPHENYL (sur.)	2022/08/15		81	%	60 - 140
		·	F2 (C10-C16 Hydrocarbons)	2022/08/15		78	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/15		79	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/15		74	%	60 - 140
A681077	GG3	Method Blank	O-TERPHENYL (sur.)	2022/08/15		83	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/15	<10		mg/kg	
			F3 (C16-C34 Hydrocarbons)	2022/08/15	<50		mg/kg	
			F4 (C34-C50 Hydrocarbons)	2022/08/15	<50		mg/kg	
A681077	GG3	RPD [AZM284-02]	F2 (C10-C16 Hydrocarbons)	2022/08/15	NC		%	40
			F3 (C16-C34 Hydrocarbons)	2022/08/15	NC		%	40
			F4 (C34-C50 Hydrocarbons)	2022/08/15	NC		%	40

QUALITY ASSURANCE REPORT(CONT'D)

01/06			· · · · · · · · · · · · · · · · · · ·					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A681090	A1H	Method Blank	Moisture	2022/08/16	< 0.30	/	%	
A681090	A1H	RPD	Moisture	2022/08/16	2.1		%	20
A682611	MKJ	Matrix Spike	Total Antimony (Sb)	2022/08/17		101	%	75 - 125
			Total Arsenic (As)	2022/08/17		97	%	75 - 125
			Total Barium (Ba)	2022/08/17		NC	%	75 - 125
			Total Beryllium (Be)	2022/08/17		96	%	75 - 125
			Total Cadmium (Cd)	2022/08/17		98	%	75 - 125
			Total Chromium (Cr)	2022/08/17		113	%	75 - 125
			Total Cobalt (Co)	2022/08/17		99	%	75 - 125
			Total Copper (Cu)	2022/08/17		100	%	75 - 125
			Total Lead (Pb)	2022/08/17		99	%	75 - 125
			Total Mercury (Hg)	2022/08/17		96	%	75 - 125
			Total Molybdenum (Mo)	2022/08/17		101	%	75 - 125
			Total Nickel (Ni)	2022/08/17		101	%	75 - 125
			Total Selenium (Se)	2022/08/17		100	%	75 - 125
			Total Silver (Ag)	2022/08/17		99	%	75 - 125
			Total Thallium (TI)	2022/08/17		98	%	75 - 125
			Total Tin (Sn)	2022/08/17		102	%	75 - 125
			Total Uranium (U)	2022/08/17		95	%	75 - 125
			Total Vanadium (V)	2022/08/17		140 (1)	%	75 - 125
			Total Zinc (Zn)	2022/08/17		102	%	75 - 125
A682611	MKJ	QC Standard	Total Antimony (Sb)	2022/08/17		102	%	15 - 182
1002011	14110	Qe Standard	Total Arsenic (As)	2022/08/17		103	%	53 - 147
			Total Barium (Ba)	2022/08/17		103	%	80 - 119
			Total Cadmium (Cd)	2022/08/17		94	%	72 - 128
			Total Chromium (Cr)	2022/08/17		113	%	59 - 141
			Total Cobalt (Co)	2022/08/17		101	%	58 - 142
			Total Copper (Cu)	2022/08/17		103	%	83 - 117
			Total Lead (Pb)	2022/08/17		100	%	79 - 121
			Total Molybdenum (Mo)	2022/08/17		122	%	67 - 133
			Total Nickel (Ni)	2022/08/17		110	%	79 - 121
			Total Silver (Ag)	2022/08/17		89	%	47 - 153
			Total Tin (Sn)	2022/08/17		98	%	67 - 133
			Total Uranium (U)	2022/08/17		98	%	77 - 123
			Total Vanadium (V)	2022/08/17		111	%	79 - 121
			Total Zinc (Zn)	2022/08/17		103	%	79 - 121
A682611	MKJ	Spiked Blank	Total Antimony (Sb)	2022/08/17		103	%	80 - 120
1002011	14110	Spined Blank	Total Arsenic (As)	2022/08/17		95	%	80 - 120
			Total Barium (Ba)	2022/08/17		96	%	80 - 120
			Total Beryllium (Be)	2022/08/17		92	%	80 - 120
			Total Cadmium (Cd)	2022/08/17		95	%	80 - 120
			Total Chromium (Cr)	2022/08/17		97	%	80 - 120
			Total Cobalt (Co)	2022/08/17		97	%	80 - 120
			Total Copper (Cu)	2022/08/17		97	%	80 - 120
			Total Lead (Pb)	2022/08/17		97	%	80 - 120
			Total Mercury (Hg)	2022/08/17		100	%	80 - 120
			Total Molybdenum (Mo)	2022/08/17		96	%	80 - 120
			Total Nickel (Ni)	2022/08/17		96	%	80 - 120
			Total Selenium (Se)	2022/08/17		96 99	%	80 - 120 80 - 120
			Total Silver (Ag)	2022/08/17		96 97	%	80 - 120 80 - 120
			Total Thallium (Tl)	2022/08/17		97	%	80 - 120
			Total Tin (Sn)	2022/08/17		96	%	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Uranium (U)	2022/08/17		97	%	80 - 120
			Total Vanadium (V)	2022/08/17		97	%	80 - 120
			Total Zinc (Zn)	2022/08/17		97	%	80 - 120
A682611	MKJ	Method Blank	Total Antimony (Sb)	2022/08/17	<0.50		mg/kg	
			Total Arsenic (As)	2022/08/17	<1.0		mg/kg	
			Total Barium (Ba)	2022/08/17	<1.0		mg/kg	
			Total Beryllium (Be)	2022/08/17	<0.40		mg/kg	
			Total Cadmium (Cd)	2022/08/17	<0.050		mg/kg	
			Total Chromium (Cr)	2022/08/17	<1.0		mg/kg	
			Total Cobalt (Co)	2022/08/17	<0.50		mg/kg	
			Total Copper (Cu)	2022/08/17	<1.0		mg/kg	
			Total Lead (Pb)	2022/08/17	<0.50		mg/kg	
			Total Mercury (Hg)	2022/08/17	<0.050		mg/kg	
			Total Molybdenum (Mo)	2022/08/17	<0.40		mg/kg	
			Total Nickel (Ni)	2022/08/17	<1.0		mg/kg	
			Total Selenium (Se)	2022/08/17	<0.50		mg/kg	
			Total Silver (Ag)	2022/08/17	<0.20		mg/kg	
			Total Thallium (TI)	2022/08/17	<0.10		mg/kg	
			Total Tin (Sn)	2022/08/17	<1.0		mg/kg	
			Total Uranium (U)	2022/08/17	<0.20		mg/kg	
			Total Vanadium (V)	2022/08/17	<1.0		mg/kg	
			Total Zinc (Zn)	2022/08/17	<10		mg/kg	
A682611	MKJ	RPD	Total Chromium (Cr)	2022/08/17	1.9		%	30
			Total Nickel (Ni)	2022/08/17	5.2		%	30
A682697	FM0	Matrix Spike	Hex. Chromium (Cr 6+)	2022/08/16		97	%	75 - 125
A682697	FM0	Spiked Blank	Hex. Chromium (Cr 6+)	2022/08/16		98	%	80 - 120
A682697	FM0	Method Blank	Hex. Chromium (Cr 6+)	2022/08/16	<0.080		mg/kg	
A682697	FM0	RPD	Hex. Chromium (Cr 6+)	2022/08/16	NC		%	35
A683000	MPU	Matrix Spike	Soluble (Hot water) Boron (B)	2022/08/16		95	%	75 - 125
A683000	MPU	Spiked Blank	Soluble (Hot water) Boron (B)	2022/08/16		89	%	80 - 120
A683000	MPU	Method Blank	Soluble (Hot water) Boron (B)	2022/08/16	<0.10		mg/kg	
A683000	MPU	RPD	Soluble (Hot water) Boron (B)	2022/08/16	4.3		%	35
A683007	MPU	Matrix Spike [AZM282-01]	Soluble (Hot water) Boron (B)	2022/08/16		91	%	75 - 125
A683007	MPU	Spiked Blank	Soluble (Hot water) Boron (B)	2022/08/16		94	%	80 - 120
A683007	MPU	Method Blank	Soluble (Hot water) Boron (B)	2022/08/16	<0.10		mg/kg	
A683007	MPU	RPD [AZM282-01]	Soluble (Hot water) Boron (B)	2022/08/16	6.8		%	35
A683223	KH2	Matrix Spike	Total Antimony (Sb)	2022/08/17		104	%	75 - 125
			Total Arsenic (As)	2022/08/17		100	%	75 - 125
			Total Barium (Ba)	2022/08/17		NC	%	75 - 125
			Total Beryllium (Be)	2022/08/17		105	%	75 - 125
			Total Cadmium (Cd)	2022/08/17		101	%	75 - 125
			Total Chromium (Cr)	2022/08/17		113	%	75 - 125
			Total Cobalt (Co)	2022/08/17		102	%	75 - 125
			Total Copper (Cu)	2022/08/17		101	%	75 - 125
			Total Lead (Pb)	2022/08/17		103	%	75 - 125
			Total Mercury (Hg)	2022/08/17		101	%	75 - 125
			Total Molybdenum (Mo)	2022/08/17		106	%	75 - 125
			Total Nickel (Ni)	2022/08/17		106	%	75 - 125
			Total Selenium (Se)	2022/08/17		100	%	75 - 125
			Total Silver (Ag)	2022/08/17		104	%	75 - 125
			Total Thallium (TI)	2022/08/17		102	%	75 - 125

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		. //	Total Tin (Sn)	2022/08/17		105	%	75 - 125
			Total Uranium (U)	2022/08/17		101	%	75 - 125
			Total Vanadium (V)	2022/08/17		131 (1)	%	75 - 125
			Total Zinc (Zn)	2022/08/17		113	%	75 - 125
A683223	KH2	QC Standard	Total Antimony (Sb)	2022/08/17		96	%	15 - 182
			Total Arsenic (As)	2022/08/17		73	%	53 - 147
			Total Barium (Ba)	2022/08/17		89	%	80 - 119
			Total Cadmium (Cd)	2022/08/17		85	%	72 - 128
			Total Chromium (Cr)	2022/08/17		78	%	59 - 141
			Total Cobalt (Co)	2022/08/17		73	%	58 - 142
			Total Copper (Cu)	2022/08/17		101	%	83 - 117
			Total Lead (Pb)	2022/08/17		98	%	79 - 121
			Total Molybdenum (Mo)	2022/08/17		112	%	67 - 133
			Total Nickel (Ni)	2022/08/17		81	%	79 - 121
			Total Silver (Ag)	2022/08/17		80	%	47 - 153
			Total Tin (Sn)	2022/08/17		86	%	67 - 133
			Total Uranium (U)	2022/08/17		81	%	77 - 123
			Total Vanadium (V)	2022/08/17		79	%	79 - 121
			Total Zinc (Zn)	2022/08/17		101	%	79 - 121
A683223	KH2	Spiked Blank	Total Antimony (Sb)	2022/08/17		101	%	80 - 120
			Total Arsenic (As)	2022/08/17		94	%	80 - 120
			Total Barium (Ba)	2022/08/17		97	%	80 - 120
			Total Beryllium (Be)	2022/08/17		98	%	80 - 120
			Total Cadmium (Cd)	2022/08/17		96	%	80 - 120
			Total Chromium (Cr)	2022/08/17		97	%	80 - 120
			Total Cobalt (Co)	2022/08/17		97	%	80 - 120
			Total Copper (Cu)	2022/08/17		97	%	80 - 120
			Total Lead (Pb)	2022/08/17		97	%	80 - 120
			Total Mercury (Hg)	2022/08/17		102	%	80 - 120
			Total Molybdenum (Mo)	2022/08/17		99	%	80 - 120
			Total Nickel (Ni)	2022/08/17		96	%	80 - 120
			Total Selenium (Se)	2022/08/17		96	%	80 - 120
			Total Silver (Ag)	2022/08/17		98	%	80 - 120
			Total Thallium (Tl)	2022/08/17		98	%	80 - 120
			Total Tin (Sn)	2022/08/17		97	%	80 - 120
			Total Uranium (U)	2022/08/17		98	%	80 - 120
			Total Vanadium (V)	2022/08/17		98	%	80 - 120
			Total Zinc (Zn)	2022/08/17		95	%	80 - 120
A683223	KH2	Method Blank	Total Antimony (Sb)	2022/08/17	<0.50		mg/kg	
			Total Arsenic (As)	2022/08/17	<1.0		mg/kg	
			Total Barium (Ba)	2022/08/17	<1.0		mg/kg	
			Total Beryllium (Be)	2022/08/17	<0.40		mg/kg	
			Total Cadmium (Cd)	2022/08/17	< 0.050		mg/kg	
			Total Chromium (Cr)	2022/08/17	<1.0		mg/kg	
			Total Cobalt (Co)	2022/08/17	<0.50		mg/kg	
			Total Copper (Cu)	2022/08/17	<1.0		mg/kg	
			Total Lead (Pb)	2022/08/17	<0.50		mg/kg	
			Total Mercury (Hg)	2022/08/17	<0.050		mg/kg	
			Total Molybdenum (Mo)	2022/08/17	<0.40		mg/kg	
			Total Nickel (Ni)	2022/08/17	<1.0		mg/kg	
			Total Selenium (Se)	2022/08/17	<0.50		mg/kg	
			Total Silver (Ag)	2022/08/17	<0.20		mg/kg	

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Datti	IIIIL	QC Type	Total Thallium (TI)	2022/08/17	<0.10	Recovery	mg/kg	QC LIIIIIIS
			Total Tin (Sn)	2022/08/17	<1.0		mg/kg	
			Total Uranium (U)	2022/08/17	<0.20		mg/kg	
			Total Vanadium (V)	2022/08/17	<1.0		mg/kg	
			Total Zinc (Zn)	2022/08/17	<10		mg/kg	
A683223	KH2	RPD	Total Antimony (Sb)	2022/08/17	NC		%	30
			Total Arsenic (As)	2022/08/17	10		%	30
			Total Barium (Ba)	2022/08/17	14		%	35
			Total Beryllium (Be)	2022/08/17	NC		%	30
			Total Cadmium (Cd)	2022/08/17	0.64		%	30
			Total Chromium (Cr)	2022/08/17	7.9		%	30
			Total Cobalt (Co)	2022/08/17	7.9		%	30
			Total Copper (Cu)	2022/08/17	5.9		%	30
			Total Lead (Pb)	2022/08/17	3.3		%	35
			Total Mercury (Hg)	2022/08/17	NC		%	35
			Total Molybdenum (Mo)	2022/08/17	2.7		%	35
			Total Nickel (Ni)	2022/08/17	4.8		%	30
			Total Selenium (Se)	2022/08/17	NC		%	30
			Total Silver (Ag)	2022/08/17	NC		%	35
			Total Thallium (TI)	2022/08/17	NC		%	30
			Total Tin (Sn)	2022/08/17	NC		%	35
			Total Uranium (U)	2022/08/17	5.0		%	30
			Total Vanadium (V)	2022/08/17	11		%	30
			Total Zinc (Zn)	2022/08/17	6.1		%	30
A683972	FM0	Matrix Spike	Hex. Chromium (Cr 6+)	2022/08/17		107	%	75 - 125
A683972	FM0	Spiked Blank	Hex. Chromium (Cr 6+)	2022/08/17		101	%	80 - 120
A683972	FM0	Method Blank	Hex. Chromium (Cr 6+)	2022/08/17	<0.080		mg/kg	
A683972	FM0	RPD	Hex. Chromium (Cr 6+)	2022/08/17	NC		%	35

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Chantal Vincent, Customer Solutions Representative

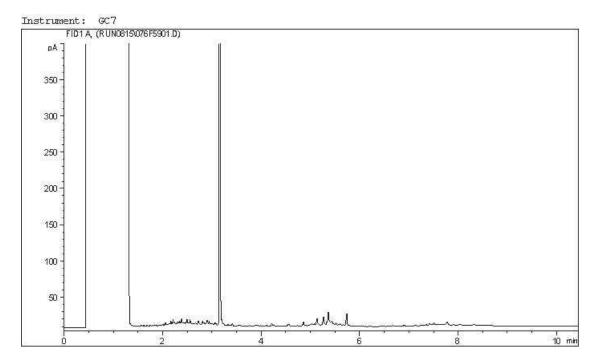
Junzhi Gras

Janet Gao, B.Sc., QP, Supervisor, Organics

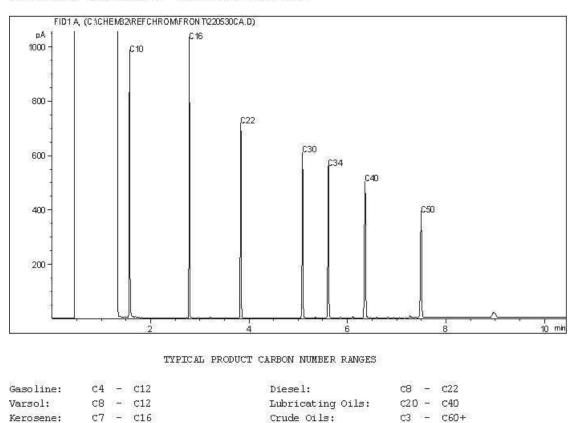
Sandy Yuan, M.Sc., QP, Scientific Specialist

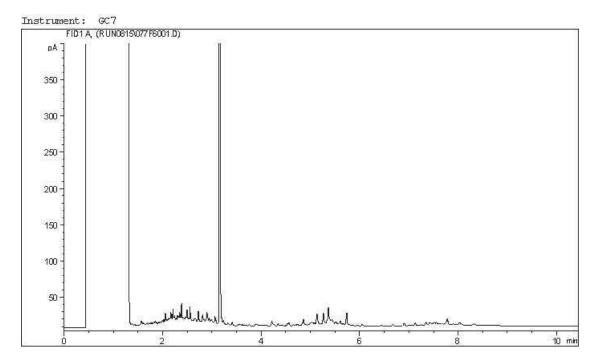
00

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

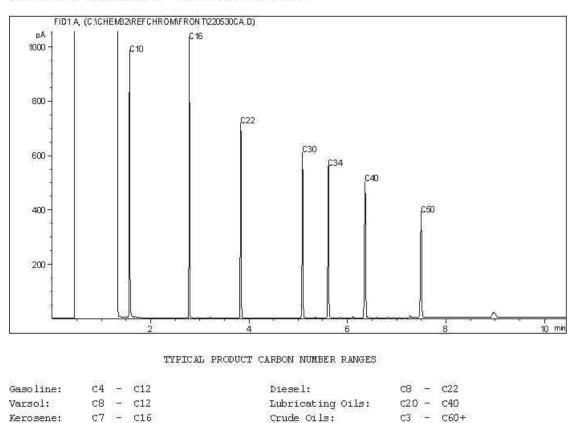

1/enmicatelk

Veronica Falk, B.Sc., P.Chem., QP, Scientific Specialist, Organics

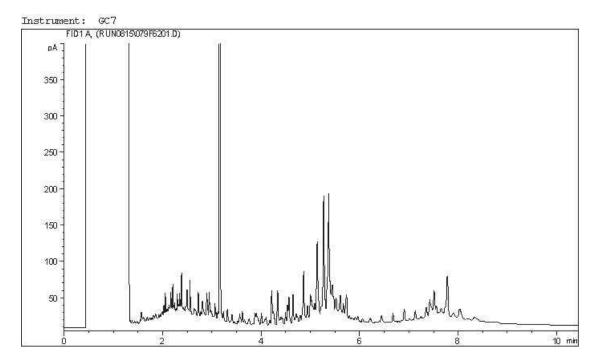

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


	—							-					DD			is, com	woor	code			kn fe	2	ta		()	J.	HICH	ure oy:	1	П		
Page <u>1</u> of <u>†</u>			LAB USE ONLY - PLACE STICKER HERE	1200160	ic na	Rush Confirmation #:			Turnarour	L 5 to 7 Day		AVALAYA Avalay Avala	Date YY MM		email report to:	ald. SHELLDOR Deputs.	gld i i ol-equisavisa c	Upload to Eacility co	41259544		Received in Yellowkn	2	0.60		116 71 10	reline 1 1 3	EPTANCE OF OUR TERMS AND CONDITIONS WE	Temperature reading by:		1 2 3 Special instructions)	
			P	160	2VD				1	NPLE			HCARCARA NAS DƏTIMIJ # OF CONTRINER		X	hХ	μX	ЪX	Хч	hХ	hХ	ЧX	лX			_	ENT AND ACC	No	, 	em	MM 20	
								LY CYL	1 18	jua	Səu	0 20	eds	æəh	×	X	\times	×	×	×	×	X	×				NOWLEDGME	Yes		-	H X	10
CHAIN OF CUSTODY RECORD ENV COC - 00013v3	Project Information	Shell	22525414-\$100-\$104	22525414- 3 000	Campfarewell NA	U WEST CHANNEL, NT	NT	Melissa Lord, Harmanyeet Ka	71 91 CI 91 EI 71 II 01 6			vloszib - zi ived n) t, silt, clay	bin meta total dissol - dissol - - - - - - - - - - - - - - - - - - -	Mercury Mercury Salinity 4 Sieve (75	×	X	×	×	X	×	X	×	×				IS SUBJECT TO BURKAU VERITAS STANDARD FERMS AND CONDITIONS. SIGNÍNG OF THIS CHAIN OF CUSTODY DOCUMENT IS ACANOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH JR VIEWING AT WWW BYNA. COM/TERMS-AND-CONDITIONS OR BY CALLING THE LABORATORY LISTED ABOYE TO OBTAIN A COPY		Seal present Seal intact	Cooling media present Date	1 2022 0 8 13	
* 3.		:#	ä		Car		uo		8 /			JATO		MUIAA8 9nituoA													S. SIGNING			<u>6</u>	hela	
\bigcirc		Quotation #:	P.O. #/ AFE#:	Project #:	Site #:	Site Location:	Site Location Province:	Sampled By:	2				BAHS BTEX F1-F2													Q	CONDITION NS OR BY C			2 ura/ Drint)	Nevec	
$\tilde{\mathcal{O}}$	ice)				Postal T2P 4K3 Code: T2P 4K3			1.2	1 2 3 4		a	גנסטוגנ מ	аvяага. Иоітая	FIELD FIL FIELD PR LAB FILT BAL BTEX F1-	X	X	X	X	X	X	X	×	X				ANDARD JERMS AND C ERMS-AND-CONDITIO			Bereived hur (Signature/ Brint)	Sal Sal	
386-7247 86-7247 \$) 800-6208	Report Information (if differs from invoice)	Golder Associates	Aurelie Bellavance			403-299-5600	vanceeu	with and us p. co.			2	ITAS		Matrix	Soil	Soil	Soil	Soil	Ś	R	1is	So: S	_				REAU-VERITAS 51/ WW.BVNA.COM/T	Yes No			N.) 2
hoose Location: — Caligary, A8: 4000 19th St. NE, T2E 6P8 Toll Free (800) 386-7247 — Edmonton, A8: 9331-48 St. T68 2R4 Toll Free (800) 386-7247 — Winnipeg, MB: D-675 Berry St. R3H 1A7 Toll Free (866) 800-6208		Gold	Aure		AB	40	aurelie. bellavance@wsp.com	Quet		Water - Manitoba	AMSR	Y TO BUREAU VERITAS	Time (24hr)	MM HH	13 30	13 30	13 40	13 4S	13 50	13 00	13 10	13 iS	13 20			-	BJECT TO BU	B USE ONLY		present ime	WW O	
					Calgary			peter.		Drinking Water	Fother A		Date Sampled	DD MM	OS ÓZ	08 08	R 08	88	8 08	0	KS 08	08	03						Seal present Seal intact	dia	≣ 20	
00 19th St. 1 9331-48 St. D-675 Berry		Company:	Contact Name:	Street Address:	City:	Phone:	Email:	Copies:	Statility of		10 10	NG UNTIL D	Date S	*	22	22 0	22 03	22 08	22 08	22 08	22 08	20 22	22 08				EHAIN OF CUSTODY ARE AVAILABLE FO	Ĭ	2		800	_
Choose Location: Calgary, AB: 40 Edmonton, AB: Winnipeg, MB:	ation Invoice to (requires report)		CC N	St Ac	0		5	Co	. Regulatory Criter	anada	Drinking Water - Alberta	SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVER										5					FED ON THIS	:	5	2 Date	R0 72	_
Choos Caa www.BVNA.com		Client #254, Golder Associates	te 3300		Postal Code:		ayable			Drinking Water - Canada) FROM TIM															RK SUBMITT	_	° S		20	
			re SW Sui		AB		Canada Account Payable			Drinki	Drinki	001 (<10°C		tification		4		20	10		2	3	FO.				RITING, WO	No.		Drint/	Land	
			237 - 4 Ave SW Suite 3300		Prov:		Canada /			ME		ST BE KEPT O		Sample Identification		20-0	50-03	-02	-20-	10-8	18-c	18-0	- 18-				EED TO IN W	Yes		· /Signature	Melissa Lord	
					Calgary					CCME	chewan	MPLES MU			Ц d	BH 22-20-04	BH22-20-03	BH22-20-02	BH 22-20-01	BH22-18-01	BH22-18-02	1	22				ERWISE AGR	LAB USE ONLY		ledia present Belinentered Av. (Simmetrica / Brine)	all	
	Invoice Information	Company :	Contact Name:	Street Address:		Phone:	Email:	Copies:	Non-	AT1	Saskatchewan	S.			1 DUP	2 BH	3 BH	4 BH	5 BH	· BH	7 BH	⁸ BH22	° [3H	10	11	12	"UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTOD ARE AVAILABLE F	LAB US	Seal present Seal intact	Cooling media present	111	2

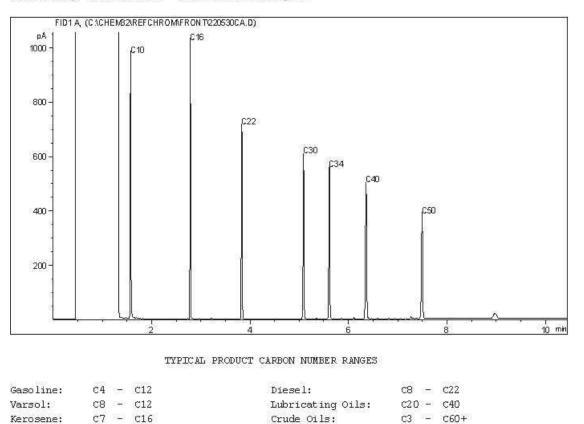
\$ \$2

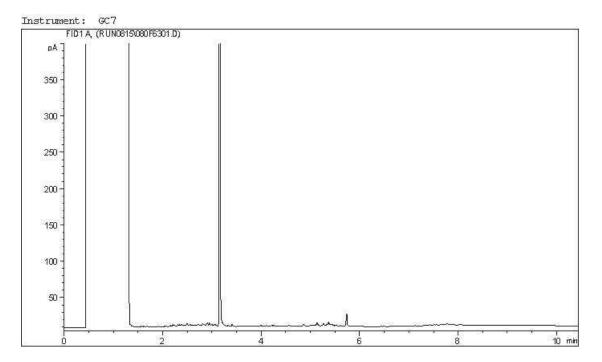


Carbon Range Distribution - Reference Chromatogram

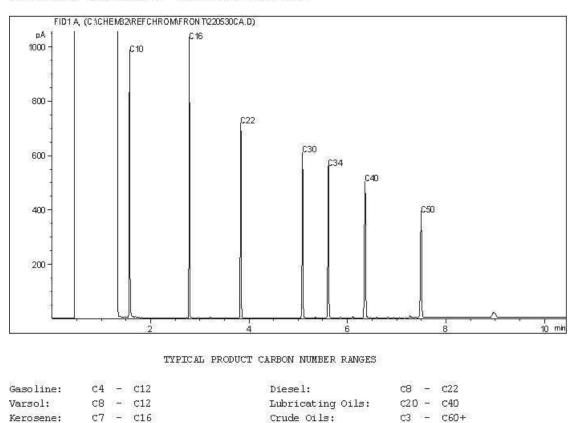


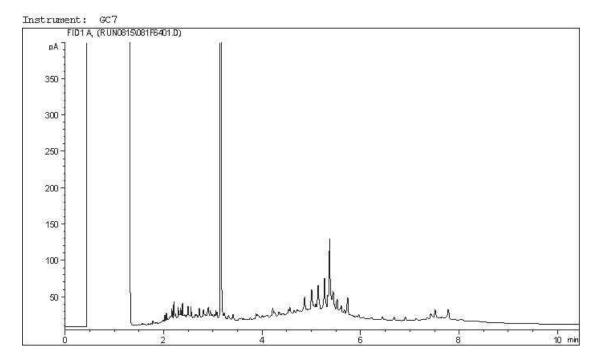
Carbon Range Distribution - Reference Chromatogram

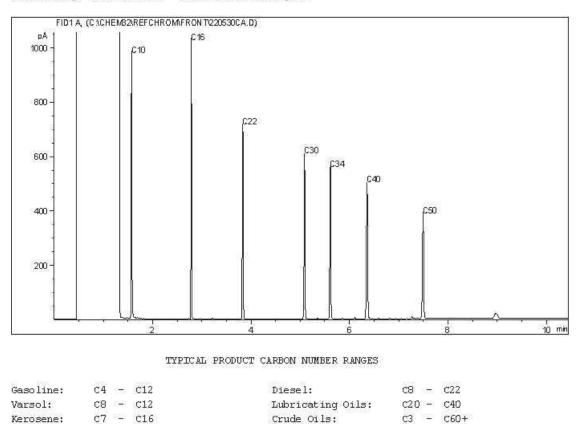



GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAREWELL,NT Client ID: BH22-20-03

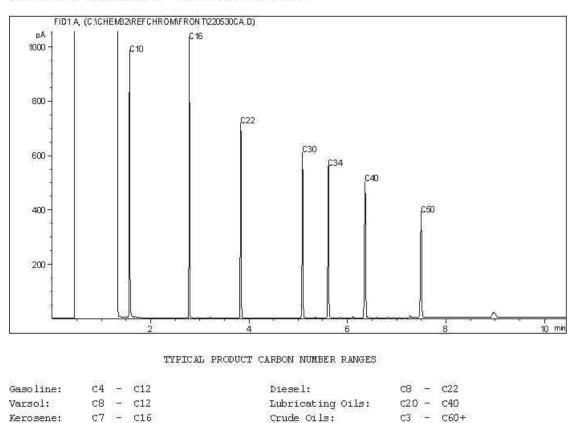
CCME Hydrocarbons (F2-F4 in soil) Chromatogram

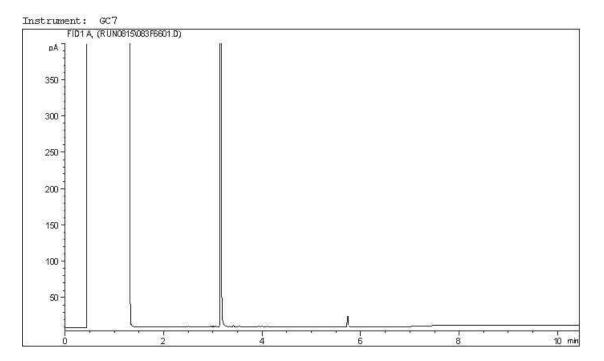


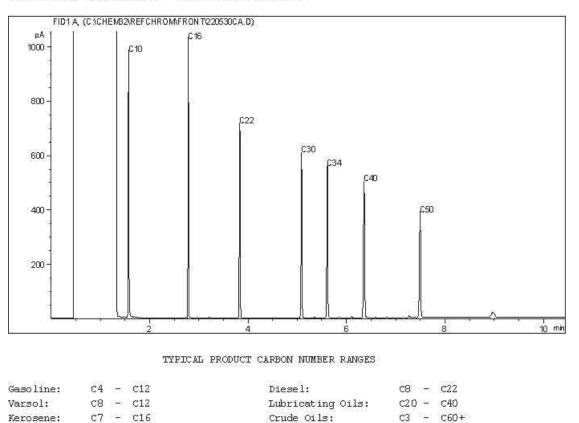

Carbon Range Distribution - Reference Chromatogram

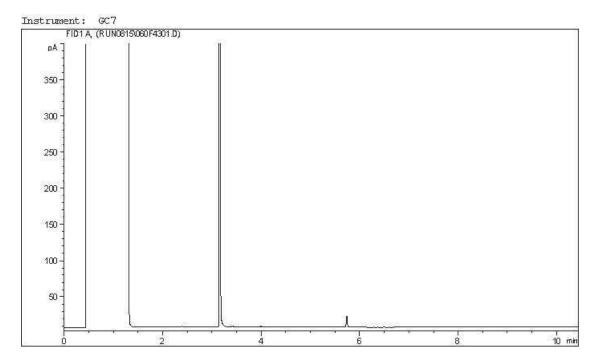


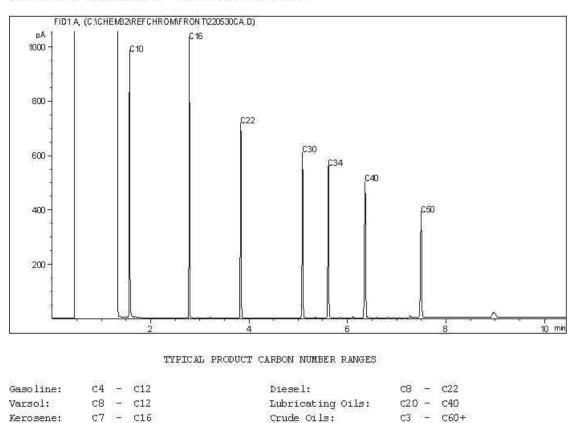
Carbon Range Distribution - Reference Chromatogram




Carbon Range Distribution - Reference Chromatogram



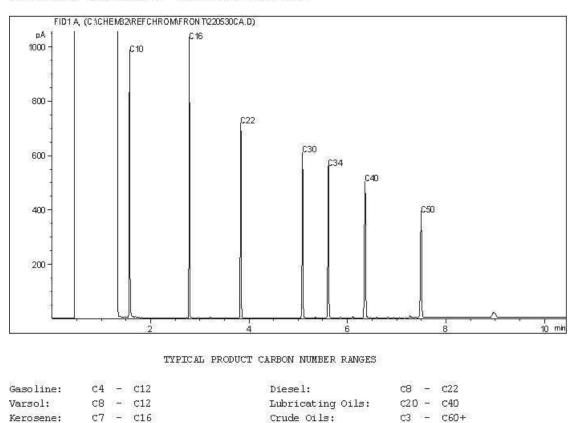

Carbon Range Distribution - Reference Chromatogram

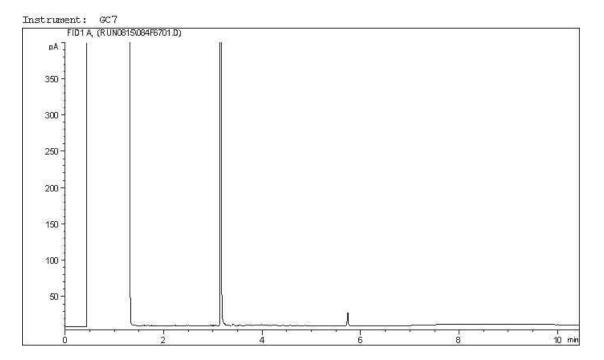


Carbon Range Distribution - Reference Chromatogram

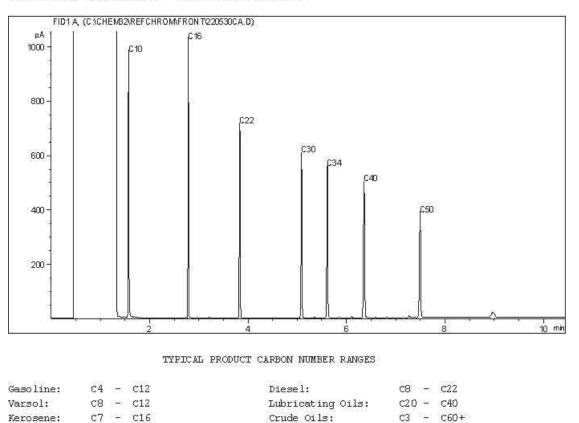


Carbon Range Distribution - Reference Chromatogram




GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAREWELL,NT Client ID: BH22-18-03

CCME Hydrocarbons (F2-F4 in soil) Chromatogram



Carbon Range Distribution - Reference Chromatogram

Carbon Range Distribution - Reference Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Kerosene:

August 19, 2022

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Chromatogram Interpretation of CAMP FAREWELL, NT; Project 22525414-1000 Bureau Veritas Job No.: C260031

Bureau Veritas was retained by Golder Associates Ltd. to provide hydrocarbon interpretations concerning the likely origin of hydrocarbons quantified within CCME fraction(s) F2, F3 and/or F4.

Analytical Method

Petroleum hydrocarbon analyses at Bureau Veritas are conducted in accordance with the analytical specifications required by the prescriptive and performance-based (where appropriate) elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples.

Chromatogram Interpretation

A comprehensive qualitative assessment of the resultant gas chromatograms in the F2-F4 ranges was performed. The chromatograms were inspected for specific peak profiles that would indicate the possible origin of the hydrocarbons present in the sample. The presence and nature of specific aliphatic compounds (n-alkanes), the presence of characteristic unresolved complex mixtures (UCMs) or "humps" and the relative abundance (ratios) of specific compounds are reviewed as part of the evaluation.

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

Data Interpretation

Table 1. Qualitative Data Summary – Chromatogram Interpretation

Lab ID	Sample ID	Chromatogram Interpretation
AZM279	BH22-20-03	The CCME F2-F4 chromatographic peak profile is consistent with a mixture of biogenic organic material (e.g. peat), and a weathered middle distillate petroleum product (e.g. Diesel #1, Kerosene). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34, whereas middle distillate products are typically characterized by evenly distributed peaks between C10 and C24, representing the simple straight chain aliphatic compounds (n-alkanes). These peaks will decrease in height, relative to the unresolved complex mixture (UCM or "hump") with increased weathering of the product material.

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Laboratories

Michael Sheppard, B.Sc., P.Bio., QP Consulting Scientist Environmental Services

t Cantur

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager – Western Canada Environmental Services

Disclaimer

Hydrocarbon Resemblance

Characterization by way of visual evaluation of the sample chromatogram may not be conclusive and is only indicative of substances that may be present. The resemblance information must be regarded as approximate and qualitative.

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC 2021 - 41ST STREET NE Calgary, AB T2E6P2 (403) 291-3077 ATTENTION TO: Cynny Hagen PROJECT: C260031 AGAT WORK ORDER: 22C940500 SOIL ANALYSIS REVIEWED BY: Loan Nguyen, Senior Analyst DATE REPORTED: Sep 06, 2022 PAGES (INCLUDING COVER): 7 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (403) 735-2005

*Notes	
Disclaimer:	

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta	
(APEGA)	
Western Enviro-Agricultural Laboratory Association (WEALA)	
Environmental Services Association of Alberta (ESAA)	

Page 1 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

AGAT WORK ORDER: 22C940500 PROJECT: C260031 2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC

SAMPLING SITE:

ATTENTION TO: Cynny Hagen

SAMPLED BY:

Metals - Barium by Fusion ICP										
DATE RECEIVED: 2022-09-01						DATE REPORTED: 2022-09-06				
				AZM281-BH22-						
	S	AMPLE DES	CRIPTION:	20-01						
SAMPLE TYPE:				Soil						
		DATES	SAMPLED:	2022-08-08 13:50						
Parameter	Unit	G/S	RDL	4267029						
True Barium by Fusion ICP	mg/kg		50	3010						

Comments:RDL - Reported Detection Limit;G / S - Guideline / Standard4267029Result is based on the dry weight of the sample.

Analysis performed at AGAT Calgary (unless marked by *)

Certified By:

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: BUREAU VERITAS CANADA (2019) INC

PROJECT: C260031

AGAT WORK ORDER: 22C940500

ATTENTION TO: Cynny Hagen

SAMPLING SITE:

SAMPLED BY:

Soil Analysis																
RPT Date: Sep 06, 2022			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Lower Upper	red Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper		Upper					
Metals - Barium by Fusion ICP Barium by Fusion ICP-OES	4266587		976	977	0.0%	< 40	95%	70%	130%				NA	70%	130%	

Comments: Matrix spike NA: Spike level < native concentration. Matrix spike acceptance limits do not apply and are not calculated. Duplicate NA: results are less than 5X the RDL and RDP will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 3 of 7

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

2910 12TH STREET NE CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

Method Summary

CLIENT NAME: BUREAU VERITAS CANA	DA (2019) INC	AGAT WORK ORDER: 22C940500							
PROJECT: C260031		ATTENTION TO: Cynny Hagen							
SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Soil Analysis									
True Barium by Fusion ICP	SOIL- 0620, INST- 0140	ASTM D4503.08	ICP/OES						

1 -SEP 72	2 PN12:09
-----------	-----------

Sent To: AGAT - Calgary 2910 12th Street NE Calgary, AB, T2E 7P7 Tel: (403) 735-2005

CHAIN OF CUSTODY RECORD FOR SUBCONTRACTED WORK

Page 01 of 01

COC # C260031-CAGT-01-01 226940500

												shart -	
REPORT INFORMAT	ION						A	NALYSIS REC	UESTED				
Company:	Bureau Veritas									1			
Address:	4000 19st N.E, Calgary, Alberta	, T2E 6P8											
Contact Name:	Cynny Hagen				-	Li on							
Email:	Cynny.HAGEN@bureauveritas.	com, Customerso	lutionswest@bi	ureauveritas.	coi	Extraction							
Phone:	(403) 735-2273					Fusion							
Lab Project #:	C260031				-	using FL							
# SAMPLE ID			LED SAMPLED	SAMPLER INITIALS	# CONT.	Barium on ICP us						ADDITIONAL SAN	IPLE INFORMATION
1 AZM281-BH2	2-20-01	SOIL 2022/0	8/08 13:50		1	x					(P: 01)		
2													
3													
4							-						
5													
6													
7									_				
8					_								
10					_					_			
REGULATORY CRITER		CDECIAL	INISTRUCTIONS	l l									
ACCOLLING CATER			INSTRUCTIONS form Bureau Veri	tas immediate	alvif								TURNAROUND TIME
		• You • The	are not accredited nold time is appro return a copy of	I for the reque aching for the	ested e req	l test(s) uested test	(s).						X Rush Required
COOLER ID:		COOLER						COOLER ID					Date Required
Custody Seal Present Custody Seal Intact Cooling Media Present	YES NO	Custody S Custody S	eal Present		「emp (°C)		<i>I</i> . 3.	Custody Sea Custody Sea Cooling Med	l Present I Intact	YES NO	Тетр: (°С)		Please inform us if rush charges will be incurred.
RELINQUISHED BY: (S		DATE: (YYYY/MM			CEIV	ED BY: (SIG	N & PRINT)	14	7/	DATE: (Y	YYY/MM/DD)	TIME: (HH:MM)	
2.	Robel Webrechtu	2012/09	01 09:	30 ^{1.}	_	Lac	77 Ceu	a h	the	2022	09/01	12:09	

agat Lab	
RECEIVING BASICS - Shipping	Temperature (Bottles/Jars only) N/A only Soil Bags Received
Company/Consultant: Bureau Veritas	FROZEN (Please Circle if samples received Frozen)
	1 (Bottle/Jar) $N = ^{\circ}C$ 2(Bottle/Jar) + + = $^{\circ}C$
Courier:QQQO Prepaid Collect	3 (Bottle/Jar)++=°C 4 (Bottle/Jar)++=°C
Waybill#	5 (Bottle/Jar)++=°C 6 (Bottle/Jar)++=°C
Branch: EDM GP FN FM RD VAN LYD FSJ EST SASK Other:	7 (Bottle/Jar)++=°C 8 (Bottle/Jar)++=°C
If multiple sites were submitted at once: Yes No	9 (Bottle/Jar)++=°C 10 (Bottle/Jar)++=°C
Custody Seal Intact: Yes No NA	(If more than 10 coolers are received use another sheet of paper and attach)
TAT: <24hr 24-48hr 48-72hr Reg Other	LOGISTICS USE ONLY
Cooler Quantity:	Workorder No: <u>22C9405</u> 00
TIME SENSITIVE ISSUES - Shipping	Samples Damaged: Yes No If YES why?
TIME SENSITIVE 1990E2 - Stubburg	No Bubble Wrap Frozen Courier
ALREADY EXCEEDED HOLD TIME? Yes No	Other:
Inorganic Tests (Please Circle): Mibi , BOD , Nitrate/Nitrite , Turbidity , Color , Microtox , Ortho PO4 , Tedlar Bag , Residual Chlorine , Chlorophyll* ,	Account Project Manager:have they been notified of the above issues: Yes No
Chloroamines*	Whom spoken to: Date/Time:
Earliest Expiry:	CPM Initial
Hydrocarbons: Earliest Expiry	General Comments:
SAMPLE INTEGRITY - Shipping	
Hazardous Samples: YES NO Precaution Taken:	
Legal Samples: Yes No	
International Samples: Yes No	
Tape Sealed: Yes No	
Coolant Used: Icepack Bagged Ice Free Ice Free Water None	

* Subcontracted Analysis (See CPM)

80 K 4

JAZOO EXPRESS COURIER www.jazoocourier.com	CLIENT USE ONLY	Sample Reception Billed To: Bureau Veritas	m: Bureau Veritas Calgary AGAT-Calgary 2910 12th street NF Calgary AB TOE 707	~	Jeb/PO/Refistance #:	P/U Time: D/SC am D/O Time: D/O TIME	# Of Same Day Surcharge / DS pm	2 Dral	D/0 Driver Name:	At I all	HOTSHOT DETAILS	Or Total Charge (\$):	OFFICE USE ONLY Invoiced By:	schedule a pickup please contact dispatch at the city nearest valu-	Calgary 403-660-5504 Fort McMurray 587-645-6364 Edmonton 780-903-3628 Grande Prairie 587-297-8406 THANK YOU FOR SUPPORTING LOCAL AND CHOOSING JAZOO FXPRESS COUPLED	A EVAR AND UTUVUSING JALUU EARKESS UUUKIEK.
EXPI		Receiver Name:	Delivery From: Delivery To:	Item Description: envelope, sm/med/Ig box, cooler, etc.	X		9	i.	A					pickup ple	403-660-5504 780-903-3628 UPPORTING LO	
JAZ00		Robel Mebrahm	10/00/202	2	Authorized Shipper Signature:		ght # of TDG	ţ0:	Total # Items Dropped Off:	Authorized Receiver Signature:		e		To schedule a	Calgary Edmonton THANK YOU FOR S	
AZZ AZZ		Sender Name:	Date:	Total # Items:	Authori	P/U Driver Name: # Items	P/U: # Of Overweight	Additional Info:	Total # Iter	Authorize	Total Kee	IOIGI KM:	Verified By:			

50-1-1-16

1

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAIRWELL Your C.O.C. #: 00013v3

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/08/25 Report #: R3221467 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262019 Received: 2022/08/17, 12:45

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Boron (Hot Water Soluble) (1)	4	2022/08/20	2022/08/20	AB SOP-00034 / AB SOP- 00042	EPA 6010d R5 m
BTEX/F1 by HS GC/MS/FID (MeOH extract) (1, 2)	7	N/A	2022/08/19	AB SOP-00039	CCME CWS/EPA 8260d m
F1-BTEX (1)	7	N/A	2022/08/20		Auto Calc
Cation/EC Ratio (1)	4	N/A	2022/08/20		Auto Calc
Chloride (Soluble) (1)	1	2022/08/20	2022/08/20	AB SOP-00033 / AB SOP- 00020	SM 23-4500-Cl-E m
Chloride and Sulphate by IC (Soluble) (1)	3	2022/08/21	2022/08/21	AB SOP-00033 / AB SOP- 00026	SM 23 4110 B m
Hexavalent Chromium (1, 3)	4	2022/08/19	2022/08/19	AB SOP-00063	SM 23 3500-Cr B m
Conductivity @25C (Soluble) (1)	4	2022/08/20	2022/08/20	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
CCME Hydrocarbons (F2-F4 in soil) (1, 4)	7	2022/08/19	2022/08/19	AB SOP-00036	CCME PHC-CWS m
Elements by ICPMS - Soils (1)	4	2022/08/20	2022/08/20	AB SOP-00001 / AB SOP- 00043	EPA 6020b R2 m
Sum of Cations, Anions (1)	4	N/A	2022/08/20		Auto Calc
Moisture (1)	7	N/A	2022/08/20	AB SOP-00002	CCME PHC-CWS m
Index of Additive Cancer Risk (1, 5)	4	N/A	2022/08/25		Auto Calc
Benzo[a]pyrene Equivalency (1)	4	N/A	2022/08/25		Auto Calc
PAH in Soil by GC/MS (1)	4	2022/08/24	2022/08/24	AB SOP-00036 / AB SOP- 00003	EPA 3540C/8270E m
pH @25C (1:2 Calcium Chloride Extract) (1)	4	2022/08/20	2022/08/20	AB SOP-00033 / AB SOP- 00006	SM 23 4500 H+B m
Sodium Adsorption Ratio (1)	4	N/A	2022/08/20		Auto Calc
Soluble lons (1)	4	2022/08/20	2022/08/20	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Paste (1)	4	2022/08/20	2022/08/20	AB SOP-00033	Carter 2nd ed 15.2 m
Soluble Ions Calculation (1)	4	N/A	2022/08/20		Auto Calc
Theoretical Gypsum Requirement (1, 6)	4	N/A	2022/08/20		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAIRWELL Your C.O.C. #: 00013v3

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/08/25 Report #: R3221467 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262019 Received: 2022/08/17, 12:45

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary, 4000 - 19 St. , Calgary, AB, T2E 6P8

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.

(3) Some soil samples may react with the Cr(VI) spike reducing it to Cr(III). These samples are highly unlikely to contain native hexavalent chromium. Thus a failed spike recovery does not invalidate a negative result on the native sample.

(4) All CCME results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Validation of Performance-Based Alternative Methods September 2003. Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(5) Index of Additive Cancer Risk, (C) denotes coarse, (F) denotes fine.

(6) TGR calculation is based on a theoretical SAR of 4. Salt Contamination and Assessment and remediation guideline 2001 recommended SAR is ranging 4-8. TGR is reported in tonnes/ha.

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Cynny Hagen, Key Account Specialist Email: Cynny.HAGEN@bureauveritas.com Phone# (403)735-2273

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 28

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY121	AZY121	AZY122	AZY122	AZY123	AZY124		
Sampling Date		2022/08/13	2022/08/13	2022/08/13	2022/08/13	2022/08/13	2022/08/13		
		11:00	11:00	11:15	11:15	11:15	11:30		
COC Number		00013v3	00013v3	00013v3	00013v3	00013v3	00013v3		
	UNITS	MW22-23-01	MW22-23-01 Lab-Dup	MW22-23-02	MW22-23-02 Lab-Dup	DUP N	MW22-23-03	RDL	QC Batch
Ext. Pet. Hydrocarbon									
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	N/A	<10	<10	<10	23	10	A687729
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	N/A	100	100	87	260	50	A687729
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	N/A	<50	<50	<50	87	50	A687729
Reached Baseline at C50	mg/kg	Yes	N/A	Yes	Yes	Yes	Yes	N/A	A687729
Physical Properties		•		•	•		•		
Moisture	%	13	N/A	21	N/A	17	35	0.30	A688093
Volatiles							•		
Xylenes (Total)	mg/kg	<0.045	N/A	<0.045	N/A	<0.045	<0.045	0.045	A687229
F1 (C6-C10) - BTEX	mg/kg	<10	N/A	<10	N/A	<10	<10	10	A687229
Field Preserved Volatiles									
Benzene	mg/kg	<0.0050	<0.0050	<0.0050	N/A	<0.0050	<0.0050	0.0050	A687757
Toluene	mg/kg	<0.050	<0.050	<0.050	N/A	<0.050	<0.050	0.050	A687757
Ethylbenzene	mg/kg	<0.010	<0.010	<0.010	N/A	<0.010	<0.010	0.010	A687757
m & p-Xylene	mg/kg	<0.040	<0.040	<0.040	N/A	<0.040	<0.040	0.040	A687757
o-Xylene	mg/kg	<0.020	<0.020	<0.020	N/A	<0.020	<0.020	0.020	A687757
F1 (C6-C10)	mg/kg	<10	<10	<10	N/A	<10	<10	10	A687757
Surrogate Recovery (%)									
1,4-Difluorobenzene (sur.)	%	99	101	103	N/A	100	99	N/A	A687757
4-Bromofluorobenzene (sur.)	%	100	100	100	N/A	101	98	N/A	A687757
D10-o-Xylene (sur.)	%	113	104	112	N/A	103	105	N/A	A687757
D4-1,2-Dichloroethane (sur.)	%	104	107	110	N/A	107	104	N/A	A687757
O-TERPHENYL (sur.)	%	128	N/A	111	139	118	133	N/A	A687729
RDL = Reportable Detection Lin	nit								
Lab-Dup = Laboratory Initiated	Duplica	te							
N/A - Not Applicable									

N/A = Not Applicable

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY125	AZY125	AZY126	AZY127		
Sampling Date		2022/08/13	2022/08/13	2022/08/13	2022/08/13		
		12:00	12:00	12:15	12:30		
COC Number		00013v3	00013v3	00013v3	00013v3		
	UNITS	MW22-50-01	MW22-50-01 Lab-Dup	MW22-50-02	MW22-50-03	RDL	QC Batch
Ext. Pet. Hydrocarbon							
F2 (C10-C16 Hydrocarbons)	mg/kg	22	N/A	<10	<10	10	A687729
F3 (C16-C34 Hydrocarbons)	mg/kg	900	N/A	74	110	50	A687729
F4 (C34-C50 Hydrocarbons)	mg/kg	290	N/A	<50	<50	50	A687729
Reached Baseline at C50	mg/kg	Yes	N/A	Yes	Yes	N/A	A687729
Physical Properties							
Moisture	%	37	33	16	16	0.30	A688093
Volatiles							
Xylenes (Total)	mg/kg	<0.045	N/A	<0.045	<0.045	0.045	A687229
F1 (C6-C10) - BTEX	mg/kg	<10	N/A	<10	<10	10	A687229
Field Preserved Volatiles							
Benzene	mg/kg	<0.0050	N/A	<0.0050	<0.0050	0.0050	A687757
Toluene	mg/kg	0.098	N/A	0.083	<0.050	0.050	A687757
Ethylbenzene	mg/kg	0.022	N/A	<0.010	<0.010	0.010	A687757
m & p-Xylene	mg/kg	<0.040	N/A	<0.040	<0.040	0.040	A687757
o-Xylene	mg/kg	<0.020	N/A	<0.020	<0.020	0.020	A687757
F1 (C6-C10)	mg/kg	<10	N/A	<10	<10	10	A687757
Surrogate Recovery (%)							
1,4-Difluorobenzene (sur.)	%	101	N/A	97	98	N/A	A687757
4-Bromofluorobenzene (sur.)	%	100	N/A	99	98	N/A	A687757
D10-o-Xylene (sur.)	%	108	N/A	110	100	N/A	A687757
D4-1,2-Dichloroethane (sur.)	%	110	N/A	104	105	N/A	A687757
O-TERPHENYL (sur.)	%	119	N/A	108	127	N/A	A687729
RDL = Reportable Detection Li	mit						
Lab-Dup = Laboratory Initiated	l Duplica	ite					
N/A = Not Applicable							

SOIL SALINITY 4 (SOIL)

Bureau Veritas ID		AZY121		AZY122	AZY123		AZY124		
Sampling Date		2022/08/13		2022/08/13	2022/08/13		2022/08/13		
		11:00		11:15	11:15		11:30		
COC Number		00013v3		00013v3	00013v3		00013v3		
	UNITS	MW22-23-01	RDL	MW22-23-02	DUP N	RDL	MW22-23-03	RDL	QC Batch
Calculated Parameters									
Anion Sum	meq/L	5.0	N/A	3.1	3.2	N/A	3.3	N/A	A686906
Cation Sum	meq/L	5.4	N/A	6.4	6.4	N/A	7.6	N/A	A686906
Cation/EC Ratio	N/A	9.9	0.10	9.4	9.2	0.10	9.5	0.10	A686905
Calculated Calcium (Ca)	mg/kg	16	0.57	19	19	0.49	37	0.75	A687232
Calculated Magnesium (Mg)	mg/kg	4.8	0.38	3.9	4.2	0.33	9.1	0.50	A687232
Calculated Sodium (Na)	mg/kg	19	0.95	17	17	0.82	24	1.3	A687232
Calculated Potassium (K)	mg/kg	2.3	0.49	2.8	2.8	0.43	6.0	0.65	A687232
Calculated Chloride (Cl)	mg/kg	16	3.8	13	13	1.6	26	2.5	A687232
Calculated Sulphate (SO4)	mg/kg	69	1.9	32	32	1.6	44	2.5	A687232
Soluble Parameters									
Soluble Chloride (Cl)	mg/L	44	10	N/A	N/A	N/A	N/A	N/A	A688403
Soluble Conductivity	dS/m	0.55	0.020	0.69	0.70	0.020	0.80	0.020	A688405
Soluble (CaCl2) pH	рН	7.63	N/A	7.57	7.64	N/A	7.62	N/A	A688203
Sodium Adsorption Ratio	N/A	1.7	0.10	1.6	1.6	0.10	1.3	0.10	A687227
Soluble Calcium (Ca)	mg/L	42	1.5	59	58	1.5	74	1.5	A688421
Soluble Magnesium (Mg)	mg/L	13	1.0	12	13	1.0	18	1.0	A688421
Soluble Sodium (Na)	mg/L	50	2.5	53	51	2.5	48	2.5	A688421
Soluble Potassium (K)	mg/L	6.2	1.3	8.6	8.6	1.3	12	1.3	A688421
Saturation %	%	38	N/A	33	33	N/A	50	N/A	A688202
Soluble Sulphate (SO4)	mg/L	180	5.0	N/A	N/A	N/A	N/A	N/A	A688421
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	<0.20	<0.20	0.20	<0.20	0.20	A686909
RDL = Reportable Detection Limit									
N/A = Not Applicable									

CCME REGULATED METALS - SOILS (SOIL)

Bureau Veritas ID		AZY121		AZY122	AZY122	AZY123		AZY124		
Comuliu a Data		2022/08/13		2022/08/13	2022/08/13	2022/08/13		2022/08/13		
Sampling Date		11:00		11:15	11:15	11:15		11:30		
COC Number		00013v3		00013v3	00013v3	00013v3		00013v3		
	UNITS	MW22-23-01	QC Batch	MW22-23-02	MW22-23-02 Lab-Dup	DUP N	QC Batch	MW22-23-03	RDL	QC Batch
Elements										
Soluble (Hot water) Boron (B)	mg/kg	<0.10	A688283	0.36	0.37	0.35	A688283	0.45	0.10	A688283
Hex. Chromium (Cr 6+)	mg/kg	<0.080	A688032	<0.080	<0.080	<0.080	A688035	<0.080	0.080	A688032
Total Antimony (Sb)	mg/kg	<0.50	A688249	<0.50	<0.50	<0.50	A688249	0.56	0.50	A688249
Total Arsenic (As)	mg/kg	6.9	A688249	6.0	5.9	6.5	A688249	7.5	1.0	A688249
Total Barium (Ba)	mg/kg	300	A688249	180	180	200	A688249	260	1.0	A688249
Total Beryllium (Be)	mg/kg	0.44	A688249	<0.40	<0.40	0.42	A688249	0.55	0.40	A688249
Total Cadmium (Cd)	mg/kg	0.38	A688249	0.25	0.24	0.30	A688249	0.46	0.050	A688249
Total Chromium (Cr)	mg/kg	17	A688249	12	13	13	A688249	19	1.0	A688249
Total Cobalt (Co)	mg/kg	7.9	A688249	5.9	5.9	6.5	A688249	8.7	0.50	A688249
Total Copper (Cu)	mg/kg	16	A688249	11	11	13	A688249	20	1.0	A688249
Total Lead (Pb)	mg/kg	8.2	A688249	6.0	5.9	6.7	A688249	9.5	0.50	A688249
Total Mercury (Hg)	mg/kg	<0.050	A688249	<0.050	<0.050	<0.050	A688249	<0.050	0.050	A688249
Total Molybdenum (Mo)	mg/kg	1.4	A688249	1.1	1.3	1.2	A688249	1.5	0.40	A688249
Total Nickel (Ni)	mg/kg	24	A688249	18	18	20	A688249	27	1.0	A688249
Total Selenium (Se)	mg/kg	0.57	A688249	<0.50	<0.50	<0.50	A688249	0.75	0.50	A688249
Total Silver (Ag)	mg/kg	<0.20	A688249	<0.20	<0.20	<0.20	A688249	<0.20	0.20	A688249
Total Thallium (Tl)	mg/kg	0.14	A688249	<0.10	<0.10	0.11	A688249	0.17	0.10	A688249
Total Tin (Sn)	mg/kg	<1.0	A688249	<1.0	<1.0	<1.0	A688249	<1.0	1.0	A688249
Total Uranium (U)	mg/kg	0.71	A688249	0.57	0.61	0.65	A688249	0.81	0.20	A688249
Total Vanadium (V)	mg/kg	26	A688249	20 (1)	21	23	A688249	31	1.0	A688249
Total Zinc (Zn)	mg/kg	76	A688249	53	53	60	A688249	89	10	A688249

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

(1) Matrix spike exceeds acceptance limits due to probable matrix interference.

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		AZY122	AZY122	AZY123	AZY124		
Sampling Date		2022/08/13 11:15	2022/08/13 11:15	2022/08/13 11:15	2022/08/13 11:30		
COC Number		00013v3	00013v3	00013v3	00013v3		
	UNITS	MW22-23-02	MW22-23-02 Lab-Dup	DUP N	MW22-23-03	RDL	QC Batch
Soluble Parameters							
Soluble Chloride (Cl)	mg/L	40	38	40	52	5.0	A688566
Soluble Sulphate (SO4)	mg/L	96	93	98	88	5.0	A688566

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AZY121	AZY122	AZY123	AZY124		
Sampling Date		2022/08/13	2022/08/13	2022/08/13	2022/08/13		
		11:00	11:15	11:15	11:30		
COC Number		00013v3	00013v3	00013v3	00013v3		
	UNITS	MW22-23-01	MW22-23-02	DUP N	MW22-23-03	RDL	QC Batc
Polycyclic Aromatics							
Index of Additive Cancer Risk (C)	N/A	<0.10	<0.10	<0.10	<0.10	0.10	A69208
Acenaphthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A69277
B[a]P TPE Total Potency Equivalents	mg/kg	<0.0071	<0.0071	<0.0071	0.0090	0.0071	A69208
Index of Additive Cancer Risk (F)	N/A	<0.10	<0.10	<0.10	<0.10	0.10	A692086
Acenaphthylene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A692779
Acridine	mg/kg	<0.010	<0.010	<0.010	<0.010	0.010	A692779
Anthracene	mg/kg	<0.0040	<0.0040	<0.0040	<0.0040	0.0040	A69277
Benzo(a)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A692779
Benzo(b&j)fluoranthene	mg/kg	<0.0050	0.0061	<0.0050	0.024	0.0050	A692779
Benzo(k)fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A692779
Benzo(g,h,i)perylene	mg/kg	<0.0050	0.0081	<0.0050	0.034	0.0050	A692779
Benzo(c)phenanthrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A69277
Benzo(a)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A69277
Benzo(e)pyrene	mg/kg	<0.0050	0.0067	<0.0050	0.030	0.0050	A69277
Chrysene	mg/kg	<0.0050	<0.0050	<0.0050	0.012	0.0050	A69277
Dibenz(a,h)anthracene	mg/kg	<0.0050	<0.0050	<0.0050	<0.0050	0.0050	A69277
Fluoranthene	mg/kg	<0.0050	<0.0050	<0.0050	0.011	0.0050	A69277
Fluorene	mg/kg	<0.0050	<0.0050	<0.0050	0.0096	0.0050	A69277
Indeno(1,2,3-cd)pyrene	mg/kg	<0.0050	<0.0050	<0.0050	0.0083	0.0050	A692779
1-Methylnaphthalene	mg/kg	<0.0050	<0.0050	<0.0050	0.025	0.0050	A692779
2-Methylnaphthalene	mg/kg	<0.0050	0.0063	<0.0050	0.037	0.0050	A69277
Naphthalene	mg/kg	<0.0050	<0.0050	<0.0050	0.016	0.0050	A692779
Phenanthrene	mg/kg	<0.0050	0.0087	0.0063	0.039	0.0050	A692779
Perylene	mg/kg	0.0091	0.028	0.023	0.091	0.0050	A69277
Pyrene	mg/kg	<0.0050	<0.0050	<0.0050	0.018	0.0050	A69277
Quinoline	mg/kg	<0.010	<0.010	<0.010	<0.010	0.010	A69277
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	102	108	109	110	N/A	A69277
D8-ACENAPHTHYLENE (sur.)	%	97	101	103	108	N/A	A69277
D8-NAPHTHALENE (sur.)	%	91	91	92	97	N/A	A69277

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AZY121	AZY122	AZY123	AZY124		
Sampling Date		2022/08/13 11:00	2022/08/13 11:15	2022/08/13 11:15	2022/08/13 11:30		
COC Number		00013v3	00013v3	00013v3	00013v3		
	UNITS	MW22-23-01	MW22-23-02	DUP N	MW22-23-03	RDL	QC Batch
TERPHENYL-D14 (sur.)	%	137 (1)	123	126	123	N/A	A692779

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt
Package 1 7.0°C
Version #3: Additional PAHs analysis and Chromatorgram review on sample AZY125 (MW22-50-01) have been added as per request from client 20220823
HYDROCARBON RESEMBLANCE The reported hydrocarbon resemblance was obtained by visual comparison of the sample chromatogram with a library of reference product chromatograms. Since variables such as the degree and type of weathering and the presence of non-petrogenic hydrocarbons cannot be duplicated in reference spectra, the resemblance information must be regarded as approximate and qualitative and as such, Bureau Veritas Laboratories can assume no liability for any conclusions drawn from these data.
Sample AZY125 [MW22-50-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A687729	GG3	Matrix Spike [AZY122-02]	O-TERPHENYL (sur.)	2022/08/19		113	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19		113	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/19		116	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/19		116	%	60 - 140
A687729	GG3	Spiked Blank	O-TERPHENYL (sur.)	2022/08/19		123	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19		122	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/19		125	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/19		124	%	60 - 140
A687729	GG3	Method Blank	O-TERPHENYL (sur.)	2022/08/19		138	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19	<10		mg/kg	
			F3 (C16-C34 Hydrocarbons)	2022/08/19	<50		mg/kg	
			F4 (C34-C50 Hydrocarbons)	2022/08/19	<50		mg/kg	
A687729	GG3	RPD [AZY122-02]	F2 (C10-C16 Hydrocarbons)	2022/08/19	NC		%	40
			F3 (C16-C34 Hydrocarbons)	2022/08/19	3.3		%	40
			F4 (C34-C50 Hydrocarbons)	2022/08/19	NC		%	40
A687757	D01	Matrix Spike [AZY121-03]	1,4-Difluorobenzene (sur.)	2022/08/19		102	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/19		99	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/19		106	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/19		108	%	50 - 140
			Benzene	2022/08/19		110	%	50 - 140
			Toluene	2022/08/19		108	%	50 - 140
			Ethylbenzene	2022/08/19		106	%	50 - 140
			m & p-Xylene	2022/08/19		106	%	50 - 140
			o-Xylene	2022/08/19		100	%	50 - 140
			F1 (C6-C10)	2022/08/19		93	%	60 - 140
A687757	DO1	Spiked Blank	1,4-Difluorobenzene (sur.)	2022/08/19		103	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/19		100	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/19		94	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/19		109	%	50 - 140
			Benzene	2022/08/19		92	%	60 - 130
			Toluene	2022/08/19		92	%	60 - 130
			Ethylbenzene	2022/08/19		91	%	60 - 130
			m & p-Xylene	2022/08/19		92	%	60 - 130
			o-Xylene	2022/08/19		89	%	60 - 130
			F1 (C6-C10)	2022/08/19		84	%	60 - 140
A687757	D01	Method Blank	1,4-Difluorobenzene (sur.)	2022/08/19		99	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/19		100	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/19		93	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/19		105	%	50 - 140
			Benzene	2022/08/19	<0.0050		mg/kg	
			Toluene	2022/08/19	<0.050		mg/kg	
			Ethylbenzene	2022/08/19	<0.010		mg/kg	
			m & p-Xylene	2022/08/19	<0.040		mg/kg	
			o-Xylene	2022/08/19	<0.020		mg/kg	
			F1 (C6-C10)	2022/08/19	<10		mg/kg	
A687757	D01	RPD [AZY121-03]	Benzene	2022/08/19	NC		%	50
		,	Toluene	2022/08/19	NC		%	50
			Ethylbenzene	2022/08/19	NC		%	50
			m & p-Xylene	2022/08/19	NC		%	50
			o-Xylene	2022/08/19	NC		%	50
			F1 (C6-C10)	2022/08/19	NC		%	30
	SKM	Matrix Spike	Hex. Chromium (Cr 6+)	2022/08/19		94	%	75 - 125

 Page 11 of 28

 Bureau Veritas
 Edmonton: 9331 - 48th Street T6B 2R4
 Telephone (780)577-7100
 Fax (780)450-4187

01/00								
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A688032	SKM	Spiked Blank	Hex. Chromium (Cr 6+)	2022/08/19	Value	102	%	80 - 120
A688032	SKM	Method Blank	Hex. Chromium (Cr 6+)	2022/08/19	<0.080	102	mg/kg	00 120
A688032	SKM	RPD	Hex. Chromium (Cr 6+)	2022/08/19	NC		%	35
A688035	SKM	Matrix Spike [AZY122-01]	Hex. Chromium (Cr 6+)	2022/08/19	Ne	90	%	75 - 125
A688035	SKM	Spiked Blank	Hex. Chromium (Cr 6+)	2022/08/19		101	%	80 - 120
A688035	SKM	Method Blank	Hex. Chromium (Cr 6+)	2022/08/19	<0.080	101	mg/kg	00 - 120
A688035	SKM	RPD [AZY122-01]	Hex. Chromium (Cr 6+)	2022/08/19	NC		%	35
A688093	A1H	Method Blank	Moisture	2022/08/20	< 0.30		%	55
A688093	A1H	RPD [AZY125-01]	Moisture	2022/08/20	8.9		%	20
A688202	BMH	QC Standard	Saturation %	2022/08/20	0.5	97	%	75 - 125
A688202	BMH	RPD	Saturation %	2022/08/20	10	57	%	12
A688203	AL7	QC Standard	Soluble (CaCl2) pH	2022/08/20	10	101	%	97 - 103
A688203	AL7	Spiked Blank	Soluble (CaCl2) pH	2022/08/20		101	%	97 - 103
A688203	AL7	RPD	Soluble (CaCl2) pH	2022/08/20	0.39	100	%	N/A
A688249	KGR	Matrix Spike [AZY122-01]	Total Antimony (Sb)	2022/08/20	0.00	106	%	75 - 125
1000210	Ron		Total Arsenic (As)	2022/08/20		103	%	75 - 125
			Total Barium (Ba)	2022/08/20		NC	%	75 - 125
			Total Beryllium (Be)	2022/08/20		105	%	75 - 125
			Total Cadmium (Cd)	2022/08/20		103	%	75 - 125
			Total Chromium (Cr)	2022/08/20		121	%	75 - 125
			Total Cobalt (Co)	2022/08/20		101	%	75 - 125
			Total Copper (Cu)	2022/08/20		101	%	75 - 125
			Total Lead (Pb)	2022/08/20		102	%	75 - 125
			Total Mercury (Hg)	2022/08/20		104	%	75 - 125
			Total Molybdenum (Mo)	2022/08/20		101	%	75 - 125
			Total Nickel (Ni)	2022/08/20		103	%	75 - 125
			Total Selenium (Se)	2022/08/20		106	%	75 - 125
			Total Silver (Ag)	2022/08/20		105	%	75 - 125
			Total Thallium (TI)	2022/08/20		101	%	75 - 125
			Total Tin (Sn)	2022/08/20		106	%	75 - 125
			Total Uranium (U)	2022/08/20		98	%	75 - 125
			Total Vanadium (V)	2022/08/20		155 (1)	%	75 - 125
			Total Zinc (Zn)	2022/08/20		NC	%	75 - 125
A688249	KGR	QC Standard	Total Antimony (Sb)	2022/08/20		130	%	15 - 182
			Total Arsenic (As)	2022/08/20		102	%	53 - 147
			Total Barium (Ba)	2022/08/20		100	%	80 - 119
			Total Cadmium (Cd)	2022/08/20		100	%	72 - 128
			Total Chromium (Cr)	2022/08/20		101	%	59 - 141
			Total Cobalt (Co)	2022/08/20		96	%	58 - 142
			Total Copper (Cu)	2022/08/20		105	%	83 - 117
			Total Lead (Pb)	2022/08/20		114	%	79 - 121
			Total Molybdenum (Mo)	2022/08/20		102	%	67 - 133
			Total Nickel (Ni)	2022/08/20		105	%	79 - 121
			Total Silver (Ag)	2022/08/20		85	%	47 - 153
			Total Tin (Sn)	2022/08/20		114	%	67 - 133
			Total Uranium (U)	2022/08/20		93	%	77 - 123
			Total Vanadium (V)	2022/08/20		103	%	79 - 121
			Total Zinc (Zn)	2022/08/20		105	%	79 - 121
A688249	KGR	Spiked Blank	Total Antimony (Sb)	2022/08/20		105	%	80 - 120
			Total Arsenic (As)	2022/08/20		96	%	80 - 120
			Total Barium (Ba)	2022/08/20		99	%	80 - 120
			Total Beryllium (Be)	2022/08/20		98	%	80 - 120

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cadmium (Cd)	2022/08/20		99	%	80 - 120
			Total Chromium (Cr)	2022/08/20		98	%	80 - 120
			Total Cobalt (Co)	2022/08/20		97	%	80 - 120
			Total Copper (Cu)	2022/08/20		98	%	80 - 120
			Total Lead (Pb)	2022/08/20		98	%	80 - 120
			Total Mercury (Hg)	2022/08/20		107	%	80 - 120
			Total Molybdenum (Mo)	2022/08/20		100	%	80 - 120
			Total Nickel (Ni)	2022/08/20		97	%	80 - 120
			Total Selenium (Se)	2022/08/20		102	%	80 - 120
			Total Silver (Ag)	2022/08/20		99	%	80 - 120
			Total Thallium (Tl)	2022/08/20		98	%	80 - 120
			Total Tin (Sn)	2022/08/20		98	%	80 - 120
			Total Uranium (U)	2022/08/20		98	%	80 - 120
			Total Vanadium (V)	2022/08/20		98	%	80 - 120
			Total Zinc (Zn)	2022/08/20		97	%	80 - 120
A688249	KGR	Method Blank	Total Antimony (Sb)	2022/08/20	<0.50		mg/kg	
			Total Arsenic (As)	2022/08/20	<1.0		mg/kg	
			Total Barium (Ba)	2022/08/20	<1.0		mg/kg	
			Total Beryllium (Be)	2022/08/20	<0.40		mg/kg	
			Total Cadmium (Cd)	2022/08/20	<0.050		mg/kg	
			Total Chromium (Cr)	2022/08/20	<1.0		mg/kg	
			Total Cobalt (Co)	2022/08/20	<0.50		mg/kg	
			Total Copper (Cu)	2022/08/20	<1.0		mg/kg	
			Total Lead (Pb)	2022/08/20	<0.50		mg/kg	
			Total Mercury (Hg)	2022/08/20	<0.050		mg/kg	
			Total Molybdenum (Mo)	2022/08/20	<0.40		mg/kg	
			Total Nickel (Ni)	2022/08/20	<1.0		mg/kg	
			Total Selenium (Se)	2022/08/20	<0.50		mg/kg	
			Total Silver (Ag)	2022/08/20	<0.20		mg/kg	
			Total Thallium (Tl)	2022/08/20	<0.10		mg/kg	
			Total Tin (Sn)	2022/08/20	<1.0		mg/kg	
			Total Uranium (U)	2022/08/20	<0.20		mg/kg	
			Total Vanadium (V)	2022/08/20	<1.0		mg/kg	
			Total Zinc (Zn)	2022/08/20	<10		mg/kg	
A688249	KGR	RPD [AZY122-01]	Total Antimony (Sb)	2022/08/20	NC		%	30
			Total Arsenic (As)	2022/08/20	1.8		%	30
			Total Barium (Ba)	2022/08/20	0.097		%	35
			Total Beryllium (Be)	2022/08/20	NC		%	30
			Total Cadmium (Cd)	2022/08/20	3.9		%	30
			Total Chromium (Cr)	2022/08/20	3.7		%	30
			Total Cobalt (Co)	2022/08/20	0.33		%	30
			Total Copper (Cu)	2022/08/20	3.1		%	30
			Total Lead (Pb)	2022/08/20	0.42		%	35
			Total Mercury (Hg)	2022/08/20	NC		%	35
			Total Molybdenum (Mo)	2022/08/20	21		%	35
			Total Nickel (Ni)	2022/08/20	0.24		%	30
			Total Selenium (Se)	2022/08/20	NC		%	30
			Total Silver (Ag)	2022/08/20	NC		%	35
			Total Thallium (Tl)	2022/08/20	NC		%	30
			Total Tin (Sn)	2022/08/20	NC		%	35
			Total Uranium (U)	2022/08/20	6.6		%	30
			Total Vanadium (V)	2022/08/20	2.5		%	30

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Total Zinc (Zn)	2022/08/20	0.079		%	30
A688283	JAB	Matrix Spike [AZY122-01]	Soluble (Hot water) Boron (B)	2022/08/20		104	%	75 - 12
A688283	JAB	Spiked Blank	Soluble (Hot water) Boron (B)	2022/08/20		97	%	80 - 120
A688283	JAB	Method Blank	Soluble (Hot water) Boron (B)	2022/08/20	<0.10		mg/kg	
A688283	JAB	RPD [AZY122-01]	Soluble (Hot water) Boron (B)	2022/08/20	1.9		%	35
A688403	CTU	Matrix Spike	Soluble Chloride (Cl)	2022/08/20		110	%	75 - 12
A688403	CTU	QC Standard	Soluble Chloride (Cl)	2022/08/20		100	%	75 - 12
A688403	CTU	Spiked Blank	Soluble Chloride (Cl)	2022/08/20		109	%	80 - 12
A688403	CTU	Method Blank	Soluble Chloride (Cl)	2022/08/20	<10		mg/L	
A688403	CTU	RPD	Soluble Chloride (Cl)	2022/08/20	18		%	30
A688405	ZI	QC Standard	Soluble Conductivity	2022/08/20		99	%	75 - 12
A688405	ZI	Spiked Blank	Soluble Conductivity	2022/08/20		100	%	90 - 11
A688405	ZI	Method Blank	Soluble Conductivity	2022/08/20	<0.020		dS/m	
A688405	ZI	RPD	Soluble Conductivity	2022/08/20	11		%	20
A688421	JAB	Matrix Spike [AZY124-01]	Soluble Calcium (Ca)	2022/08/20		103	%	75 - 12
			Soluble Magnesium (Mg)	2022/08/20		105	%	75 - 12
			Soluble Sodium (Na)	2022/08/20		100	%	75 - 12
			Soluble Potassium (K)	2022/08/20		100	%	75 - 12
A688421	JAB	QC Standard	Soluble Calcium (Ca)	2022/08/20		101	%	75 - 12
			Soluble Magnesium (Mg)	2022/08/20		99	%	75 - 12
			Soluble Sodium (Na)	2022/08/20		99	%	75 - 12
			Soluble Potassium (K)	2022/08/20		113	%	75 - 12
			Soluble Sulphate (SO4)	2022/08/20		106	%	75 - 12
A688421	JAB	Spiked Blank	Soluble Calcium (Ca)	2022/08/20		104	%	80 - 12
	••••=	-1	Soluble Magnesium (Mg)	2022/08/20		106	%	80 - 12
			Soluble Sodium (Na)	2022/08/20		103	%	80 - 12
			Soluble Potassium (K)	2022/08/20		102	%	80 - 12
A688421	JAB	Method Blank	Soluble Calcium (Ca)	2022/08/20	<1.5	101	mg/L	00 11
	0, (2		Soluble Magnesium (Mg)	2022/08/20	<1.0		mg/L	
			Soluble Sodium (Na)	2022/08/20	<2.5		mg/L	
			Soluble Potassium (K)	2022/08/20	<1.3		mg/L	
			Soluble Sulphate (SO4)	2022/08/20	<5.0		mg/L	
A688421	JAB	RPD	Soluble Calcium (Ca)	2022/08/20	9.1		%	30
4000421	JAD		Soluble Magnesium (Mg)	2022/08/20	12		%	30
			Soluble Sodium (Na)	2022/08/20	15		%	30
			Soluble Potassium (K)	2022/08/20	3.9		%	30
			Soluble Sulphate (SO4)	2022/08/20	10		%	30
A688566	КDВ	Matrix Spike [AZY122-01]	Soluble Chloride (Cl)	2022/08/20	10	106		50 75 - 12
A000500	KDB	Wath Spike [Aztizz-01]	Soluble Sulphate (SO4)	2022/08/21		100	% %	75 - 12
AC00FCC		QC Standard	Soluble Scipitate (SO4)			93		
A688566	KDB	QC Stanuaru		2022/08/21			%	75 - 12
100500	KDD	Collect Direct	Soluble Sulphate (SO4)	2022/08/21		99	%	75 - 12
4688566	KDB	Spiked Blank	Soluble Chloride (Cl)	2022/08/21		100	%	80 - 12
			Soluble Sulphate (SO4)	2022/08/21		96	%	80 - 12
4688566	KDB	Method Blank	Soluble Chloride (Cl)	2022/08/21	<5.0		mg/L	
			Soluble Sulphate (SO4)	2022/08/21	<5.0		mg/L	
4688566	KDB	RPD [AZY122-01]	Soluble Chloride (Cl)	2022/08/21	4.2		%	30
			Soluble Sulphate (SO4)	2022/08/21	3.4		%	30
4692779	JU2	Matrix Spike	D10-ANTHRACENE (sur.)	2022/08/24		95	%	50 - 13
			D8-ACENAPHTHYLENE (sur.)	2022/08/24		94	%	50 - 13
			D8-NAPHTHALENE (sur.)	2022/08/24		90	%	50 - 13
			TERPHENYL-D14 (sur.)	2022/08/24		122	%	50 - 13
			Acenaphthene	2022/08/24		87	%	50 - 13

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Acenaphthylene	2022/08/24		88	%	50 - 130
			Acridine	2022/08/24		51	%	50 - 130
			Anthracene	2022/08/24		93	%	50 - 130
			Benzo(a)anthracene	2022/08/24		110	%	50 - 130
			Benzo(b&j)fluoranthene	2022/08/24		105	%	50 - 130
			Benzo(k)fluoranthene	2022/08/24		98	%	50 - 130
			Benzo(g,h,i)perylene	2022/08/24		102	%	50 - 130
			Benzo(c)phenanthrene	2022/08/24		113	%	50 - 130
			Benzo(a)pyrene	2022/08/24		106	%	50 - 130
			Benzo(e)pyrene	2022/08/24		97	%	50 - 130
			Chrysene	2022/08/24		104	%	50 - 130
			Dibenz(a,h)anthracene	2022/08/24		102	%	50 - 130
			Fluoranthene	2022/08/24		96	%	50 - 130
			Fluorene	2022/08/24		95	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2022/08/24		104	%	50 - 130
			1-Methylnaphthalene	2022/08/24		69	%	50 - 130
			2-Methylnaphthalene	2022/08/24		89	%	50 - 130
			Naphthalene	2022/08/24		87	%	50 - 130
			Phenanthrene	2022/08/24		92	%	50 - 130
			Perylene	2022/08/24		83	%	50 - 130
			Pyrene	2022/08/24		93	%	50 - 130
			Quinoline	2022/08/24		77	%	50 - 130
A692779	JU2	Spiked Blank	D10-ANTHRACENE (sur.)	2022/08/24		95	%	50 - 130
			D8-ACENAPHTHYLENE (sur.)	2022/08/24		91	%	50 - 130
			D8-NAPHTHALENE (sur.)	2022/08/24		93	%	50 - 130
			TERPHENYL-D14 (sur.)	2022/08/24		130	%	50 - 130
			Acenaphthene	2022/08/24		92	%	50 - 130
			Acenaphthylene	2022/08/24		88	%	50 - 130
			Acridine	2022/08/24		72	%	50 - 130
			Anthracene	2022/08/24		99	%	50 - 130
			Benzo(a)anthracene	2022/08/24		118	%	50 - 130
			Benzo(b&j)fluoranthene	2022/08/24		110	%	50 - 130
			Benzo(k)fluoranthene	2022/08/24		117	%	50 - 130
			Benzo(g,h,i)perylene	2022/08/24		108	%	50 - 130
			Benzo(c)phenanthrene	2022/08/24		123	%	50 - 130
			Benzo(a)pyrene	2022/08/24		93	%	50 - 130
			Benzo(e)pyrene	2022/08/24		103	%	50 - 130
			Chrysene	2022/08/24		114	%	50 - 130
			Dibenz(a,h)anthracene	2022/08/24		109	%	50 - 130
			Fluoranthene	2022/08/24		99	%	50 - 130
			Fluorene	2022/08/24		98	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2022/08/24		98	%	50 - 130
			1-Methylnaphthalene	2022/08/24		79	%	50 - 130
			2-Methylnaphthalene	2022/08/24		104	%	50 - 130
			Naphthalene	2022/08/24		93	%	50 - 130
			Phenanthrene	2022/08/24		99	%	50 - 130
			Perylene	2022/08/24		90	%	50 - 130
			Pyrene	2022/08/24		99	%	50 - 130
			Quinoline	2022/08/24		91	%	50 - 130
A692779	JU2	Method Blank	D10-ANTHRACENE (sur.)	2022/08/24		106	%	50 - 130
	302		D8-ACENAPHTHYLENE (sur.)	2022/08/24		96	%	50 - 130
			D8-NAPHTHALENE (sur.)	2022/08/24		95	%	50 - 130

Page 15 of 28

٦

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			TERPHENYL-D14 (sur.)	2022/08/24		138 (1)	%	50 - 130
			Acenaphthene	2022/08/24	<0.0050		mg/kg	
			Acenaphthylene	2022/08/24	<0.0050		mg/kg	
			Acridine	2022/08/24	<0.010		mg/kg	
			Anthracene	2022/08/24	<0.0040		mg/kg	
			Benzo(a)anthracene	2022/08/24	<0.0050		mg/kg	
			Benzo(b&j)fluoranthene	2022/08/24	<0.0050		mg/kg	
			Benzo(k)fluoranthene	2022/08/24	<0.0050		mg/kg	
			Benzo(g,h,i)perylene	2022/08/24	<0.0050		mg/kg	
			Benzo(c)phenanthrene	2022/08/24	<0.0050		mg/kg	
			Benzo(a)pyrene	2022/08/24	<0.0050		mg/kg	
			Benzo(e)pyrene	2022/08/24	<0.0050		mg/kg	
			Chrysene	2022/08/24	<0.0050		mg/kg	
			Dibenz(a,h)anthracene	2022/08/24	<0.0050		mg/kg	
			Fluoranthene	2022/08/24	<0.0050		mg/kg	
			Fluorene	2022/08/24	<0.0050		mg/kg	
			Indeno(1,2,3-cd)pyrene	2022/08/24	<0.0050		mg/kg	
			1-Methylnaphthalene	2022/08/24	<0.0050		mg/kg	
			2-Methylnaphthalene	2022/08/24	<0.0050		mg/kg	
			Naphthalene	2022/08/24	<0.0050		mg/kg	
			Phenanthrene	2022/08/24	<0.0050		mg/kg	
			Perylene	2022/08/24	<0.0050		mg/kg	
			Pyrene	2022/08/24	<0.0050		mg/kg	
			Quinoline	2022/08/24	<0.010		mg/kg	
A692779	JU2	RPD	Acenaphthene	2022/08/24	23		%	50
			Acenaphthylene	2022/08/24	21		%	50
			Acridine	2022/08/24	19		%	50
			Anthracene	2022/08/24	NC		%	50
			Benzo(a)anthracene	2022/08/24	NC		%	50
			Benzo(b&j)fluoranthene	2022/08/24	NC		%	50
			Benzo(k)fluoranthene	2022/08/24	NC		%	50
			Benzo(g,h,i)perylene	2022/08/24	NC		%	50
			Benzo(c)phenanthrene	2022/08/24	NC		%	50
			Benzo(a)pyrene	2022/08/24	NC		%	50
			Benzo(e)pyrene	2022/08/24	NC		%	50
			Chrysene	2022/08/24	NC		%	50
			Dibenz(a,h)anthracene	2022/08/24	NC		%	50
			Fluoranthene	2022/08/24	NC		%	50
			Fluorene	2022/08/24	19		%	50
			Indeno(1,2,3-cd)pyrene	2022/08/24	NC		%	50
			1-Methylnaphthalene	2022/08/24	29		%	50
			2-Methylnaphthalene	2022/08/24	29		%	50
			Naphthalene	2022/08/24	15		%	50
			Phenanthrene	2022/08/24	21		%	50
			Perylene	2022/08/24	NC		%	50
			Pyrene	2022/08/24	NC		%	50

QUALITY ASSURANCE REPORT(CONT'D)

UA/UC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Quinoline	2022/08/24	NC		%	50

N/A = Not Applicable

~ / ~ ~

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Gita Pokhrel, Laboratory Supervisor

Jingyuan Song, QP, Organics - Senior Analyst

Sandy Yuan, M.Sc., QP, Scientific Specialist

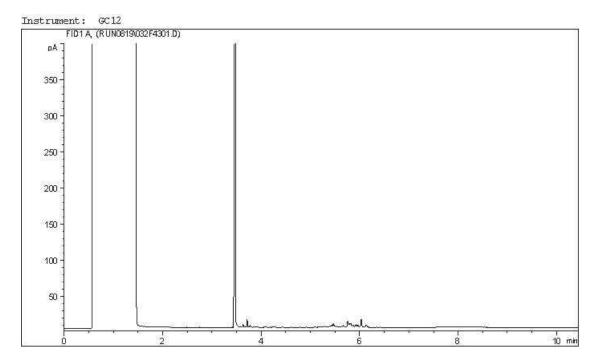
Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

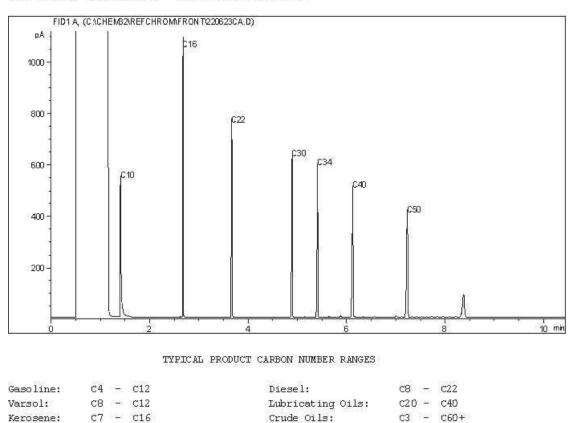
918

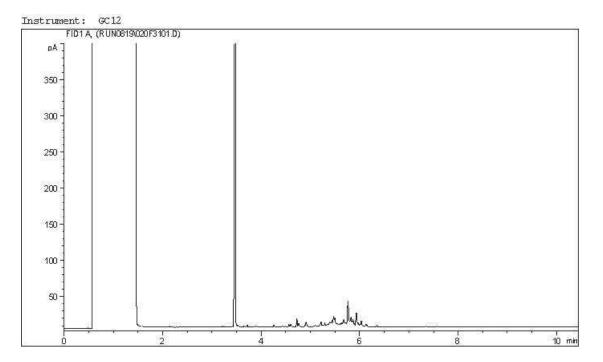
-

MCAL

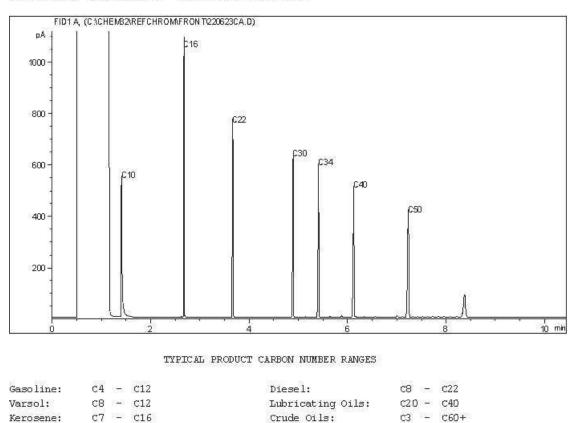

COR FCD-00265 / 5 Page __1_ of __1_

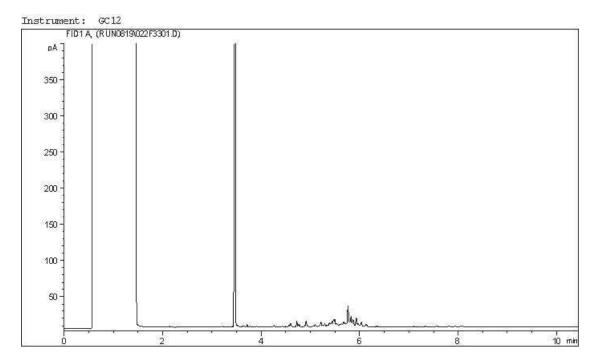
ADDITIONAL COOLER TEMPERATURE RECORD CHAIN-OF-CUSTODY RECORD	BV JOB#:	CUSTODY SEAL YES NO COOLERID PRESEMT YES NO COOLERID		CUSTODY SEAL YES NO COOLER ID PRESENT YES NO COOLER ID		CUSTODY SEAL YES NO COOLER ID PRESENT YES NO COOLER ID	TEMP TEMP 2	AL YES NO COOLER ID	PRESERVE INTACT TEMP	ICE PRESENT 1 2 3	2	INTACT TEMP 10 ILEMP	AL YES NO COOLER ID	TEMP	ILE PILESENI 1 2 3 CUSTODY SEAL YES NO COOLERID			CUSTODY SEAL YES NO COOLERID OPPECAUT	TEMP	ILE FRESON TES NO COOLER D 2 3	PRESENT TEMP		PRESENT YES NO LCOLEKID	ICE PRESENT TEMP	DATE (YYYY/MIM/DD) TIME (HH:MIM)	T 2622/08/18 7.	Al OIGI
ADDITIONAL COOL CHAIN-O	COOLER OBSERVATIONS:		~	YES NO COOLERID	TEMP J Z	T / COOLER ID	INTACT TEMP 10	AL YES NO COOLERID		ICE PRESENT S 1 2 3		INTACT C TEMP 2 2 3		IEMP 2 3 4	IL YES NO COOLERID	2	1EMP	CUSTODY SEAL YES NO COOLER ID PRESENT	TEMP	CUSTODY SEAL YES NO COOLERID	PRESENT TEMP		TES NO	INTACT TEMP 1 2 3	(ASIGN & PRINT)	12 FU JASON BIL	
	CHAIN OF CUSTODY #	Page of	Page of	Page of	Page of	rage of	Page of	page	Page	ot	of	Page of	Page of	Page of	Page	010	of	Page 🐨 of	Page	Page	Page of the page	of	rabe of	Page of			n en an de la service de la

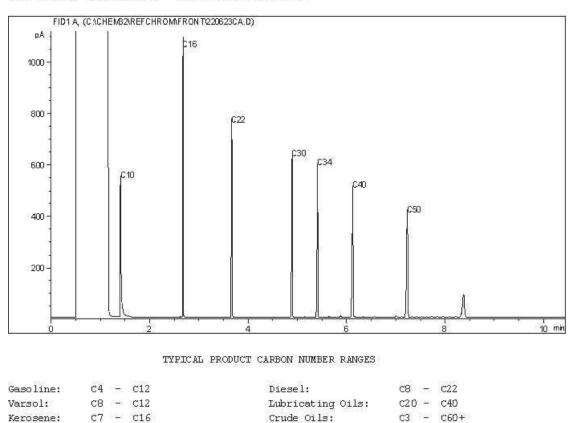

Page 19 of 28

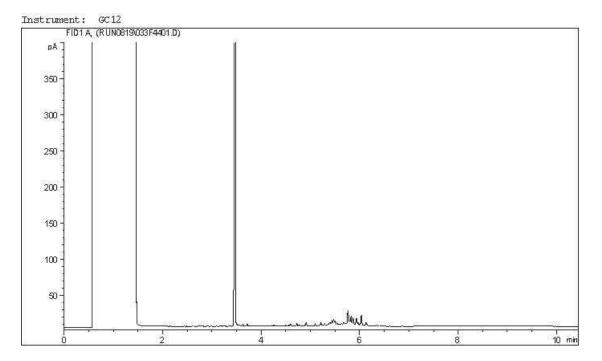

Control Collect collect According: Collect According: </th <th>Project Information</th>	Project Information
237 - 4 Ave SW Suite 3300 Context Street. Calgary Prov. AB Calgary Prov. AB Calgary Prov. Calgary Calgary Prov. AB Calgary Prov. Calgary Calgary Prov. Calgary Calgary Prov. AB Calgary Prov. Calgary Calgary Prov. Calgary Calgary Context Calgary Canada Account Payable Email: Cuttelie Context Canada Account Payable Email: Cuttelie Context Drinking Water - Canada Drinking Water - Maeta Drinking Water Sample Identification Matter - Maeta Context AL Sample Identification W Matter Matter M AA AA AA Sample Identification W Matter Matter M AA AA AA M AA AA AA Sample Identification W Matter Matter M AA AA AA AA M AA AA AA M AA AA <th>Shell</th>	Shell
Calgary Prov: AB Fortal Code: Address: Calgary Prov: AB Fortal train Calgary Prov: AB Fortal train Calgary Prov: AB Fortal train Calgary Canada Account Payable Email: Authens: Calgary Canada Account Payable Email: Authens: Canada Cone Drinking Water - Canada Drinking Water Drinking Water Sample Identification Drinking Water - Alberta M MM Do Sample Identification W M M D V A A A M D V A A A M D V A A A A A Sample Identification W M D D V A A A A A V A A A A A V A A A A A V A A A A A V A A A A A V A	2525414-\$100-\$104 LAB USE ONLY - PLACE STICKER HERE
Calgary Prov: AB Postal Colgary Calgary Prov: AB Postal Phone: Calgary Canada Account Payable Email: Quite/Le Phone: Calgary Canada Account Payable Const Phone: Const Phone: Calgary Const Drinking Water - canada Drinking Water - canada Drinking Water Drinking Water Sample Identification Mathematics Mathematics Mathematics Date Sampled Sample Identification V Mathematics Mathematics Date Sampled V V A A A A V V A A A A V V A A A A V V A A A A V V A A A A V V A A A A V V A A A A V V A A A A V V A A A A V V V A A A	22525414-\$000
Phone: Phone: Canada Account Payable Email: Quitelie Canada Account Payable Email: Quitelie Cone Drinking Water - Canada Drinking Water Cone Drinking Water - Canada Drinking Water Cone Drinking Water - Canada Drinking Water Sample Identification M M Sample Identification W M W XA 222-33 01 V XA 232-30 13 W XA 222-30 13 W XA 222-30 13 W XA 222-30 14 V XA 222-50 03 13 W XA 20<-02	
Canada Account Payable Email: Quite Lie Cone Drinking Water - Canada Drinking Water - Canada Drinking Water - Canada CCME Drinking Water - Canada Drinking Water - Canada Drinking Water - Canada Sample Identification Marter - Canada Drinking Water - Canada Drinking Water - Canada Sample Identification Marter - Canada Drinking Water - Canada Drinking Water - Canada Sample Identification Marter - Canada Marter - Canada Drinking Water - Canada Sample Identification W W Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M J.2.7-3.3 - 0.1 Marter - Canada Marter - Canada M M Marter - Canada Marter - Canada Marter - Canada M M Marter - Canada Marter - Canada Marerer - Canada M </td <td>WEST-GHANNEL, NT · Rush Confirmation #:</td>	WEST-GHANNEL, NT · Rush Confirmation #:
Correction Context Context Regulatory Criteria CCME Contributing Water - Canada cthewan Contributing Water - Canada cthewan Contributing Water - Canada cthewan cthewan cthewan <	NT
Regulatory Criteria Cone Drinking Water - Canada Drinking Water - Alberta Coner Alberta subserved Drinking Water - Alberta Drinking Water - Alberta Drinking Water - Alberta subserved Sample Identification V V M Drinking Water - Alberta V Driny N V Drinking Vater - Alberta Drinking Water - Alberta Drinking Water - Alberta V Driny N V Drinking Vater - Alberta Drinking Water - Alberta Drinking Water - Alberta V Driny N V Driny N V Drinking Water - Alberta V Driny N V Driny N V Drinking Water - Alberta V Driny N V Driny N V Drinking Water - Alberta V Driny N V Driny N V Driny N V Driny N V Driny N Driny N V Driny N V<	1/31
Come Drinking Water - Ganada Drinking Water - Ganada Drinking Water - Ganada Drinking Water - Ganada Sumple leartification Drinking Water - Alberta Monte Alberta Sample identification Monte Alberta Date Sampled Sample identification Monte Alberta Date Sampled Participation Monte Alberta Monte Alberta Mu 2 2 - 2 3 - 0 1 2 2 2 2 2 3 - 0 3 13 Mu 2 2 - 5 0 - 0 2 Mu 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 Mu 2 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 W 2 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3 Mu 2 - 5 0 - 0 3	20 21 22 Regular Turnarour
acticevan Drinking Water - Alberta Sonter Alberta Other AL SAMPLES MUST BE KEPT COOL (210°C] FROM TIME OF SAMPLING UNTIL OELIVERY TO Sample Identification Date Sampled Sample Identification Date Sampled Sample Identification W MM DD 222-53 - 01 222-36 03 13 W 222-50-03 V 222-50-03 W 222-50-03 V 222-50-03 V 222-50-03	C 5 to 7 Day Day
SAMPLES MUST BE KEPT COOL (42°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO ample Identification 222-23-01 222-23-03 222-23-03 222-23-03 222-23-03 222-23-03 222-250-02 W 22-50-02 W 22-50-02 W 22-50-03 W 22-	
Sample Identification W MM Date Sampled 1 222-33 * OI 225:3 08 13 W 225-33 * OI 225:3 08 13 W 225-33 * OI 225:3 08 13 W 225:3 09 13 13 W 225:5 05 05 13 W 225:5 03 225:3 08 13 W 225:5 05 05 13 14 W 225:5 06 13 25:5 14 14 W 225:5 05 03 24 24 25	
Date Sample Identification Date Sampled V M M Date Sampled V 22-23-01 28x2 68 13 V 22-53-01 28x2 68 13 V 22-53-03 4 4 V 22-50-03 2 2 2 V 22-50-03 2 2 2 2 V 22-50-03 2 2 2 2 2 V 22-50-03 2 2 2 2 2 2 V 22-50-03 2 2 2 2 2 2 W 2 5 0.03 2<	(no in dia sin in dia sin dia sin in dia sin dia sin din din dia sin dia sin dia sin
Sample Identification W MM DD r 22-23 · 01 22x2 68 13 13 W 22-23 · 02 22x2 68 13 14 1 W 22-23 · 02 W 22x2 68 13 14 1 W 22-23 · 02 W W 22x2 68 13 14 1 W 22 · 50 - 02 W X2 · 50 - 03 V X	- dissib - innie inni inni inni inni i i i
 ・ ユンテスラ・ OI ・ ユンテスラ・ OI シンステンスラ・ OI シンパル N サンユンーンスラー O2 サンスンー 50 - 02 サンスン - 50 - 03 シンスン - 50 - 03 シンスン - 50 - 03 シンスレ 上 シンスン - 50 - 03 シンスレ 上 シンスレ レ レ シンスレ レ シンスレ シンスレ レ シンスレ レ シンスレ レ シンスレ シンシ シンスレ シンスレ シンシ シンスレ シンスレ	Salinity 4 Basic clai HHOLD - D Require: Basic clai
W ス ス - ス - 3 - 0 1 U P N W 2 2 - 2 3 - 0 3 W 2 2 - 5 0 - 0 1 W 2 2 - 5 0 - 0 2 W 2 2 - 5 0 - 0 2 W 2 2 - 5 0 - 0 3 W 2	X4 also em
しいの N マンスース 3 - 03 マンスス - 50 - 01 レッスス - 50 - 02 レッスス - 50 - 03 マンスユ - 50 - 03 マンスコ - 50 - 03 マンスユ - 50 - 03 マンスコ - 50 - 03 マンスユ - 50 - 03 マンスコ - 50 - 03 マンスコ - 50 - 03 マンスコ - 50 - 03 マースコ - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	4 ald Shelldor BV
 1 1 1 1 1 1 1 2 1 1<td>h x</td>	h x
w スス-56-61 w スス-50-02 w スス-50-03 w スス-50-03 w スペーム w スペーム w スペーム w スペーム we No we No we No we No we No we No we No we No we No we work substitute ov this chall are available for we we work substitute ov this chall we would be available for we we would be available fo	X 4 Up load to Facility case
W72-50-02 W72-50-03 <u>L L L</u> <u>L</u> L HERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU HERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALLE TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SU ARE AN ALL TO IN WRITING, WORK SUBMITTED ON THIS HAM DE CUSTORY IS SUBJECT ON THE AN ALL TO IN THE AN ALL TO IN THIS HAM DE CUSTORY IS SUBJECT ON THE AN ALL TO IN THE AN ALL TO INTERNATION TO INTERVISE AN ALL TO IN THE AN ALL TO INTERVISE AN ALL TO INTE	3 41259544
W スユーラG - 03 上上上上 HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU HERWISE AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU AGREED TO IN WRITHIG WORKSUBMITTED ON THIS CHAIN OF CUSTODY ISSU	3 Semples my contain
HERWISE AGREED TO IN WRITING. WORK SUBMITTED ON THIS CHANN OF CLOSTODY ISSU HERWISE AGREED TO IN WRITING. WORK SUBMITTED ON THIS CHANN OF CLOSTODY ISSU ARE AVAILABLE FOR VIE ARE AV	IVed in Yellowkhife 3 head 5 pace
HERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CLUSTODY IS SU LIFEWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CLUSTODY IS SU LIFEWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CLUSTODY IS SU LIFEWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CLUSTODY IS SU LIFEWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CLUSTODY IS SU	1.1.
HERWISE A GREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTORY ISSU ISE ONCY: Yes No TO CONTRIMINE TO THE CHAIN OF CUSTORY ISSU ARE AVAILABLE FOR VIE A PRESENT IS PRESENT IS PRESENT IS CONTRIMINE IS CONTRIMINE IS CONTRIMINE IN CONTRIMINE IS CONTRIMINE IN CONTRIMINE IS CONTRIVING IN CONTRIMINE IN CONTRIVING IN CONTRIBUTION IN	G 1 7 2000
HERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTOOY IS SU ARE AVAILABLE FOR VIE JEE ONCY: Ves No - C Ia present Ia present Ia present Ia present	2100 1200
HERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY IS SU ARE AVAILABLE FOR VIE ISE ONCY: Yes NO 'C ACAN CONTRACT AND	- id
HERMINE ANOME JOIN WATINGS, WORK SOBRILLED OK THE KERMING CLOSION CLOSION IS SA ARE AVAILABLE FOR W JSE ONTY, Yes No *C ALB USE LAB USE TAPEGATE 1 2 CONTRACTOR SALE In Present 1 2 CONTRACTOR SALE	
25 UNLY TO YES NO C ACT Real present To 2 3 Cooling media present 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	IGO CLOBOR DE CONTRAT DE ACMONTERGARENT AND ACCEPTANCE OF OUR TERAS AND CONDITIONS WHICH (1STED ARIONY FOTORIAIN A COPY) (1STED ARIONY FOTORIAIN A COPY)
1 2 3 Cooling media present 1 2 3	Labore Ontry Yes No 'C t 'C
Date Time net of the n	g media present 2 3 Date Time Social instructions
M DD HH MM Received by: (Signature) Print) VY	MM HH DD MM W

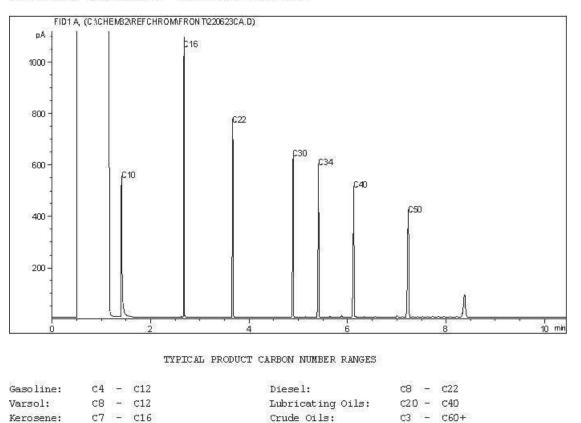
Page 20 of 28

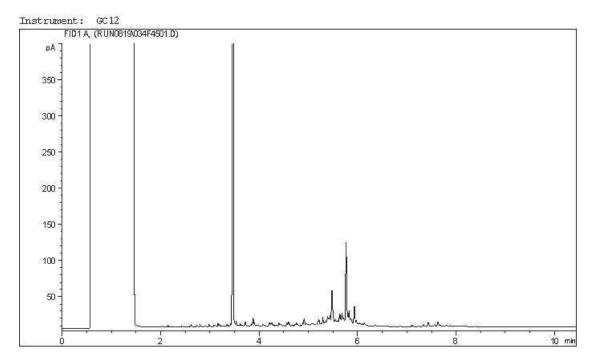


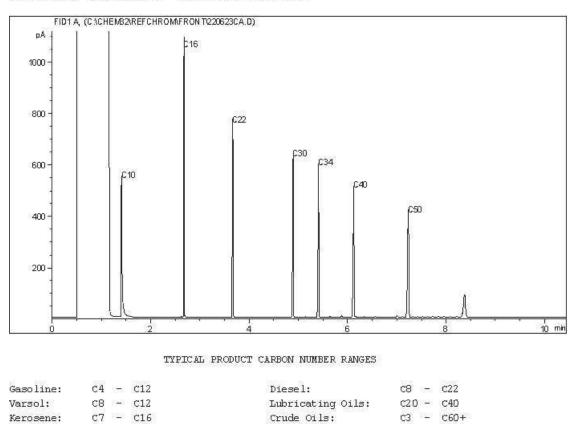

Carbon Range Distribution - Reference Chromatogram



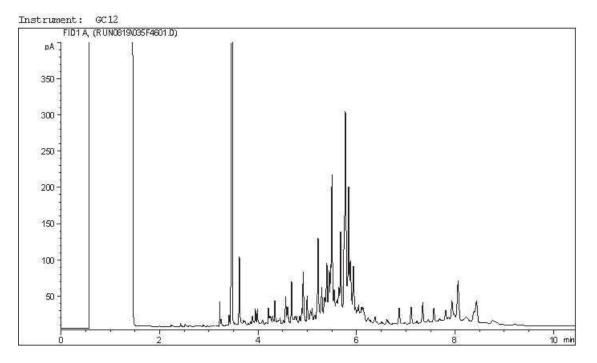

Carbon Range Distribution - Reference Chromatogram



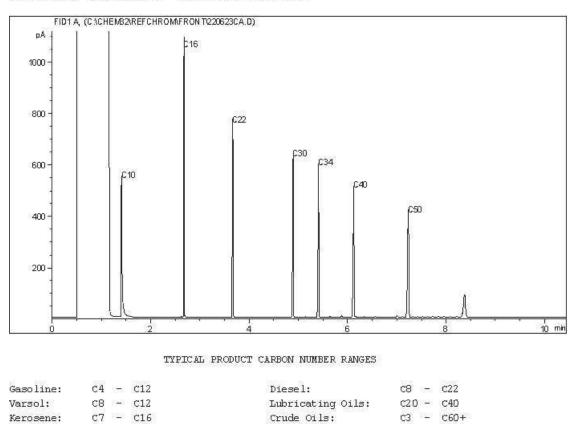

Carbon Range Distribution - Reference Chromatogram

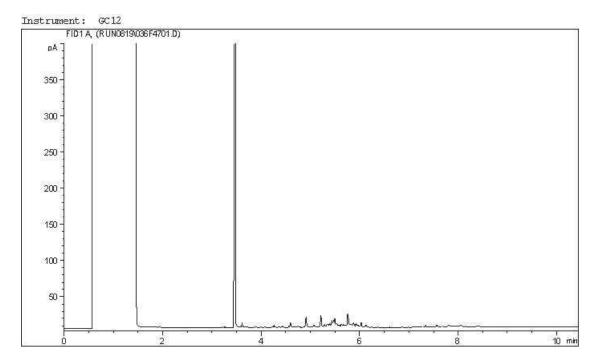


Carbon Range Distribution - Reference Chromatogram

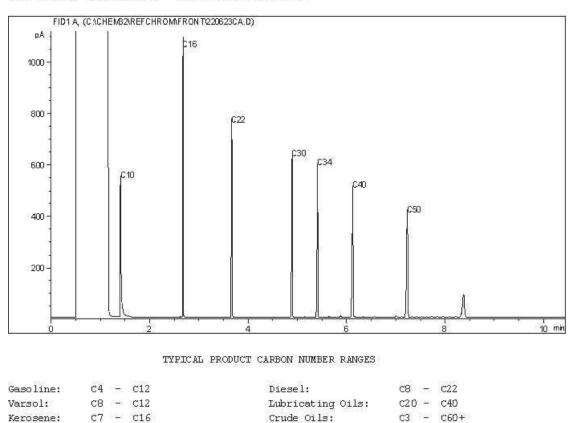


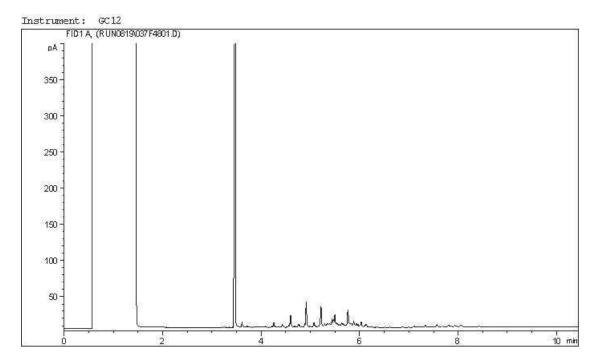
Carbon Range Distribution - Reference Chromatogram

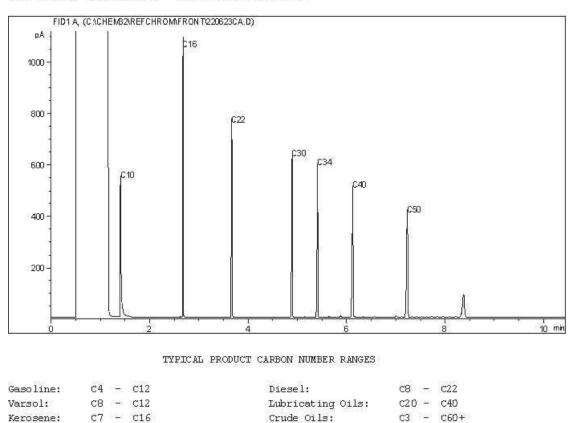



GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: MW22-50-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram




Carbon Range Distribution - Reference Chromatogram



Carbon Range Distribution - Reference Chromatogram

Carbon Range Distribution - Reference Chromatogram

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAIRWELL Your C.O.C. #: 1 of 1

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2023/01/12 Report #: R3287446 Version: 7 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262029 Received: 2022/08/17, 12:45

Sample Matrix: Soil # Samples Received: 12

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/F1 by HS GC/MS/FID (MeOH extract) (1, 3)	12	N/A	2022/08/20	AB SOP-00039	CCME CWS/EPA 8260d m
F1-BTEX (1)	12	N/A	2022/08/20		Auto Calc
Toluene (13C/12C) CSIA (2)	2	N/A	2022/10/19		
Toluene (13C/12C) CSIA (1)	1	N/A	2023/01/10		See Attachment
CCME Hydrocarbons (F2-F4 in soil) (1, 4)	2	2022/08/19	2022/08/19	AB SOP-00036	CCME PHC-CWS m
CCME Hydrocarbons (F2-F4 in soil) (1, 4)	9	2022/08/19	2022/08/20	AB SOP-00036	CCME PHC-CWS m
CCME Hydrocarbons (F2-F4 in soil) (1, 4)	1	2022/08/20	2022/08/20	AB SOP-00036	CCME PHC-CWS m
CCME Hydrocarbons (F4G in soil) (1, 4)	3	2022/08/19	2022/08/22	AB SOP-00036	CCME PHC-CWS m
				AB SOP-00040	
CCME Hydrocarbons (F4G in soil) (1, 4)	2	2022/09/20	2022/08/22	AB SOP-00036	CCME PHC-CWS m
				AB SOP-00040	
Moisture (1)	4	N/A	2022/08/19	AB SOP-00002	CCME PHC-CWS m
Moisture (1)	8	N/A	2022/08/20	AB SOP-00002	CCME PHC-CWS m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your P.O. #: 22525414-1100-1104 Your Project #: 22525414-1000 Site Location: CAMP FAIRWELL Your C.O.C. #: 1 of 1

Attention: Aurelie Bellavance

GOLDER ASSOCIATES LTD. 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2023/01/12 Report #: R3287446 Version: 7 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262029 Received: 2022/08/17. 12:45

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary, 4000 - 19 St., Calgary, AB, T2E 6P8

(2) This test was performed by Microbial insights c/o EBPI, 735 Griffith Court , Burlington, ON, L7L 5R9

(3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.

(4) All CCME results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Validation of Performance-Based Alternative Methods September 2003. Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Brody Andersen Program Specialist-Emergency Spill Response 12 Jan 2023 14:39:07

Please direct all questions regarding this Certificate of Analysis to: Cynny Hagen, Key Account Soecialist Email: Cynny.HAGEN@bureauveritas.com Phone# (403)735-2273

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Scott Cantwell, General Manager responsible for Alberta Environmental laboratory operations.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY173	AZY173		AZY174			AZY175		
Sampling Date		2022/08/13 08:00	2022/08/13 08:00		2022/08/13 08:15			2022/08/13 08:30		
COC Number		1 of 1	1 of 1		1 of 1			1 of 1		
	UNITS	MW 22-09-01	MW 22-09-01 Lab-Dup	RDL	MW 22-09-02	RDL	QC Batch	MW 22-09-03	RDL	QC Batch
Ext. Pet. Hydrocarbon										
F2 (C10-C16 Hydrocarbons)	mg/kg	180 (1)	130	22	120	10	A687951	15	10	A687729
F3 (C16-C34 Hydrocarbons)	mg/kg	2300 (2)	1500 (3)	110	1500	50	A687951	170	50	A687729
F4 (C34-C50 Hydrocarbons)	mg/kg	690 (1)	530	110	410	50	A687951	<50	50	A687729
Reached Baseline at C50	mg/kg	No	No	N/A	No	N/A	A687951	Yes	N/A	A687729
Physical Properties				•		-				
Moisture	%	55	N/A	0.30	43	0.30	A688093	19	0.30	A688093
Volatiles										
Xylenes (Total)	mg/kg	<0.13	N/A	0.13	<0.13	0.13	A686814	<0.045	0.045	A686814
F1 (C6-C10) - BTEX	mg/kg	<24	N/A	24	<24	24	A686814	<10	10	A686814
Field Preserved Volatiles										
Benzene	mg/kg	<0.015 (4)	N/A	0.015	<0.014 (4)	0.014	A687767	<0.0050	0.0050	A687767
Toluene	mg/kg	0.85 (4)	N/A	0.15	1.3 (4)	0.14	A687767	<0.050	0.050	A687767
Ethylbenzene	mg/kg	<0.030 (4)	N/A	0.030	<0.028 (4)	0.028	A687767	<0.010	0.010	A687767
m & p-Xylene	mg/kg	<0.12 (4)	N/A	0.12	<0.11 (4)	0.11	A687767	<0.040	0.040	A687767
o-Xylene	mg/kg	<0.059 (4)	N/A	0.059	<0.056 (4)	0.056	A687767	<0.020	0.020	A687767
F1 (C6-C10)	mg/kg	<24 (5)	N/A	24	<24 (5)	24	A687767	<10	10	A687767
Surrogate Recovery (%)										
1,4-Difluorobenzene (sur.)	%	96	N/A	N/A	97	N/A	A687767	96	N/A	A687767
4-Bromofluorobenzene (sur.)	%	110	N/A	N/A	109	N/A	A687767	111	N/A	A687767
D10-o-Xylene (sur.)	%	87	N/A	N/A	92	N/A	A687767	96	N/A	A687767
D4-1,2-Dichloroethane (sur.)	%	88	N/A	N/A	94	N/A	A687767	92	N/A	A687767

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limits raised due to high moisture content, sample contains => 50% moisture.

Duplicate exceeds acceptance criteria due to sample non homogeneity.

(3) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(4) Detection limits raised based on sample weight used for analysis.

(5) Detection limits raised based on MDL and sample weight used for analysis.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY173	AZY173		AZY174			AZY175		
Sampling Date		2022/08/13 08:00	2022/08/13 08:00		2022/08/13 08:15			2022/08/13 08:30		
COC Number		1 of 1	1 of 1		1 of 1			1 of 1		
	UNITS	MW 22-09-01	MW 22-09-01 Lab-Dup	RDL	MW 22-09-02	RDL	QC Batch	MW 22-09-03	RDL	QC Batch
O-TERPHENYL (sur.)	%	126	101	N/A	97	N/A	A687951	110	N/A	A687729
RDL = Reportable Detection Limit										

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY176			AZY177		AZY178			AZY179		
Sampling Date		2022/08/13 08:45			2022/08/13 08:45		2022/08/13 09:00			2022/08/13 09:15		
COC Number		1 of 1			1 of 1		1 of 1			1 of 1		
	UNITS	BH22-49-01	RDL	QC Batch	DUP M	RDL	BH22-49-02	RDL	QC Batch	BH22-49-03	RDL	QC Batch
Ext. Pet. Hydrocarbon		•						•				
F2 (C10-C16 Hydrocarbons)	mg/kg	930 (1)	28	A687951	190 (1)	29	21	10	A687729	<10	10	A687951
F3 (C16-C34 Hydrocarbons)	mg/kg	8700 (1)	140	A687951	2800 (1)	140	660	50	A687729	<50	50	A687951
F4 (C34-C50 Hydrocarbons)	mg/kg	2700 (1)	140	A687951	1100 (1)	140	230	50	A687729	<50	50	A687951
Reached Baseline at C50	mg/kg	No	N/A	A687951	No	N/A	Yes	N/A	A687729	Yes	N/A	A687951
Physical Properties			-									
Moisture	%	64	0.30	A688093	65	0.30	40	0.30	A688047	19	0.30	A688093
Volatiles												
Xylenes (Total)	mg/kg	<0.21	0.21	A686814	1.2	0.20	<0.098	0.098	A686814	<0.045	0.045	A686814
F1 (C6-C10) - BTEX	mg/kg	<24	24	A686814	<44	44	<22	22	A686814	<10	10	A686814
Field Preserved Volatiles												
Benzene	mg/kg	<0.023 (2)	0.023	A687767	0.060 (2)	0.022	0.012 (2)	0.011	A687767	0.010	0.0050	A687767
Toluene	mg/kg	0.36 (2)	0.23	A687767	48 (2)	0.22	8.2 (2)	0.11	A687767	0.088	0.050	A687767
Ethylbenzene	mg/kg	<0.047 (2)	0.047	A687767	0.27 (2)	0.044	<0.022 (2)	0.022	A687767	<0.010	0.010	A687767
m & p-Xylene	mg/kg	<0.19 (2)	0.19	A687767	0.87 (2)	0.18	<0.088 (2)	0.088	A687767	<0.040	0.040	A687767
o-Xylene	mg/kg	<0.093 (2)	0.093	A687767	0.30 (2)	0.088	<0.044 (2)	0.044	A687767	<0.020	0.020	A687767
F1 (C6-C10)	mg/kg	<24 (3)	24	A687767	67 (2)	44	<22 (2)	22	A687767	<10	10	A687767
Surrogate Recovery (%)												
1,4-Difluorobenzene (sur.)	%	98	N/A	A687767	97	N/A	96	N/A	A687767	98	N/A	A687767
4-Bromofluorobenzene (sur.)	%	108	N/A	A687767	109	N/A	107	N/A	A687767	109	N/A	A687767
D10-o-Xylene (sur.)	%	92	N/A	A687767	94	N/A	98	N/A	A687767	96	N/A	A687767
D4-1,2-Dichloroethane (sur.)	%	94	N/A	A687767	94	N/A	94	N/A	A687767	93	N/A	A687767
O-TERPHENYL (sur.)	%	108	N/A	A687951	140	N/A	117	N/A	A687729	109	N/A	A687951
RDI = Reportable Detection Lin	mit											

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limits raised based on sample weight used for analysis.

(3) Detection limits raised based on MDL and sample weight used for analysis.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY180	AZY181			AZY182			AZY183		
Sampling Date		2022/08/13 09:30	2022/08/13 09:45			2022/08/13 10:00			2022/08/13 10:15		
COC Number		1 of 1	1 of 1			1 of 1			1 of 1		
	UNITS	BH22-11-01	BH22-11-02	RDL	QC Batch	BH22-47-01	RDL	QC Batch	BH22-10-01	RDL	QC Batch
Ext. Pet. Hydrocarbon			I		1	1			1		
F2 (C10-C16 Hydrocarbons)	mg/kg	6400	13	10	A687951	380 (1)	48	A687729	76 (1)	26	A687729
F3 (C16-C34 Hydrocarbons)	mg/kg	520	<50	50	A687951	8300 (1)	240	A687729	780 (1)	130	A687729
F4 (C34-C50 Hydrocarbons)	mg/kg	140	<50	50	A687951	3200 (1)	240	A687729	380 (1)	130	A687729
Reached Baseline at C50	mg/kg	Yes	Yes	N/A	A687951	No	N/A	A687729	Yes	N/A	A687729
Physical Properties											
Moisture	%	10	20	0.30	A688093	79	0.30	A688047	62	0.30	A688091
Volatiles											
Xylenes (Total)	mg/kg	0.12	0.47	0.045	A686814	<0.51	0.51	A686814	<0.37	0.37	A686814
F1 (C6-C10) - BTEX	mg/kg	110	86	10	A686814	<30	30	A686814	<24	24	A686814
Field Preserved Volatiles											
Benzene	mg/kg	<0.0050	0.024	0.0050	A687767	<0.057 (2)	0.057	A687767	<0.041 (2)	0.041	A687767
Toluene	mg/kg	<0.050	<0.050	0.050	A687767	13 (2)	0.57	A687767	<0.080 (3)	0.080	A687767
Ethylbenzene	mg/kg	0.016	0.12	0.010	A687767	<0.040 (3)	0.040	A687767	<0.030 (3)	0.030	A687767
m & p-Xylene	mg/kg	0.054	0.39	0.040	A687767	<0.45 (2)	0.45	A687767	<0.33 (2)	0.33	A687767
o-Xylene	mg/kg	0.063	0.082	0.020	A687767	<0.23 (2)	0.23	A687767	<0.16 (2)	0.16	A687767
F1 (C6-C10)	mg/kg	110	87	10	A687767	<30 (3)	30	A687767	<24 (3)	24	A687767
Surrogate Recovery (%)											
1,4-Difluorobenzene (sur.)	%	99	96	N/A	A687767	95	N/A	A687767	94	N/A	A687767
4-Bromofluorobenzene (sur.)	%	109	108	N/A	A687767	112	N/A	A687767	110	N/A	A687767
D10-o-Xylene (sur.)	%	108	83	N/A	A687767	87	N/A	A687767	91	N/A	A687767
D4-1,2-Dichloroethane (sur.)	%	96	95	N/A	A687767	95	N/A	A687767	95	N/A	A687767
O-TERPHENYL (sur.)	%	84	107	N/A	A687951	123	N/A	A687729	111	N/A	A687729
RDL = Reportable Detection Li	nit										

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limits raised based on sample weight used for analysis.

(3) Detection limits raised based on MDL and sample weight used for analysis.

Bureau Veritas ID		AZY184		
Sampling Date		2022/08/13 10:30		
COC Number		1 of 1		
	UNITS	BH22-48-01	RDL	QC Batch
Ext. Pet. Hydrocarbon				
F2 (C10-C16 Hydrocarbons)	mg/kg	140 (1)	39	A687729
F3 (C16-C34 Hydrocarbons)	mg/kg	2300 (1)	190	A687729
F4 (C34-C50 Hydrocarbons)	mg/kg	990 (1)	190	A687729
Reached Baseline at C50	mg/kg	Yes	N/A	A687729
Physical Properties				
Moisture	%	74	0.30	A688047
Volatiles	•			
Xylenes (Total)	mg/kg	<0.24	0.24	A686814
F1 (C6-C10) - BTEX	mg/kg	<24	24	A686814
Field Preserved Volatiles			-	
Benzene	mg/kg	<0.026 (2)	0.026	A687767
Toluene	mg/kg	<0.080 (3)	0.080	A687767
Ethylbenzene	mg/kg	<0.030 (3)	0.030	A687767
m & p-Xylene	mg/kg	<0.21 (2)	0.21	A687767
o-Xylene	mg/kg	<0.11 (2)	0.11	A687767
F1 (C6-C10)	mg/kg	<24 (3)	24	A687767
Surrogate Recovery (%)			-	
1,4-Difluorobenzene (sur.)	%	98	N/A	A687767
4-Bromofluorobenzene (sur.)	%	109	N/A	A687767
D10-o-Xylene (sur.)	%	94	N/A	A687767
D4-1,2-Dichloroethane (sur.)	%	95	N/A	A687767
O-TERPHENYL (sur.)	%	136	N/A	A687729
RDL = Reportable Detection Li	mit			

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limits raised based on sample weight used for analysis.

(3) Detection limits raised based on MDL and sample weight used for analysis.

RESULTS OF CHEMICAL ANALYSES OF SOIL

Bureau Veritas ID		AZY173	AZY174		AZY178	
Sampling Date		2022/08/13 08:00	2022/08/13 08:15		2022/08/13 09:00	
COC Number		1 of 1	1 of 1		1 of 1	
	UNITS	MW 22-09-01	MW 22-09-02	QC Batch	BH22-49-02	QC Batch
Parameter						
Subcontract Parameter	N/A	SEE ATTACH	SEE ATTACH	A763373	ATTACHED	A849901

PETROLEUM HYDROCARBONS (CCME)

Bureau Veritas ID		AZY173	AZY173		AZY174		AZY176	AZY177		
Sampling Date		2022/08/13 08:00	2022/08/13 08:00		2022/08/13 08:15		2022/08/13 08:45	2022/08/13 08:45		
COC Number		1 of 1	1 of 1		1 of 1		1 of 1	1 of 1		
	UNITS	MW 22-09-01	MW 22-09-01 Lab-Dup	RDL	MW 22-09-02	RDL	BH22-49-01	DUP M	RDL	QC Batch
Ext. Pet. Hydrocarbon										
F4G-SG (Heavy Hydrocarbons-Grav.)	mg/kg	6500 (1)	5300 (1)	1100	4800	500	16000 (1)	5000 (1)	1400	A689459
RDL = Reportable Detection Limit Lab-Dup = Laboratory Initiated Duplicate										

(1) Detection limits raised due to high moisture content.

Bureau Veritas ID		AZY182							
Sampling Date		2022/08/13							
		10:00							
COC Number		1 of 1							
	UNITS	BH22-47-01	RDL	QC Batch					
Ext. Pet. Hydrocarbon									
F4G-SG (Heavy Hydrocarbons-Grav.) mg/kg 13000 (1) 2400 A689459									
RDL = Reportable Detection Limit									
(1) Detection limits raised due to high moisture content.									

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	7.7°C
Package 2	4.3°C
Package 3	7.3°C
Package 4	4.7°C
Package 5	4.7°C
Package 6	3.0°C
Package 7	2.3°C

Change Request: Report to include results on below samples as per client request received 2022/09/20. BH22-49-02/AZY178 - Chromatogram and Biotoluene review BH22-11-01/AZY180 - Chromatogram review

Version #7:Toluene Stage 3 Assessment has been done on sample AZY178 as per client request on 20221117. Updated report is attached to this job.

Version #6:Toluene Stage 3 Assessment has been done on sample AZY173 (MW22-09-01) & AZY174 (MW22-09-02) as per client request on 2022097. Report is attached to this job.

Version #5: Additional Toluene assessmeth has been done on sample AZY173 (MW22-09--01) & AZY174 (MW22-09-02) as per request from client 20220831

Version #4: Additional Chromatogram review has been done on sample AZY173 (MW22-09-01), AZY174 (MW22-09-02) and AZY184 (BH22-48-01) as per request from client 20220829

Version #3: Additional Chromatogram review has been done on sample AZY183 (BH22-10-01) as per request from client 20220823

HYDROCARBON RESEMBLANCE

The reported hydrocarbon resemblance was obtained by visual comparison of the sample chromatogram with a library of reference product chromatograms. Since variables such as the degree and type of weathering and the presence of non-petrogenic hydrocarbons cannot be duplicated in reference spectra, the resemblance information must be regarded as approximate and qualitative and as such, Bureau Veritas Laboratories can assume no liability for any conclusions drawn from these data.

Sample AZY173 [MW 22-09-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY174 [MW 22-09-02] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY178 [BH22-49-02] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY180 [BH22-11-01] : The CCME F2-F4 chromatographic peak profile is consistent with a light distillate petroleum product (e.g. Gasoline, Mineral spirits, Stoddard solvent). These are typically characterized by a cluster of peaks between C10 and C16, representing a variety of straight-chain, branched-chain and cyclic hydrocarbons. These peaks will decrease in height, relative to the unresolved complex mixture (UCM or "hump") with increased weathering of the product material.

Chromatogram also indicates a minor contribution of biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain

peak patterns spanning the C18 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34.

Sample AZY183 [BH22-10-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY184 [BH22-48-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A687729	GG3	Matrix Spike	O-TERPHENYL (sur.)	2022/08/19		113	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19		113	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/19		116	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/19		116	%	60 - 140
A687729	GG3	Spiked Blank	O-TERPHENYL (sur.)	2022/08/19		123	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19		122	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/19		125	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/19		124	%	60 - 140
A687729	GG3	Method Blank	O-TERPHENYL (sur.)	2022/08/19		138	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/19	<10		mg/kg	
			F3 (C16-C34 Hydrocarbons)	2022/08/19	<50		mg/kg	
			F4 (C34-C50 Hydrocarbons)	2022/08/19	<50		mg/kg	
A687729	GG3	RPD	F2 (C10-C16 Hydrocarbons)	2022/08/19	NC		%	40
			F3 (C16-C34 Hydrocarbons)	2022/08/19	3.3		%	40
			F4 (C34-C50 Hydrocarbons)	2022/08/19	NC		%	40
A687767	D01	Matrix Spike	1,4-Difluorobenzene (sur.)	2022/08/20		94	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/20		111	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/20		97	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/20		91	%	50 - 140
			Benzene	2022/08/20		88	%	50 - 140
			Toluene	2022/08/20		90	%	50 - 140
			Ethylbenzene	2022/08/20		91	%	50 - 140
			m & p-Xylene	2022/08/20		94	%	50 - 140
			o-Xylene	2022/08/20		92	%	50 - 140
			F1 (C6-C10)	2022/08/20		99	%	60 - 140
A687767	D01	Spiked Blank	1,4-Difluorobenzene (sur.)	2022/08/20		89	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/20		107	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/20		112	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/20		90	%	50 - 140
			Benzene	2022/08/20		109	%	60 - 130
			Toluene	2022/08/20		106	%	60 - 130
			Ethylbenzene	2022/08/20		108	%	60 - 130
			m & p-Xylene	2022/08/20		111	%	60 - 130
			o-Xylene	2022/08/20		109	%	60 - 130
			F1 (C6-C10)	2022/08/20		88	%	60 - 140
A687767	D01	Method Blank	1,4-Difluorobenzene (sur.)	2022/08/20		95	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/20		110	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/20		87	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/20		96	%	50 - 140
			Benzene	2022/08/20	<0.0050		mg/kg	
			Toluene	2022/08/20	<0.050		mg/kg	
			Ethylbenzene	2022/08/20	<0.015 (1)		mg/kg	
			m & p-Xylene	2022/08/20	<0.045 (1)		mg/kg	
			o-Xylene	2022/08/20	<0.025 (1)		mg/kg	
			F1 (C6-C10)	2022/08/20	<10		mg/kg	
A687767	D01	RPD	Benzene	2022/08/20	14		%	50
			Toluene	2022/08/20	NC		%	50
			Ethylbenzene	2022/08/20	24		%	50
			m & p-Xylene	2022/08/20	NC		%	50
			o-Xylene	2022/08/20	NC		%	50
			F1 (C6-C10)	2022/08/20	NC		%	30
A687951	CAU	Matrix Spike [AZY173-01]	O-TERPHENYL (sur.)	2022/08/20		114	%	60 - 140

 Page 12 of 29

 Bureau Veritas
 Edmonton: 9331 - 48th Street T6B 2R4
 Telephone (780)577-7100
 Fax (780)450-4187

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten	iiiit	de type	F2 (C10-C16 Hydrocarbons)	2022/08/20	Value	78	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/20		NC	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/20		68	%	60 - 140
A687951	CAU	Spiked Blank	O-TERPHENYL (sur.)	2022/08/20		112	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/20		106	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/20		111	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/20		108	%	60 - 140
A687951	CAU	Method Blank	O-TERPHENYL (sur.)	2022/08/20		116	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/20	<10		mg/kg	
			F3 (C16-C34 Hydrocarbons)	2022/08/20	<50		mg/kg	
			F4 (C34-C50 Hydrocarbons)	2022/08/20	<50		mg/kg	
A687951	CAU	RPD [AZY173-01]	F2 (C10-C16 Hydrocarbons)	2022/08/20	30		%	40
			F3 (C16-C34 Hydrocarbons)	2022/08/20	42 (2)		%	40
			F4 (C34-C50 Hydrocarbons)	2022/08/20	26		%	40
A688047	ETS	Method Blank	Moisture	2022/08/19	<0.30		%	
A688047	ETS	RPD	Moisture	2022/08/19	8.1		%	20
A688091	A1H	Method Blank	Moisture	2022/08/20	<0.30		%	
A688091	A1H	RPD	Moisture	2022/08/20	16		%	20
A688093	A1H	Method Blank	Moisture	2022/08/20	<0.30		%	
A688093	A1H	RPD	Moisture	2022/08/20	8.9		%	20
A689459	JB9	Spiked Blank	F4G-SG (Heavy Hydrocarbons-Grav.)	2022/08/22		109	%	60 - 140
A689459	JB9	Method Blank	F4G-SG (Heavy Hydrocarbons-Grav.)	2022/08/22	<500		mg/kg	
A689459	JB9	RPD [AZY173-01]	F4G-SG (Heavy Hydrocarbons-Grav.)	2022/08/22	22 (3)		%	40

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Detection limit raised due to interferent.

(2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(3) Detection limits raised due to high moisture content.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cynny Hagen, Key Account Soecialist

Gita Pokhrel, Laboratory Supervisor

Nadeem Cheema, Project Solutions Representative

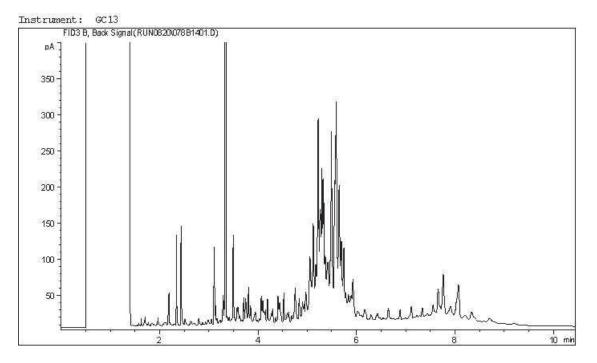
Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

918

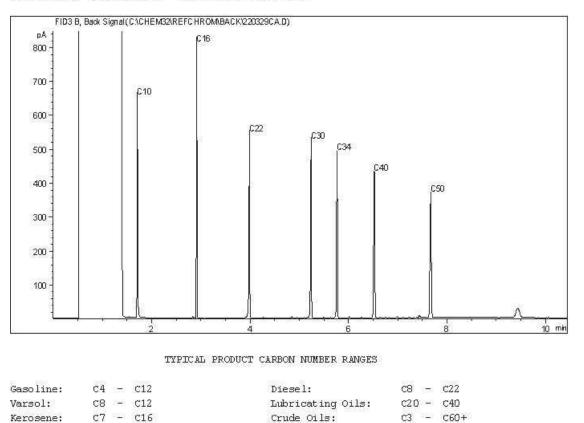
-

MCAL

COR FCD-00265 / 5 Page __1_ of __1_

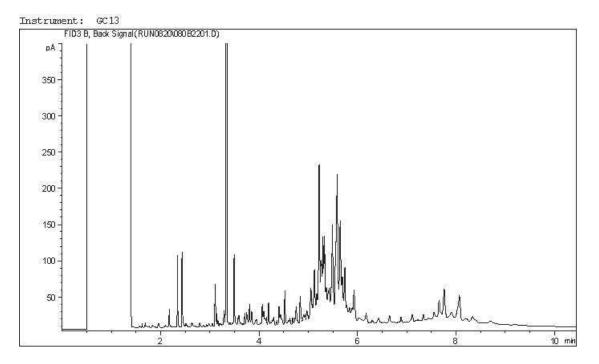

ADDITIONAL COOLER TEMPERATURE RECORD CHAIN-OF-CUSTODY RECORD	BV JOB#:	CUSTODY SEAL YES NO COULRID PRESENT YES NO COULRID	INTACT TEMP 1 2 3	AL YES NO CODLERID	INTACT TEMP 1 TE	L YES NO COOLER ID	TEMP	AL YES NO COOLERID	PRESENT INTACT TEMP		CUSTODY SEAL YES NO COOLER ID PRESENT	INTACT TEMP	AL YES NO COOLER ID	TEMP	ICE PRESENT 1 2 3 CUSTODY SEAL YES NO COOLERID			CUSTODY SEAL YES NO COOLER ID PRESENT	INTACI TEMP	AL YES NO COOLERID	PRESENT TEMP	ICE PRESENT 1 2 3 CUSTODY SEAL YES NO COOLERID		INTACT TEMP 1 2 3	DATE (YYYY/MIM/DD) TIME (HH:MIM)	2622/08/18	RI DICI
ADDITIONAL COOL CHAIN-C	COOLER OBSERVATIONS:		TEMP C 8 3		INTACT TEMP 5 4	NO COOLER ID	INTACT TEMP 78	× -) [~]	-	INTACT TEMP 5 4 5		TEMP 23 C	ILLE PRESERV YES NO COOLER ID 2 13 CUSTODY SEAL YES NO COOLER ID	2	TEMP 1	CUSTODY SEAL YES NO COOLER ID PRESENT	ITEMP 1 2 3	YES NO COOLERID	TEMP	ICE PRESENT 1 2 3 CUSTODY SEAL YES NO COOLERID		INTACT TEMP 1 2 3	recei y ed by∕(\$ign & print)	12 FU JASON 7511	
	CHAIN OF CUSTODY #	Page of of	Page of	Page of		Page of	Page of	Page	Page 01	of	of	Page of	Page	Page	Page	of	of	Page to Of	Page of	Page	Page	Page 01	of	Page of			

Arrelie Bellvannes Destination Destination Destination Priv Jan Variation Destination Destination Destination Priv Jan Destination Destination Destination Destination Destination Priv Jan Destination Desti	инстранования Податовно на полнания П							
Golder Associates Denotions Shell Image: Statistic fuel for the statistic for the statistic fuel for the statistic for the stat	Colder Asocieties Condition Associates Condition Associates <thcondition associates<="" th=""> Condition As</thcondition>		Report Informat	ion (if differs from involce)		Project Information		
Aurelie Bellavance Du y resc. 22525414-3100-7104 Muse Rev. Muse	Aurelie Bellisonce Dat view 22325414 (100-7104 Mouse Stretcher BIV An Mouse 124 (12) Mouse 22325414 (100-7104 BIV An Mouse 124 (12) Mouse 22325414 (100-7104 E-10- Biologic 124 (12) Mouse Mouse 22325414 (100-7104 E-10- Biologic 124 (12) Mouse Mouse Mouse Mouse C-10- Biologic 124 (12) Mouse Mouse Mouse Mouse Mouse C-10- Doug Mouse Mouse Mouse Mouse Mouse Mouse Mouse C-10- Mouse Mous			Golder Associates	Quotation #:	Shell		
Виск 2255444300 Виск 2255444300 Виск 2255444300 Виск 225544300 Виск 2004 Виск Виск 2004 Виск Buck	Bin Marrie Bondia 22535444-3000 Bin Marrie 22535444-3000 PELIC → I Bin Marrie Bin Marrie Bin Marrie Mission Marrie Mission Marrie PELIC → I Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PELIC → I Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PALICAT Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PALICAT Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PALICAT Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PALICAT Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie PALICAT Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie Bin Marrie	Dacted	241	Aurelie Bellavance	P.O. #/ AFE#:	22525414-3100-3104	LAB USE ONLY - PLACE STIC	KER HERE
gary las Desite Longention Longention <thlongention< th=""> Longention <</thlongention<>	Decisi Data Calibrity All Decisition All Calibrity All All<	Dactor			Project #:	22525414-3000		
403-299-5600 Structure ID A contractione: PT: Tran. Bit Location Tran. Det continue Texture Not continue Texture Addition Texture Addition Addi	432-293-5600 Baucealier Device the colspan="2" Mich Catalauter, TTT- Mark Catalauter, Catalar, Catalau	AB Code:	Calgary	Postal Code:		Lairlach		
Clice, the II arvance Other Stress Other Stres Other Stress Othe	Clip: Deficiention MT Clip: File: Mean Marchaet Mean Marchaet				Site Location:	0	Rush Confirmation	
47-1 Tur, (2) 12/10 20 13/10 14/10 12/10 12/10 400 1	47-7 Ти, (Д) 1/2 3 4 8 1/2 1/2 3 4 1/2		aurelie.	d WART-		NT		
Кили. Малки Колл. Малки	Handlessenses Execute (5 sind columnation) Handlessenses Execute (5 sind columnation) Handlessenses Execute (5 sind columnation) Market and the sense of the sense o	Copie	Peter,	W50,C		Machrail 15. Paska		
Написания Написания 13 В Ш Мим 13 В Ш Мим 13 В К Х Х 13 В К Х Х 13 В К К К 13 В К К К 14 С В К К 13 В К К К 14 К К К К 15 К К К К 13 К К К К 14 К К К К 15 К К К К 16 К К К К 17 К К К К 18 К К К К 17 К К К К 18 К К К К 17 К К К 16 <td>Handler Handler PMCAR PMCAR PMCAR<td>Regulatory Criteria</td><td></td><td>-</td><td>-</td><td>10/ 11 12 13 14 15 16</td><td>18 19 20 21 22</td><td>round Time (TAT)</td></td>	Handler Handler PMCAR PMCAR PMCAR <td>Regulatory Criteria</td> <td></td> <td>-</td> <td>-</td> <td>10/ 11 12 13 14 15 16</td> <td>18 19 20 21 22</td> <td>round Time (TAT)</td>	Regulatory Criteria		-	-	10/ 11 12 13 14 15 16	18 19 20 21 22	round Time (TAT)
Rel Marcel State	Mainternant	Drinking Water - Alberta	Dother A 9 5				Rush Turna Surch	und Time (TAT) 'ges apply
B Image Ima	B Immerzani Immerzani Muk Muk Muk Muk Muk B H Muk Muk Muk Muk Muk Muk 13 25 5 5 10 11 10 1	KEPT COOL (<10°C) FROM TIME OF SAMPLING				- dissolv	azyjan	1 Day
Math. Math. <th< td=""><td>De Image Matrix Image Matrix Matrix</td><td></td><td></td><td>EKVED RED</td><td>OT 3UI</td><td>netals netals dissolve itcron) icron)</td><td>2ЯЗИІА ІА ТОИ</td><td>1</td></th<>	De Image Matrix Image Matrix			EKVED RED	OT 3UI	netals netals dissolve itcron) icron)	2ЯЗИІА ІА ТОИ	1
13 $8 \ co \ Sr:1$ $x \ x$ $x \ re \ r$	13 CB CC SC		DD DD	Matti iero filte iero Pres	44-14 ХЭТ. 2НА 54-14 ХЭТ 14 ТМИІЯА	egulated r egulated r fercury - t fercury - t fercury 4 m 2(7 S m 2(7) exture (%	OF CONT OF CONT	WW
$ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	[08 15 7 1 7 1 1 3 10 3 10	51	03 13 08	56:1 = =	8 8 4 8	L S S N N B	н # ГЛ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	03 30 1	0		IS V	×		a18.	11 B 459.00
08 HS \times \times $Received in Yellowhindown3(12) \log 16166cci \otimes 1208 HS\times\timesBV\checkmark(D/E) (27)341259544409 \infty\times\timesA \log 17700235nmbes may contain09 30\times\times7673heeds pace09 30\times\times76763heeds pace09 30\times\times76763heeds pace09 30\times\times76763heeds pace09 30\times\times76316300 15\times\times10316310 15\times\times10316310 203510310010 15\times10310310 20310310310 15\times10103310 301010310310 15101010310010 151001010103100 151001001001003100 151001001001003100 15100100100100<$	08 45 1 × Received in velowymine 3 Uplowd to facility cale 08 45 × × 8V × 0.4 5 12595444 08 45 × × 8V × 0.5 3 412595444 07 06 × × 8V × 0.5 3 59 50,000 07 30 × × 60 × 50 3 50,000 50,000 07 30 × × 60,00 × 60,00 3 50,000 50,000 09 30 × × × 60,00 3 50,000 3 50,000 00 15 × × × × 50 3 50,000 50,000 10 15 × × × × × 5 3 50,000 50,000 10 16 15 × × × × 5 3 50,000 50,000 10 16 16 × × × × 5 3 50,000	0-		30	×		ald.	94: 5 (D) 430.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C8 H5 X X N X	E	1	+S		ceived in Yell	Clobed	For il Au Cal
CP CP CP X A A A A A B <	I of 0c I is 1 is			45		· ~ (0 12:4	- 3 4125	t J
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 64 15 1 2 1 3 1/2 2/2 1 191 36 1 2 1 1 3 1/2 2/2 1 191 36 1 2 1 1 3 1/2 2/2 1 10 15 1 1 1 1 3 1/2 1 10 15 1 1 1 3 1 1 10 15 1 1 1 3 1 1 10 15 1 1 1 3 1 1 10 15 1 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 3 1 1 10 15 1 1 1 3 </td <td>9-02</td> <td></td> <td>76</td> <td>X</td> <td>_</td> <td></td> <td></td>	9-02		76	X	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-9-03	-	2	×	in	res 3 heads.	0
CA 15 CA 15		- 0		30	×	Tomi.		1
		-02		Sth	×	:	10	
x 10 15		10-2		Jo Di	×		6	
× 10 30 ×		- 0		.5	×		10	
		BH 22-48-01	× 10	1	x		3	
Contraction *C Seal present *C 3 Contraction *C		Date	Time		1	Date	Time I Special in	ructions
*C *C *C * Seal present ** *** No **** ***********************	Date Date Time A C Comme means present A C Y MM DD HH MM DD HU MM MM DD HU MM MM <td>lechal 2022 08</td> <td>1 60</td> <td>it. I</td> <td>Inson Bli</td> <td>8/ 80 22</td> <td>15 10 f</td> <td>1 2 2 7 9</td>	lechal 2022 08	1 60	it. I	Inson Bli	8/ 80 22	15 10 f	1 2 2 7 9

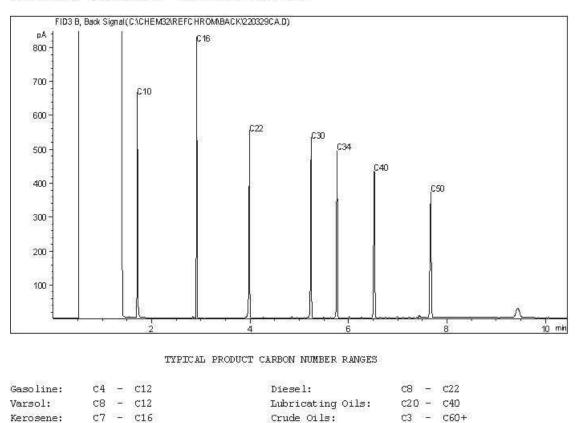

Page 16 of 29

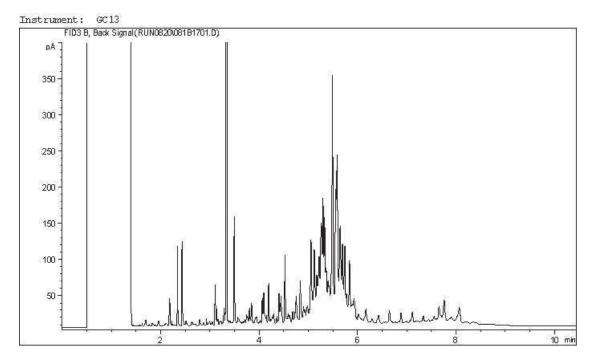
GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: MW 22-09-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

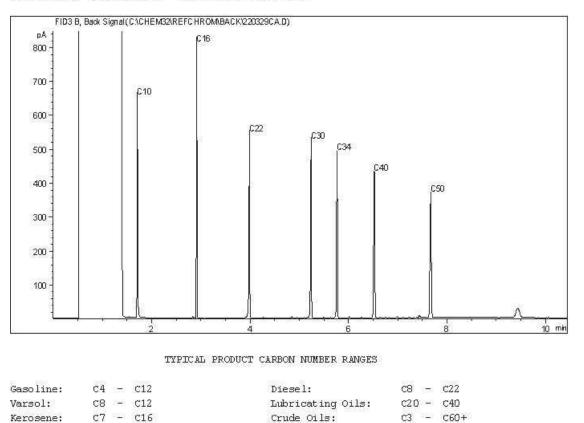


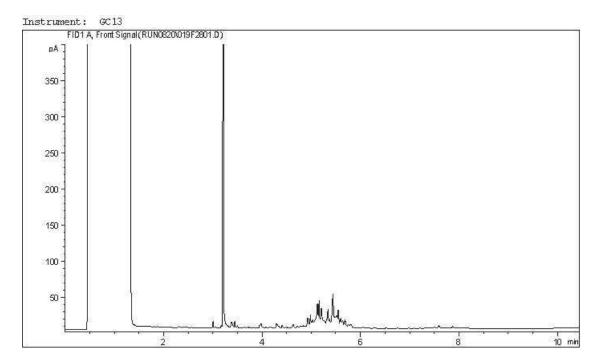
Carbon Range Distribution - Reference Chromatogram

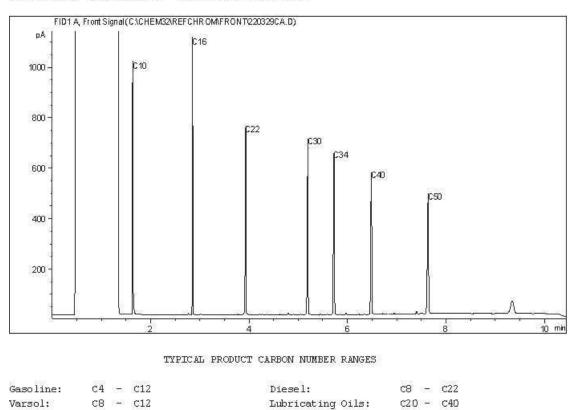



GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: MW 22-09-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram



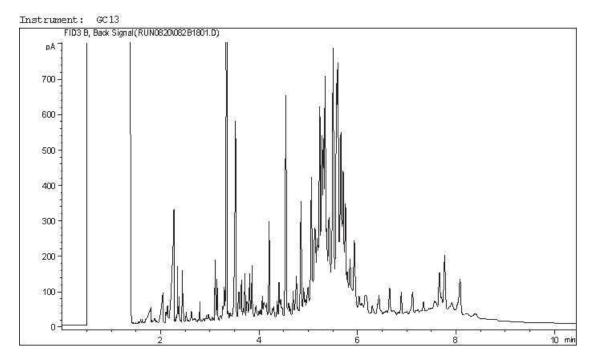

Carbon Range Distribution - Reference Chromatogram



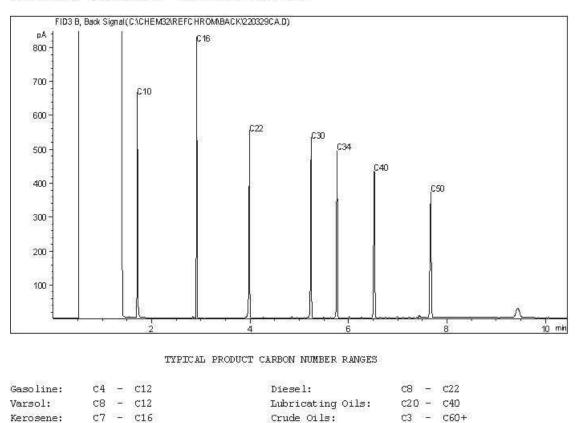
Carbon Range Distribution - Reference Chromatogram

Carbon Range Distribution - Reference Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

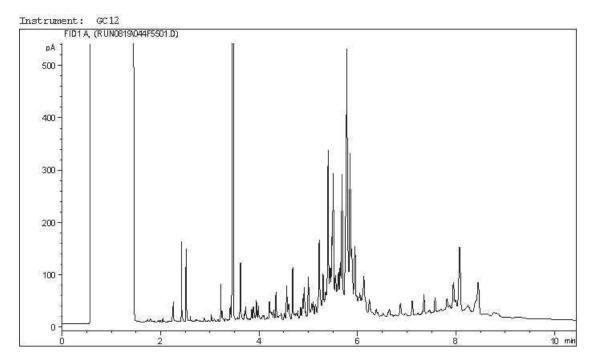

c7 - c16

Kerosene:

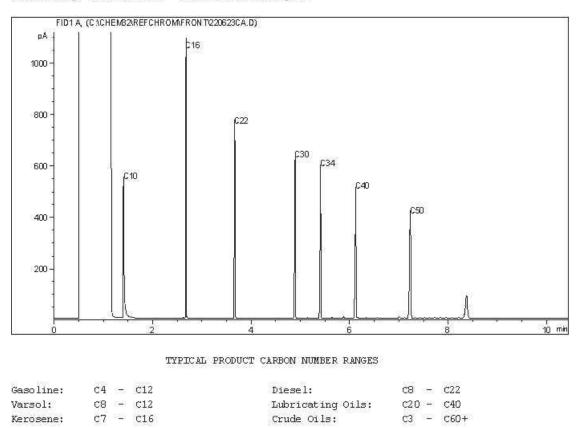

Crude Oils:

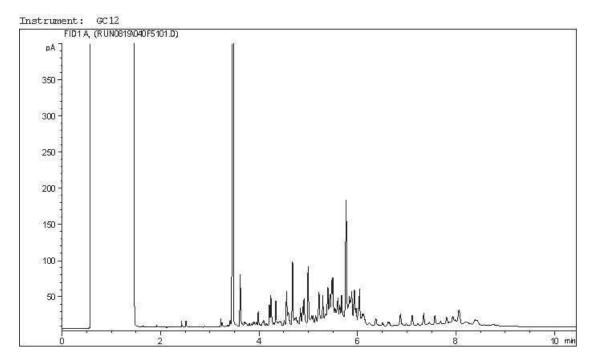
GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: BH22-49-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

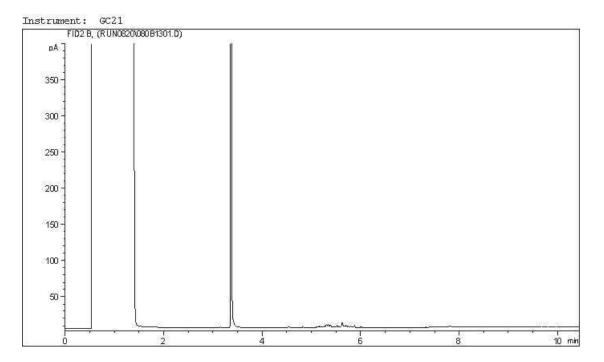


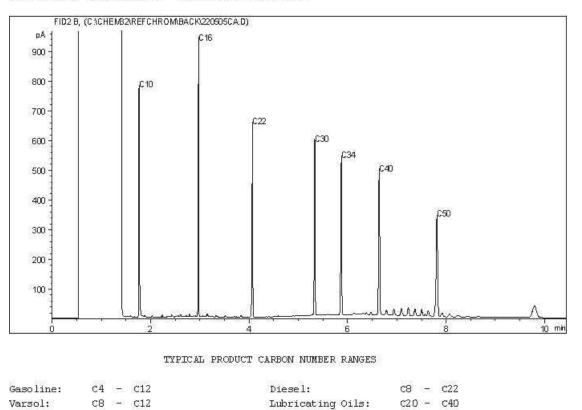
Carbon Range Distribution - Reference Chromatogram




GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: DUP M

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

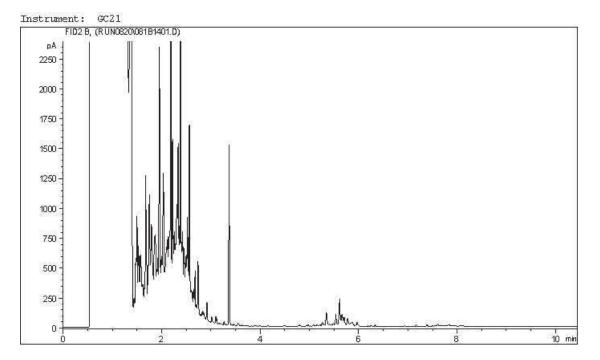

Carbon Range Distribution - Reference Chromatogram



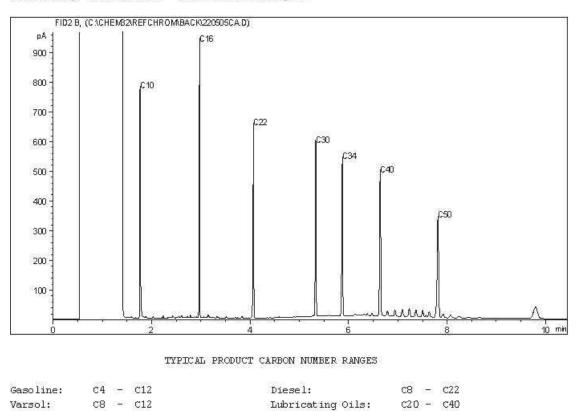
Carbon Range Distribution - Reference Chromatogram

Carbon Range Distribution - Reference Chromatogram

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


c7 - c16

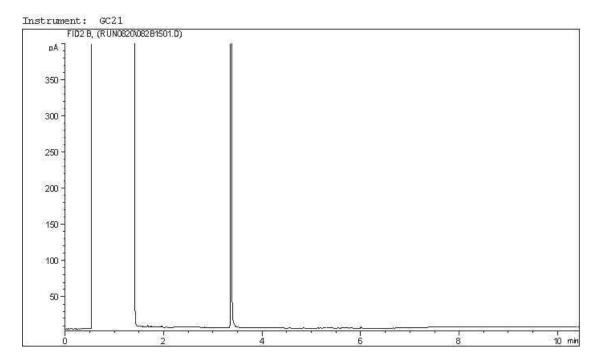
Kerosene:


Crude Oils:

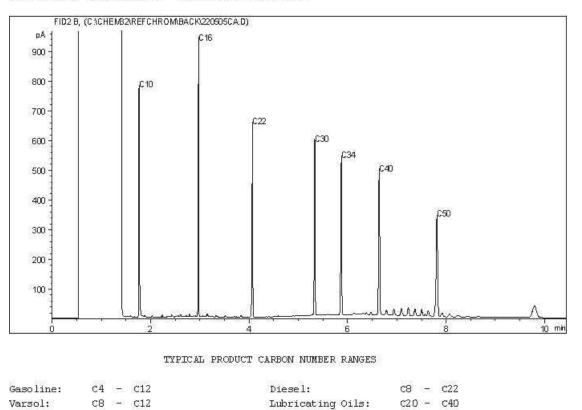
GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: BH22-11-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram



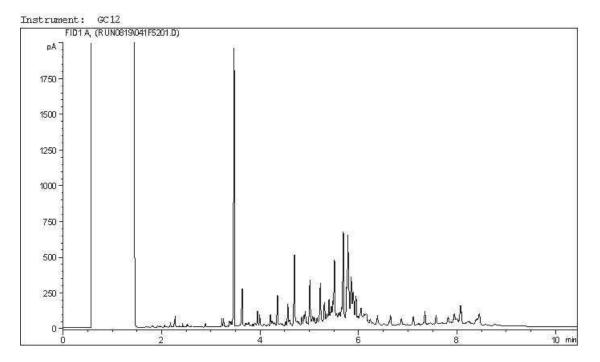
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


c7 - c16

Kerosene:

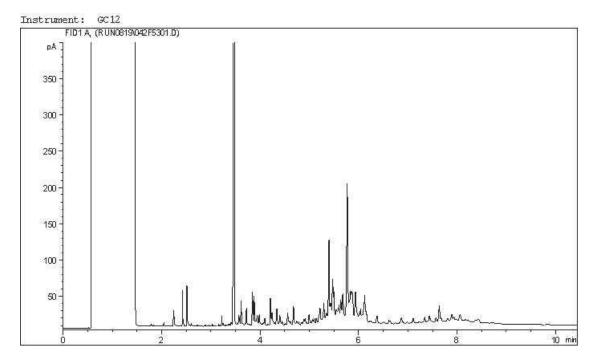
Crude Oils:

Carbon Range Distribution - Reference Chromatogram



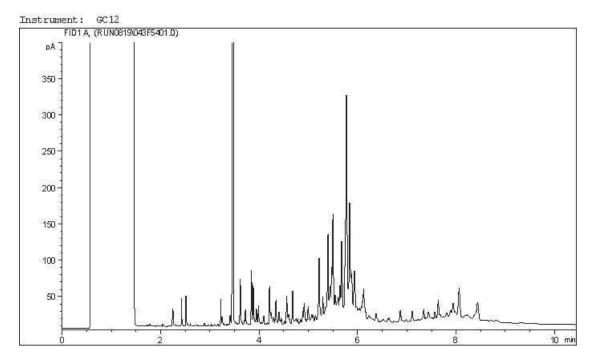
Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

c7 - c16

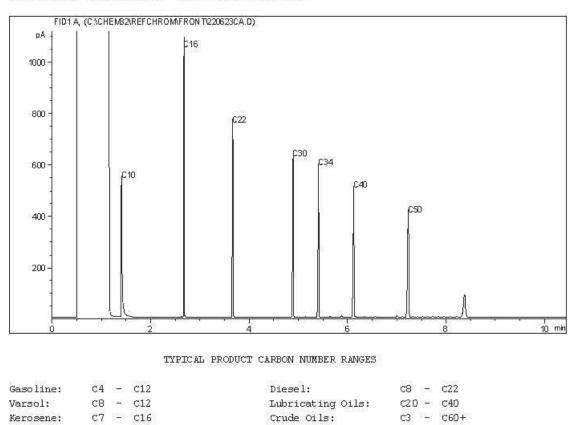

Kerosene:

Crude Oils:

Carbon Range Distribution - Reference Chromatogram



Carbon Range Distribution - Reference Chromatogram



GOLDER ASSOCIATES LTD. Client Project #: 22525414-1000 Site Reference: CAMP FAIRWELL Client ID: BH22-48-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram

Cynny Hagen

From:	MacLean, Colleen <colleen_maclean@golder.com></colleen_maclean@golder.com>
Sent:	Wednesday, September 7, 2022 11:48 AM
То:	Cynny Hagen
Cc:	Bellavance, Aurelie
Subject:	Stage 3 toluene isotope assessment request - Camp Farewell - project: 22525414-1000, PO 22525414-1100-1104

Be careful with this message: it is coming from an external sender

Do not open attachments nor click on links, unless you are sure that the content is safe

Hello,

Could you please complete a stage 3 toluene isotope assessment for the samples below?

Job	Sample ID	Sample name
	AZY173	MW22-09-01
C262029	AZY174	MW22-09-02

Thanks very much,

Colleen MacLean, *She/her* Environmental Technologist, B.A., Dipl. EVT.

T: +1 403 299 5600 D: +1 403 299 5667

ISD GOLDER

237 – 4 Avenue SW, Suite 3300, Calgary, Alberta T2P 4K3, Canada **wsp.com | golder.com**

WSP and Golder have joined together to form the premier environmental consultancy in the industry. Together we are 14,000 strong, Future Ready©, and delivering innovative solutions to our clients around the globe.

This email transmission is confidential and may contain proprietary information for the exclusive use of the intended recipient. Any use, distribution or copying of this transmission, other than by the intended recipient, is strictly prohibited. If you are not the intended recipient, please notify the sender and delete all copies. Electronic media is susceptible to unauthorized modification, deterioration, and incompatibility. Accordingly, the electronic media version of any work product may not be relied upon.

September 2, 2022

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Biogenic Toluene Assessment of Camp Farewell, NT; Project 22525414-1000 Bureau Veritas Job No.: C262029

Bureau Veritas Environmental & Specialty Services Laboratories (BV Labs) was retained by Golder Associated Ltd. to provide an interpretation concerning the likely origin of toluene quantified within CCME Fraction 1 (nC6-nC10).

Analytical Method

Petroleum hydrocarbon analyses at BV Labs are conducted in accordance with the analytical specifications required by the prescriptive and performance-based (where appropriate) elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples.

Biogenic Toluene

The sample extract is analyzed by volatile organic compound (VOC) analysis in selected ion monitoring (SIM) mode to determine the origin of the quantified toluene. The presence of specific marker compounds, both biogenic and petrogenic, along with a series of associated parameters are reviewed as part of this evaluation. Diagnostic parameters of primary interest and the ranges typically associated with biogenic toluene samples are listed below²:

- Moisture: typically ≥70%
- Absence of an Unresolved Complex Mixture (UCM) within CCME Fractions F2 or F3.
- Presence of a "Biogenic Cluster" within CCME Fraction 3 (F3Bc); specifically F3B, nC32-nC34
- Presence of biogenic monoterpene compound(s)³
- Toluene ratio (T_{ratio}): Ratio between Toluene and sum of all BTEX compounds; typically >0.7
- Cymene ratio (Cratio): Ratio between p-Cymene and the sum of all three isomers; typically >0.8
- Additional diagnostic parameters may be included in the assessment if deemed beneficial (examples include: Carbon Preference Index (CPI), isoprenoid ratios, BIC, etc.)

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

² Bureau Veritas Laboratories Canada: threshold values derived internally (assessment of long-term data set)

³ Target compounds: α/β -Pinene, Camphene, (+)-3-Carene, α-Terpinene, Limonene, o/m/p-Cymene, γ-Terpinene and α-Terpinolene (list may be amended from time-to-time without notice)

Data Interpretation

Table 1. Data Summary - Biogenic Toluene Evaluation

Lab ID	Several a ID		Di	agnostic	Conclusion					
	Sample ID	Moist	UCM	F3Bc	Mono	Tratio	Cratio	Conclusion ⁵		
AZY173	MW 22-09-01	м	No	Yes	No	1.0	NC	Inconclusive (neither)		
AZY174	MW 22-09-02	М	No	Yes	No	1.0	NC	Inconclusive (neither)		

NC: Unable to Calculate (absence of Cymene isomers)

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Environmental & Specialty Services Laboratories

Michael Sheppare, B.SC., P.Bio, QP Consulting Scientist Environmental Services

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager – Western Canada Environmental Services

Disclaimer

Biogenic Toluene

A detailed assessment of Selective Ion Monitoring (SIM) GC-MS, and associated project data was completed to provide further information relating to the biogenic and/or petrogenic origin of compounds or fractions quantified as part of the CCME Tier I protocol. All statements must be regarded as approximate and qualitative.

⁴ Diagnostic Parameters

Moist: Moisture; H (≥70%), M (<70 & ≥20%), L (<20%) UCM: Presence/Position of Unresolved Complex Mixture F3Bc: Presence of a biogenic cluster within F3B Mono: Biogenic monoterpenes (excluding cymenes) T_{ratio} : Toluene Ratio (T/ Σ BTEX) C_{ratio} : Cymene Ratio (p-Cymene/ Σ Cymene isomers)

⁵ Conclusions

Biogenic Toluene: Quantified toluene likely of biogenic origin Petrogenic Toluene: Quantified toluene likely of petrogenic origin Inconclusive (both): Presence of both biogenic and petrogenic diagnostic parameters (CSIA recommended) Inconclusive (neither): Insufficient evidence to support Biogenic or Petrogenic origin (CSIA recommended)

September 27, 2022

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Biogenic Toluene Assessment of Camp Farewell; Project 22525414-1000 Bureau Veritas Job No.: C262029

Bureau Veritas Environmental & Specialty Services Laboratories (BV Labs) was retained by Golder Associated Ltd. to provide an interpretation concerning the likely origin of toluene quantified within CCME Fraction 1 (nC6-nC10).

Analytical Method

Petroleum hydrocarbon analyses at BV Labs are conducted in accordance with the analytical specifications required by the prescriptive and performance-based (where appropriate) elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples.

Biogenic Toluene

The sample extract is analyzed by volatile organic compound (VOC) analysis in selected ion monitoring (SIM) mode to determine the origin of the quantified toluene. The presence of specific marker compounds, both biogenic and petrogenic, along with a series of associated parameters are reviewed as part of this evaluation. Diagnostic parameters of primary interest and the ranges typically associated with biogenic toluene samples are listed below²:

- Moisture: typically ≥70%
- Absence of an Unresolved Complex Mixture (UCM) within CCME Fractions F2 or F3.
- Presence of a "Biogenic Cluster" within CCME Fraction 3 (F3Bc); specifically F3B, nC32-nC34
- Presence of biogenic monoterpene compound(s)³
- Toluene ratio (T_{ratio}): Ratio between Toluene and sum of all BTEX compounds; typically >0.7
- Cymene ratio (Cratio): Ratio between p-Cymene and the sum of all three isomers; typically >0.8
- Additional diagnostic parameters may be included in the assessment if deemed beneficial (examples include: Carbon Preference Index (CPI), isoprenoid ratios, BIC, etc.)

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

² Bureau Veritas Laboratories Canada: threshold values derived internally (assessment of long-term data set)

³ Target compounds: α/β-Pinene, Camphene, (+)-3-Carene, α-Terpinene, Limonene, o/m/p-Cymene, γ-Terpinene and α-Terpinolene (list may be amended from time-to-time without notice)

Data Interpretation

Table 1. Data Summary - Biogenic Toluene Evaluation

Lab ID	Samala ID		Die	agnostic	Paramete	ers ⁴		Conclusion ⁵
Lab ID	Sample ID	Moist	UCM	F3Bc	Mono	Tratio	Cratio	Conclusion
AZY178	BH22-49-02	м	No	Yes	No	1.0	NC	Inconclusive (neither)

NC: Unable to Calculate (absence of Cymene isomers)

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Environmental & Specialty Services Laboratories

Michael Sheppard, B.Sc., P.Bio, G Consulting Scientist Environmental Services

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager – Western Canada Environmental Services

Disclaimer

Biogenic Toluene

A detailed assessment of Selective Ion Monitoring (SIM) GC-MS, and associated project data was completed to provide further information relating to the biogenic and/or petrogenic origin of compounds or fractions quantified as part of the CCME Tier I protocol. All statements must be regarded as approximate and qualitative.

⁴ Diagnostic Parameters

Moist: Moisture; H (≥70%), M (<70 & ≥20%), L (<20%) UCM: Presence/Position of Unresolved Complex Mixture F3Bc: Presence of a biogenic cluster within F3B Mono: Biogenic monoterpenes (excluding cymenes) T_{ratio} : Toluene Ratio (T/ Σ BTEX) C_{ratio} : Cymene Ratio (p-Cymene/ Σ Cymene isomers)

⁵ Conclusions

Biogenic Toluene: Quantified toluene likely of biogenic origin Petrogenic Toluene: Quantified toluene likely of petrogenic origin Inconclusive (both): Presence of both biogenic and petrogenic diagnostic parameters (CSIA recommended) Inconclusive (neither): Insufficient evidence to support Biogenic or Petrogenic origin (CSIA recommended)

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Client:			_		Phone: Fax:	4037352273
Identifier:	005TJ		Date Rec:	10/03/2022		Report Date: 10/19/2022
Client Proj	ect #:	22525414-1	100-1104	Client Project	Name:	22525414-100, Camp Farewll, NT
Purchase (Order #:	C262029				
Test result	s provide	d for:	CSIA			

Reviewed By:

fill the

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Results relate only to the items tested and the sample(s) as received by the laboratory.

MICROBIAL INSIGHTS, INC.

10515 Research Dr., Knoxville, TN 37932 Tel. (865) 573-8188 Fax. (865) 573-8133

Client: Project: Sample Info	Bureau Veritas 22525414-100, Camp prmation	Farewll, NT		MI Project Number: Date Received:	005TJ 10/03/2022
Client Sa	mple ID:	AZY173 (MW22-09-01)	AZY174 (MW22-09-02)		
Sample D Analyst/R		09/13/2022 SB/MW	09/13/2022 SB/MW		
Carbon ¹³ C/ ¹² C Toluene (%	_{∞)} δ ¹³ C,	Units VPDB (‰) -29.0 (J)	-31.3		

CSIA

Legend:

NA= Not Analyzed NS=Not Sampled J= Estimated concentration below PQL but above LQL ND= Not Detected

Quality Assurance/Quality Control Data

Samples Received 10/3/	2022					
Component	Date Prepared	Date Analyzed	Arrival Temperature	Positive Control (‰ Std. Dev.)*	Blank	
¹³ C/ ¹² C Toluene (‰)	10/03/2022	10/14/2022	14.2 °C	0.1	Pass	

* $\overline{0}^{13}_{C}$ positive control values are within +- 0.5‰ of true value.

10515 Research Drive Knoxville, TN 37932 Phone: (865) 573-8188 Fax: (865) 573-8133

Identifier: 005TJ Date Rec: 10/03/2022 Report Date: 10/19/2022

Client Project #: 22525414-1100-1104 Client Project Name: 22525414-100, Camp Farewll, NT

Purchase Order #: C262029

Comments: An in-house screening method was used to estimate VOC concentrations. Please note that the precision of toluene in sample AZY174 (MW 22-09-02) was +/- 0.9 which is outside of the acceptance range (+/- 0.5).

October 21, 2022

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Biogenic Toluene Assessment of Camp Farewell, NT; Project 22525414-1000 Bureau Veritas Job No.: C262029

Bureau Veritas Environmental & Specialty Services Laboratories (BV Labs) was retained by Golder Associated Ltd. to provide an interpretation concerning the likely origin of toluene quantified within CCME Fraction 1 (nC6-nC10).

Analytical Method

Petroleum hydrocarbon analyses at BV Labs are conducted in accordance with the analytical specifications required by the prescriptive and performance-based elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples. Compound Specific Isotope Analyses (CSIA) are conducted by Microbial Insights Inc. utilizing Isotope Ratio Mass Spectroscopy (IRMS).

Biogenic Toluene

The biogenic toluene evaluation involved the analysis of two extracts. A methanol extract was analyzed by GC/MS in selected ion monitoring (SIM) mode for specific diagnostic volatile organic compounds (VOCs). A second sample aliquot extracted in organic-free deionized water was submitted for CSIA. The CSIA was selected to provide an additional line of evidence concerning which of two origins the sample's toluene is deemed most likely (biogenic or petrogenic).

The diagnostic parameters of primary interest and the ranges typically associated with biogenic toluene samples listed below²:

- Moisture: typically ≥70%
- Absence of an Unresolved Complex Mixture (UCM) within CCME Fractions F2 or F3.
- Presence of a "Biogenic Cluster" within CCME Fraction 3 (F3Bc); specifically F3B, nC32-nC34
- Presence of biogenic monoterpene compound(s)³
- Toluene ratio (T_{ratio}): Ratio between Toluene and sum of all BTEX compounds; typically >0.7
- Cymene ratio (Cratio): Ratio between p-Cymene and the sum of all three isomers; typically >0.8
- Additional diagnostic parameters may be included in the assessment if deemed beneficial
 (examples include: Carbon Preference Index (CPI), isoprenoid ratios, BIC, etc.)
- Toluene Compound Specific Isotope Analysis (CSIA): δ13C < -30‰

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

² Bureau Veritas Laboratories Canada: threshold values derived internally (assessment of long-term data set)

³ Target compounds: α/β-Pinene, Camphene, (+)-3-Carene, α-Terpinene, Limonene, o/m/p-Cymene, γ-Terpinene and α-Terpinolene (list may be amended from time-to-time without notice)

Data Interpretation

Sample ID			Conclusion⁵									
sample ib	Moist	UCM	F3Bc	Mono	Tratio	Cratio	CSIA (‡)	Conclusion				
MW 22-09-01	м	No	Yes	No	1.0	NC	-31.3 ±0.9	Biogenic Toluene				
MW 22-09-02	м	No	Yes	No	1.0	NC	-29.0	Inconclusive (neither)				
		Moist MW 22-09-01 M	Moist UCM MW 22-09-01 M No	Sample ID Moist UCM F3Bc MW 22-09-01 M No Yes	Sample ID Moist UCM F3Bc Mono MW 22-09-01 M No Yes No	Sample ID Moist UCM F3Bc Mono Tratio MW 22-09-01 M No Yes No 1.0	Moist UCM F3Bc Mono Tratio Cratio MW 22-09-01 M No Yes No 1.0 NC	Sample ID Moist UCM F3Bc Mono Tratio Cratio CSIA (‡) MW 22-09-01 M No Yes No 1.0 NC -31.3 ±0.9				

 Table 1. Data Summary – Biogenic Toluene Evaluation

NC: Unable to Calculate

‡ AZY173: Analytical precision exceeded the acceptance range of the analysis (±0.5).

AZY174: Value based on estimated concentration. Concentrations below Practical Quantitation Limit (PQL), but above Lower Quantifiable Limit (LQL). Precision estimation unavailable.

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Environmental & Specialty Services Laboratories

Michael Sheppard, B.SC., P.Bio, QP **Consulting Scientist Environmental Services**

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager - Western Canada **Environmental Services**

Disclaimer

Biogenic Toluene

A detailed assessment of Selective Ion Monitoring (SIM) GC-MS, and associated project data was completed to provide further information relating to the biogenic and/or petrogenic origin of compounds or fractions quantified as part of the CCME Tier I protocol. All statements must be regarded as approximate and qualitative.

⁴ Diagnostic Parameters

Moist: Moisture; H (≥70%), M (<70 & ≥20%), L (<20%) UCM: Presence/Position of Unresolved Complex Mixture F3Bc: Presence of a biogenic cluster within F3B CSIA: Biogenic Toluene δ13C < -30‰; Petrogenic Toluene δ13C between -29.5‰ and -27.5‰

Mono: Biogenic monoterpenes (excluding cymenes) T_{ratio} : Toluene Ratio (T/ Σ BTEX)

Cratio: Cymene Ratio (p-Cymene/SCymene isomers) Reported value sourced from Microbial Insights Inc. report 005TJ; dated 2022/10/19

⁵ Conclusions

Biogenic Toluene: Quantified toluene likely of biogenic origin Petrogenic Toluene: Quantified toluene likely of petrogenic origin Inconclusive (both): Presence of both biogenic and petrogenic diagnostic parameters Inconclusive (neither): Insufficient evidence to support Biogenic or Petrogenic origin

January 12, 2023

GOLDER ASSOCIATES LTD.

2800, 700 -2nd Street SW CALGARY, AB, T2P 2W2

Attention: Aurelie Bellavance

Re: Biogenic Toluene Assessment of Camp Farewell; Project 22525414-1000 Bureau Veritas Job No.: C262029

Bureau Veritas Environmental & Specialty Services Laboratories (BV Labs) was retained by Golder Associated Ltd. to provide an interpretation concerning the likely origin of toluene quantified within CCME Fraction 1 (nC6-nC10).

Analytical Method

Petroleum hydrocarbon analyses at BV Labs are conducted in accordance with the analytical specifications required by the prescriptive and performance-based elements of the CCME Tier I protocols for hydrocarbon determination¹ in soil samples. Compound Specific Isotope Analyses (CSIA) are conducted by Microbial Insights Inc. utilizing Isotope Ratio Mass Spectroscopy (IRMS).

Biogenic Toluene

The biogenic toluene evaluation involved the analysis of two extracts. A methanol extract was analyzed by GC/MS in selected ion monitoring (SIM) mode for specific diagnostic volatile organic compounds (VOCs). A second sample aliquot extracted in organic-free deionized water was submitted for CSIA. The CSIA was selected to provide an additional line of evidence concerning which of two origins the sample's toluene is deemed most likely (biogenic or petrogenic).

The diagnostic parameters of primary interest and the ranges typically associated with biogenic toluene samples listed below²:

- Moisture: typically ≥70%
- Absence of an Unresolved Complex Mixture (UCM) within CCME Fractions F2 or F3.
- Presence of a "Biogenic Cluster" within CCME Fraction 3 (F3Bc); specifically F3B, nC32-nC34
- Presence of biogenic monoterpene compound(s)³
- Toluene ratio (T_{ratio}): Ratio between Toluene and sum of all BTEX compounds; typically >0.7
- Cymene ratio (Cratio): Ratio between p-Cymene and the sum of all three isomers; typically >0.8
- Additional diagnostic parameters may be included in the assessment if deemed beneficial
 (examples include: Carbon Preference Index (CPI), isoprenoid ratios, BIC, etc.)
- Toluene Compound Specific Isotope Analysis (CSIA): δ13C < -30‰

¹ Canadian Council of Ministers of the Environment: "Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil – Tier I Method" 2001

² Bureau Veritas Laboratories Canada: threshold values derived internally (assessment of long-term data set)

³ Target compounds: α/β-Pinene, Camphene, (+)-3-Carene, α-Terpinene, Limonene, o/m/p-Cymene, γ-Terpinene and α-Terpinolene (list may be amended from time-to-time without notice)

Data Interpretation

Table 1. Data Summary - Biogenic Toluene Evaluation

Γ		Semanle ID			Diagı	nostic Par	ameters ⁴			Conclusion⁵
	Lab ID	Sample ID	Moist	UCM	F3Bc	Mono	T ratio	Cratio	CSIA	Conclusion
	AZY178	BH22-49-02	М	No	Yes	No	1.0	NC	-29.8	Inconclusive (neither)

NC: Unable to Calculate (absence of Cymene isomers)

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Bureau Veritas Environmental & Specialty Services Laboratories

Michael Shepp**are**, B.SC., P.Bio, QP Consulting Scientist Environmental Services

-0.1

Scott Cantwell, CET, B.Sc., P.Chem. Director and General Manager – Western Canada Environmental Services

Disclaimer

Biogenic Toluene

A detailed assessment of Selective Ion Monitoring (SIM) GC-MS, and associated project data was completed to provide further information relating to the biogenic and/or petrogenic origin of compounds or fractions quantified as part of the CCME Tier I protocol. All statements must be regarded as approximate and qualitative.

⁴ Diagnostic Parameters

Moist: Moisture; H (\geq 70%), M (<70 & \geq 20%), L (<20%) UCM: Presence/Position of Unresolved Complex Mixture F3Bc: Presence of a biogenic cluster within F3B CSIA: Biogenic Toluene δ 13C < -30‰; Petrogenic Toluene δ 1

Mono: Biogenic monoterpenes (excluding cymenes) T_{ratio} : Toluene Ratio (T/ Σ BTEX) C_{ratio} : Cymene Ratio (p-Cymene/ Σ Cymene isomers)

CSIA: Biogenic Toluene 613C < -30%; Petrogenic Toluene 613C between -29.5% and -27.5% Reported value sourced from Microbial Insights Inc. report 105TK; dated 2023/01/10

⁵ Conclusions

Biogenic Toluene: Quantified toluene likely of biogenic origin Petrogenic Toluene: Quantified toluene likely of petrogenic origin Inconclusive (both): Presence of both biogenic and petrogenic diagnostic parameters Inconclusive (neither): Insufficient evidence to support Biogenic or Petrogenic origin

Your P.O. #: 22525414-1000-1104 Your Project #: 22525414-1000 Site Location: CAMPFUR WELL Your C.O.C. #: 1 of 2, 2 OF 2

Attention: AURELIE BELLAVANCE

GOLDER ASSOCIATES LTD CALGARY - NATIONAL CONTRACT 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/09/15 Report #: R3233080 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262079

Received: 2022/08/17, 12:45

Sample Matrix: Soil # Samples Received: 14

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Boron (Hot Water Soluble) (1)	2	2022/08/22	2022/08/24	AB SOP-00034 / AB SOP- 00042	EPA 6010d R5 m
BTEX/F1 by HS GC/MS/FID (MeOH extract) (1, 2)	14	N/A	2022/08/22	AB SOP-00039	CCME CWS/EPA 8260d m
F1-BTEX (1)	14	N/A	2022/08/23		Auto Calc
Cation/EC Ratio (1)	2	N/A	2022/08/24		Auto Calc
Chloride (Soluble) (1)	2	2022/08/24	2022/08/24	AB SOP-00033 / AB SOP- 00020	SM 23-4500-Cl-E m
Hexavalent Chromium (1, 3)	2	2022/08/22	2022/08/22	AB SOP-00063	SM 23 3500-Cr B m
Conductivity @25C (Soluble) (1)	2	2022/08/24	2022/08/24	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
CCME Hydrocarbons (F2-F4 in soil) (1, 4)	14	2022/08/23	2022/08/23	AB SOP-00036	CCME PHC-CWS m
Elements by ICPMS - Soils (1)	2	2022/08/21	2022/08/21	AB SOP-00001 / AB SOP- 00043	EPA 6020b R2 m
Sum of Cations, Anions (1)	2	N/A	2022/08/24		Auto Calc
Moisture (1)	14	N/A	2022/08/23	AB SOP-00002	CCME PHC-CWS m
Benzo[a]pyrene Equivalency (1)	2	N/A	2022/08/23		Auto Calc
PAH in Soil by GC/MS (1)	2	2022/08/22	2022/08/23	AB SOP-00036 / AB SOP- 00003	EPA 3540C/8270E m
pH @25C (1:2 Calcium Chloride Extract) (1)	2	2022/08/21	2022/08/21	AB SOP-00033 / AB SOP- 00006	SM 23 4500 H+B m
Sodium Adsorption Ratio (1)	2	N/A	2022/08/24		Auto Calc
Soluble lons (1)	2	2022/08/24	2022/08/24	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Paste (1)	2	2022/08/24	2022/08/24	AB SOP-00033	Carter 2nd ed 15.2 m
Soluble Ions Calculation (1)	2	N/A	2022/08/21		Auto Calc
Theoretical Gypsum Requirement (1, 5)	2	N/A	2022/08/24		Auto Calc

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession

Your P.O. #: 22525414-1000-1104 Your Project #: 22525414-1000 Site Location: CAMPFUR WELL Your C.O.C. #: 1 of 2, 2 OF 2

Attention: AURELIE BELLAVANCE

GOLDER ASSOCIATES LTD CALGARY - NATIONAL CONTRACT 2800, 700 -2nd Street SW CALGARY, AB CANADA T2P 2W2

> Report Date: 2022/09/15 Report #: R3233080 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BUREAU VERITAS JOB #: C262079

Received: 2022/08/17, 12:45

using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This test was performed by Bureau Veritas Calgary, 4000 - 19 St. , Calgary, AB, T2E 6P8

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is date sampled unless otherwise stated.

(3) Some soil samples may react with the Cr(VI) spike reducing it to Cr(III). These samples are highly unlikely to contain native hexavalent chromium. Thus a failed spike recovery does not invalidate a negative result on the native sample.

(4) All CCME results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil, Validation of Performance-Based Alternative Methods September 2003. Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

(5) TGR calculation is based on a theoretical SAR of 4. Salt Contamination and Assessment and remediation guideline 2001 recommended SAR is ranging 4-8. TGR is reported in tonnes/ha.

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Cynny Hagen, Key Account Specialist Email: Cynny.HAGEN@bureauveritas.com Phone# (403)735-2273

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY347	AZY347		AZY348		AZY349		AZY350		
Sampling Date		2022/08/12	2022/08/12		2022/08/12		2022/08/12		2022/08/12		
		08:00	08:00		08:15		08:30		08:45		
COC Number		1 of 2	1 of 2		1 of 2		1 of 2		1 of 2		
	UNITS	BH22-14-01	BH22-14-01 Lab-Dup	RDL	BH22-14-02	RDL	BH22-14-03	RDL	MW22-13-01	RDL	QC Batch
Ext. Pet. Hydrocarbon											
F2 (C10-C16 Hydrocarbons)	mg/kg	24 (1)	N/A	22	45 (1)	27	39	10	34 (1)	29	A690209
F3 (C16-C34 Hydrocarbons)	mg/kg	700 (1)	N/A	110	2000 (1)	140	440	50	850 (1)	150	A690209
F4 (C34-C50 Hydrocarbons)	mg/kg	190 (1)	N/A	110	810 (1)	140	190	50	350 (1)	150	A690209
Reached Baseline at C50	mg/kg	Yes	N/A	N/A	Yes	N/A	Yes	N/A	Yes	N/A	A690209
Physical Properties											
Moisture	%	54	N/A	0.30	63	0.30	30	0.30	66	0.30	A690290
Volatiles	•			-						-	
Xylenes (Total)	mg/kg	<0.22	N/A	0.22	<0.14	0.14	<0.045	0.045	<0.21	0.21	A687849
F1 (C6-C10) - BTEX	mg/kg	<36	N/A	36	<22	22	<10	10	<35	35	A687849
Field Preserved Volatiles	•			-						-	
Benzene	mg/kg	<0.023 (2)	<0.023	0.023	<0.014 (2)	0.014	<0.0050	0.0050	<0.023 (2)	0.023	A689486
Toluene	mg/kg	<0.089 (2)	<0.089	0.089	3.9 (3)	0.15	0.66	0.050	<0.087 (2)	0.087	A689486
Ethylbenzene	mg/kg	<0.035 (2)	<0.035	0.035	<0.022 (2)	0.022	<0.010	0.010	<0.034 (2)	0.034	A689486
m & p-Xylene	mg/kg	<0.20 (3)	<0.20	0.20	<0.12 (3)	0.12	<0.040	0.040	<0.19 (3)	0.19	A689486
o-Xylene	mg/kg	<0.098 (3)	<0.098	0.098	<0.060 (3)	0.060	<0.020	0.020	<0.095 (3)	0.095	A689486
F1 (C6-C10)	mg/kg	<36 (2)	<36	36	<22 (2)	22	<10	10	<35 (2)	35	A689486
Surrogate Recovery (%)	•			-						-	
1,4-Difluorobenzene (sur.)	%	95	100	N/A	95	N/A	96	N/A	95	N/A	A689486
4-Bromofluorobenzene (sur.)	%	102	100	N/A	102	N/A	102	N/A	102	N/A	A689486
D10-o-Xylene (sur.)	%	97	93	N/A	114	N/A	102	N/A	110	N/A	A689486
D4-1,2-Dichloroethane (sur.)	%	106	103	N/A	106	N/A	107	N/A	108	N/A	A689486
O-TERPHENYL (sur.)	%	99	N/A	N/A	94	N/A	103	N/A	99	N/A	A690209

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limit reported based on MDL and sample weight used for analysis.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY351	AZY351		AZY352		AZY353	AZY354		
Sampling Date		2022/08/12 08:50	2022/08/12 08:50		2022/08/12 09:15		2022/08/12 09:30	2022/08/12 09:45		
COC Number		1 of 2	1 of 2		1 of 2		1 of 2	1 of 2		
	UNITS	MW22-13-02	MW22-13-02 Lab-Dup	RDL	BH22-15-01	RDL	BH22-15-02	BH22-15-03	RDL	QC Batch
Ext. Pet. Hydrocarbon										
F2 (C10-C16 Hydrocarbons)	mg/kg	140 (1)	N/A	58	54 (1)	26	<10	<10	10	A690209
F3 (C16-C34 Hydrocarbons)	mg/kg	2800 (1)	N/A	290	740 (1)	130	51	<50	50	A690209
F4 (C34-C50 Hydrocarbons)	mg/kg	1000 (1)	N/A	290	270 (1)	130	<50	<50	50	A690209
Reached Baseline at C50	mg/kg	Yes	N/A	N/A	Yes	N/A	Yes	Yes	N/A	A690209
Physical Properties										
Moisture	%	83	83	0.30	61	0.30	15	17	0.30	A690290
Volatiles	•							-		
Xylenes (Total)	mg/kg	<0.41	N/A	0.41	<0.24	0.24	<0.045	<0.045	0.045	A687849
F1 (C6-C10) - BTEX	mg/kg	<68	N/A	68	<40	40	<10	<10	10	A687849
Field Preserved Volatiles		-	-							
Benzene	mg/kg	<0.044 (2)	N/A	0.044	<0.026 (2)	0.026	<0.0050	<0.0050	0.0050	A689486
Toluene	mg/kg	3.7 (3)	N/A	0.46	<0.098 (2)	0.098	<0.050	<0.050	0.050	A689486
Ethylbenzene	mg/kg	<0.066 (2)	N/A	0.066	<0.039 (2)	0.039	<0.010	<0.010	0.010	A689486
m & p-Xylene	mg/kg	<0.37 (3)	N/A	0.37	<0.22 (3)	0.22	<0.040	<0.040	0.040	A689486
o-Xylene	mg/kg	<0.18 (3)	N/A	0.18	<0.11 (3)	0.11	<0.020	<0.020	0.020	A689486
F1 (C6-C10)	mg/kg	<68 (2)	N/A	68	<40 (2)	40	<10	<10	10	A689486
Surrogate Recovery (%)		-	-							
1,4-Difluorobenzene (sur.)	%	95	N/A	N/A	95	N/A	94	96	N/A	A689486
4-Bromofluorobenzene (sur.)	%	103	N/A	N/A	102	N/A	102	102	N/A	A689486
D10-o-Xylene (sur.)	%	110	N/A	N/A	114	N/A	121	117	N/A	A689486
D4-1,2-Dichloroethane (sur.)	%	106	N/A	N/A	107	N/A	110	106	N/A	A689486
O-TERPHENYL (sur.)	%	99	N/A	N/A	96	N/A	100	98	N/A	A690209

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limit reported based on MDL and sample weight used for analysis.

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

Bureau Veritas ID		AZY355		AZY356		AZY357		AZY358		
Sampling Date		2022/08/12		2022/08/12		2022/08/12		2022/08/12		
		09:45		10:00		10:15		10:30		
COC Number		1 of 2		1 of 2		1 of 2		1 of 2		
	UNITS	DUPL	RDL	MW-22-16-01	RDL	MW22-16-02	RDL	BH22-12-01	RDL	QC Batch
Ext. Pet. Hydrocarbon										
F2 (C10-C16 Hydrocarbons)	mg/kg	<10	10	11	10	<10	10	<55 (1)	55	A690209
F3 (C16-C34 Hydrocarbons)	mg/kg	<50	50	310	50	<50	50	1600 (1)	270	A690209
F4 (C34-C50 Hydrocarbons)	mg/kg	<50	50	80	50	<50	50	430 (1)	270	A690209
Reached Baseline at C50	mg/kg	Yes	N/A	Yes	N/A	Yes	N/A	Yes	N/A	A690209
Physical Properties										
Moisture	%	16	0.30	44	0.30	11	0.30	82	0.30	A690290
Volatiles										
Xylenes (Total)	mg/kg	<0.045	0.045	<0.12	0.12	<0.045	0.045	<0.37	0.37	A687849
F1 (C6-C10) - BTEX	mg/kg	<10	10	<21	21	<10	10	<61	61	A687849
Field Preserved Volatiles										
Benzene	mg/kg	<0.0050	0.0050	<0.013 (2)	0.013	<0.0050	0.0050	<0.039 (2)	0.039	A689486
Toluene	mg/kg	<0.050	0.050	<0.051 (2)	0.051	<0.050	0.050	9.9 (3)	0.41	A689486
Ethylbenzene	mg/kg	<0.010	0.010	<0.020 (2)	0.020	<0.010	0.010	<0.059 (2)	0.059	A689486
m & p-Xylene	mg/kg	<0.040	0.040	<0.11 (3)	0.11	<0.040	0.040	<0.33 (3)	0.33	A689486
o-Xylene	mg/kg	<0.020	0.020	<0.056 (3)	0.056	<0.020	0.020	<0.16 (3)	0.16	A689486
F1 (C6-C10)	mg/kg	<10	10	<21 (2)	21	<10	10	<61 (2)	61	A689486
Surrogate Recovery (%)										
1,4-Difluorobenzene (sur.)	%	95	N/A	96	N/A	96	N/A	96	N/A	A689486
4-Bromofluorobenzene (sur.)	%	102	N/A	101	N/A	102	N/A	102	N/A	A689486
D10-o-Xylene (sur.)	%	112	N/A	98	N/A	109	N/A	107	N/A	A689486
D4-1,2-Dichloroethane (sur.)	%	106	N/A	107	N/A	107	N/A	108	N/A	A689486
O-TERPHENYL (sur.)	%	105	N/A	108	N/A	103	N/A	93	N/A	A690209

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Detection limit reported based on MDL and sample weight used for analysis.

AIIL			JOIL	(VIALS)		
Bureau Veritas ID		AZY383		AZY385		
Sampling Date		2022/08/12 10:30		2022/08/12 10:30		
COC Number		2 OF 2		2 OF 2		
	UNITS	BH22-12-02	RDL	BH22-12-03	RDL	QC Batch
Ext. Pet. Hydrocarbon						•
F2 (C10-C16 Hydrocarbons)	mg/kg	<60 (1)	60	<10	10	A690209
F3 (C16-C34 Hydrocarbons)	mg/kg	330 (1)	300	64	50	A690209
F4 (C34-C50 Hydrocarbons)	mg/kg	<300 (1)	300	<50	50	A690209
Reached Baseline at C50	mg/kg	Yes	N/A	Yes	N/A	A690209
Physical Properties	•	•		•	8	•
Moisture	%	83	0.30	23	0.30	A690290
Volatiles			•		•	
Xylenes (Total)	mg/kg	<0.40	0.40	<0.093	0.093	A687849
F1 (C6-C10) - BTEX	mg/kg	<66	66	<21	21	A687849
Field Preserved Volatiles			•		•	
Benzene	mg/kg	<0.042 (2)	0.042	<0.010 (2)	0.010	A689486
Toluene	mg/kg	3.7 (3)	0.44	<0.10 (3)	0.10	A689486
Ethylbenzene	mg/kg	<0.064 (2)	0.064	<0.015 (2)	0.015	A689486
m & p-Xylene	mg/kg	<0.36 (3)	0.36	<0.084 (3)	0.084	A689486
o-Xylene	mg/kg	<0.18 (3)	0.18	<0.042 (3)	0.042	A689486
F1 (C6-C10)	mg/kg	<66 (2)	66	<21 (3)	21	A689486
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	95	N/A	96	N/A	A689486
4-Bromofluorobenzene (sur.)	%	102	N/A	102	N/A	A689486
D10-o-Xylene (sur.)	%	114	N/A	106	N/A	A689486
D4-1,2-Dichloroethane (sur.)	%	107	N/A	106	N/A	A689486
O-TERPHENYL (sur.)	%	104	N/A	104	N/A	A690209
RDL = Reportable Detection Li	mit				•	
N/A = Not Applicable						
(1) Detection limits raised due	to high i	moisture cont	ent, sai	mple contains	=> 50%	6
moisture.						
(2) Detection limit reported ba	sed on I	VIDL and samp	ole weig	ght used for a	nalysis.	
1						

AT1 BTEX AND F1-F4 IN SOIL (VIALS)

SOIL SALINITY 4 (SOIL)

		1	'			
Bureau Veritas ID		AZY350		AZY351		
Sampling Data		2022/08/12		2022/08/12		
Sampling Date		08:45		08:50		
COC Number		1 of 2		1 of 2		
	UNITS	MW22-13-01	RDL	MW22-13-02	RDL	QC Batch
Calculated Parameters						
Anion Sum	meq/L	1.3	N/A	0.98	N/A	A687815
Cation Sum	meq/L	4.8	N/A	3.1	N/A	A687815
Cation/EC Ratio	N/A	9.3	0.10	12	0.10	A687813
Calculated Calcium (Ca)	mg/kg	200	6.9	48	3.6	A687858
Calculated Magnesium (Mg)	mg/kg	62	4.6	20	2.4	A687858
Calculated Sodium (Na)	mg/kg	140	11	76	6.0	A687858
Calculated Potassium (K)	mg/kg	28	6.0	4.9	3.1	A687858
Calculated Chloride (Cl)	mg/kg	100	46	50	24	A687858
Calculated Sulphate (SO4)	mg/kg	150	23	46	12	A687858
Soluble Parameters	•	•				
Soluble Chloride (Cl)	mg/L	22	10	21	10	A692392
Soluble Conductivity	dS/m	0.52	0.020	0.26	0.020	A692710
Soluble (CaCl2) pH	рН	4.73 (1)	N/A	4.87 (1)	N/A	A688560
Sodium Adsorption Ratio	N/A	1.0	0.10	1.5	0.10	A687856
Soluble Calcium (Ca)	mg/L	45	1.5	20	1.5	A692713
Soluble Magnesium (Mg)	mg/L	14	1.0	8.3	1.0	A692713
Soluble Sodium (Na)	mg/L	30	2.5	32	2.5	A692713
Soluble Potassium (K)	mg/L	6.1	1.3	2.0	1.3	A692713
Saturation %	%	460	N/A	240	N/A	A690241
Soluble Sulphate (SO4)	mg/L	32	5.0	19	5.0	A692713
Theoretical Gypsum Requirement	tonnes/ha	<0.20	0.20	<0.20	0.20	A687817
RDL = Reportable Detection Limit						

N/A = Not Applicable

(1) pH was done on a 10:1 Calcium Chloride to soil ratio due to the matrix of the sample.

Bureau Veritas ID		AZY350		AZY351		
Sampling Date		2022/08/12 08:45		2022/08/12 08:50		
COC Number		1 of 2		1 of 2		
	UNITS	MW22-13-01	RDL	MW22-13-02	RDL	QC Batch
Elements	•					
Soluble (Hot water) Boron (B)	mg/kg	1.2	0.10	0.29	0.10	A689874
Hex. Chromium (Cr 6+)	mg/kg	<0.23 (1)	0.23	<0.47 (1)	0.47	A689719
Total Antimony (Sb)	mg/kg	<1.0	1.0	<1.0	1.0	A688596
Total Arsenic (As)	mg/kg	2.3	2.0	<2.0	2.0	A688596
Total Barium (Ba)	mg/kg	190	2.0	160	2.0	A688596
Total Beryllium (Be)	mg/kg	<0.80	0.80	<0.80	0.80	A688596
Total Cadmium (Cd)	mg/kg	0.28	0.10	0.16	0.10	A688596
Total Chromium (Cr)	mg/kg	11	2.0	12	2.0	A688596
Total Cobalt (Co)	mg/kg	2.7	1.0	1.8	1.0	A688596
Total Copper (Cu)	mg/kg	5.7	2.0	3.7	2.0	A688596
Total Lead (Pb)	mg/kg	2.2	1.0	3.0	1.0	A688596
Total Mercury (Hg)	mg/kg	<0.10	0.10	<0.10	0.10	A688596
Total Molybdenum (Mo)	mg/kg	2.7	0.80	1.9	0.80	A688596
Total Nickel (Ni)	mg/kg	8.4	2.0	8.5	2.0	A688596
Total Selenium (Se)	mg/kg	1.1	1.0	<1.0	1.0	A688596
Total Silver (Ag)	mg/kg	<0.40	0.40	<0.40	0.40	A688596
Total Thallium (Tl)	mg/kg	<0.20	0.20	<0.20	0.20	A688596
Total Tin (Sn)	mg/kg	<2.0	2.0	<2.0	2.0	A688596
Total Uranium (U)	mg/kg	0.60	0.40	0.97	0.40	A688596
Total Vanadium (V)	mg/kg	8.9	2.0	7.0	2.0	A688596
Total Zinc (Zn)	mg/kg	<20	20	<20	20	A688596

CCME REGULATED METALS - SOILS (SOIL)

Bureau Veritas ID		AZY350			AZY351		
Sampling Date		2022/08/12 08:45			2022/08/12 08:50		
COC Number		1 of 2			1 of 2		
	UNITS	MW22-13-01	RDL	QC Batch	MW22-13-02	RDL	QC Batch
Polycyclic Aromatics							
Acenaphthene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
B[a]P TPE Total Potency Equivalents	mg/kg	0.040	0.019	A687230	<0.038	0.038	A687907
Acenaphthylene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Acridine	mg/kg	0.11 (1)	0.026	A689763	0.19 (1)	0.053	A689763
Anthracene	mg/kg	<0.010 (1)	0.010	A689763	<0.021 (1)	0.021	A689763
Benzo(a)anthracene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(b&j)fluoranthene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(k)fluoranthene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(g,h,i)perylene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(c)phenanthrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(a)pyrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Benzo(e)pyrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Chrysene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Dibenz(a,h)anthracene	mg/kg	0.031 (2)	0.013	A689763	<0.027 (1)	0.027	A689763
Fluoranthene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Fluorene	mg/kg	<0.013 (1)	0.013	A689763	0.070 (1)	0.027	A689763
Indeno(1,2,3-cd)pyrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
1-Methylnaphthalene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
2-Methylnaphthalene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Naphthalene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Phenanthrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Perylene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Pyrene	mg/kg	<0.013 (1)	0.013	A689763	<0.027 (1)	0.027	A689763
Quinoline	mg/kg	<0.026 (1)	0.026	A689763	<0.053 (1)	0.053	A689763
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	120	N/A	A689763	105	N/A	A689763

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.

(2) Qualifying ion outside of acceptance criteria. Results are tentatively identified and potentially biased high. In addition, detection limits raised due to high moisture content, sample contains => 50% moisture.

SEMIVOLATILE ORGANICS BY GC-MS (SOIL)

Bureau Veritas ID		AZY350			AZY351		
Sampling Date		2022/08/12 08:45			2022/08/12 08:50		
COC Number		1 of 2			1 of 2		
	UNITS	MW22-13-01	RDL	QC Batch	MW22-13-02	RDL	QC Batch
D8-ACENAPHTHYLENE (sur.)	%	114	N/A	A689763	94	N/A	A689763
D8-NAPHTHALENE (sur.)	%	110	N/A	A689763	94	N/A	A689763
TERPHENYL-D14 (sur.)	%	113	N/A	A689763	107	N/A	A689763
RDL = Reportable Detection Limit							
N/A = Not Applicable							

GENERAL COMMENTS

Each temperature is the	rage of up to three cooler temperatures taken at receipt	
Package 1	7.0°C	
rsion #2: Report reissu	o include Shell DQR email address as per COC.	
	amend client sample IDs, and to include Biotoluene analyses and Chromatogram review on below samples as per	client
equest received 2022/09		
ample ID: H22-13-01 to MW22-13		
H22-13-01 to MW22-13 H22-13-02 to MW22-13		
Chromatogram review:		
3H22-12-01		
3H22-12-02		
VW22-13-01		
VW22-13-02		
3H22-14-01		
3H22-14-02		
3H22-14-03		
3H22-15-01		
iotoluene analysis:		
/W22-13-02		
3H22-12-01		
3H22-12-02		
3H22-14-02		
YDROCARBON RESEMB	CE	
chromatograms. Since vareference spectra, the res	semblance was obtained by visual comparison of the sample chromatogram with a library of reference product oles such as the degree and type of weathering and the presence of non-petrogenic hydrocarbons cannot be duplic blance information must be regarded as approximate and qualitative and as such, Bureau Veritas Laboratories can s drawn from these data.	
	s urdwir nom these uata.	
of biogenic organic mater] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromat nay contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile o eaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.	
of biogenic organic mater] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromat nay contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile o eaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.	-
of biogenic organic mater] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromat may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile o eaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.	
Chromatograms of bioge	(1) The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characteri ted sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.	ized b
ample 077351 [MW22-	12] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat).	

a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY352 [BH22-15-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY358 [BH22-12-01] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

Sample AZY383 [BH22-12-02] : The CCME F2-F4 chromatographic peak profile is consistent with biogenic organic material (e.g. peat). Chromatograms of biogenic organic material may contain peak patterns spanning the C10 to C50 range, but they are most commonly characterized by a profile of unevenly distributed sharp peaks between C28 and C34. The impacts are not consistent with a petroleum product or crude oil.

CCME REGULATED METALS - SOILS (SOIL) Comments

Sample AZY350 [MW22-13-01] Elements by ICPMS - Soils: Detection limits raised due to sample matrix. Sample AZY351 [MW22-13-02] Elements by ICPMS - Soils: Detection limits raised due to sample matrix.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A688560	STB	QC Standard	Soluble (CaCl2) pH	2022/08/21		100	%	97 - 103
A688560	STB	Spiked Blank	Soluble (CaCl2) pH	2022/08/21		100	%	97 - 103
A688560	STB	RPD	Soluble (CaCl2) pH	2022/08/21	0.11		%	N/A
A688596	KGR	Matrix Spike	Total Antimony (Sb)	2022/08/21		101	%	75 - 125
			Total Arsenic (As)	2022/08/21		96	%	75 - 125
			Total Barium (Ba)	2022/08/21		NC	%	75 - 125
			Total Beryllium (Be)	2022/08/21		106	%	75 - 125
			Total Cadmium (Cd)	2022/08/21		99	%	75 - 125
			Total Chromium (Cr)	2022/08/21		106	%	75 - 125
			Total Cobalt (Co)	2022/08/21		99	%	75 - 125
			Total Copper (Cu)	2022/08/21		97	%	75 - 125
			Total Lead (Pb)	2022/08/21		98	%	75 - 125
			Total Mercury (Hg)	2022/08/21		96	%	75 - 125
			Total Molybdenum (Mo)	2022/08/21		104	%	75 - 125
			Total Nickel (Ni)	2022/08/21		94	%	75 - 125
			Total Selenium (Se)	2022/08/21		100	%	75 - 125
			Total Silver (Ag)	2022/08/21		101	%	75 - 125
			Total Thallium (Tl)	2022/08/21		100	%	75 - 125
			Total Tin (Sn)	2022/08/21		103	%	75 - 125
			Total Uranium (U)	2022/08/21		97	%	75 - 125
			Total Vanadium (V)	2022/08/21		123	%	75 - 125
			Total Zinc (Zn)	2022/08/21		99	%	75 - 125
A688596	KGR	QC Standard	Total Antimony (Sb)	2022/08/21		112	%	15 - 182
			Total Arsenic (As)	2022/08/21		105	%	53 - 147
			Total Barium (Ba)	2022/08/21		101	%	80 - 119
			Total Cadmium (Cd)	2022/08/21		119	%	72 - 128
			Total Chromium (Cr)	2022/08/21		96	%	59 - 141
			Total Cobalt (Co)	2022/08/21		100	%	58 - 142
			Total Copper (Cu)	2022/08/21		106	%	83 - 117
			Total Lead (Pb)	2022/08/21		113	%	79 - 121
			Total Molybdenum (Mo)	2022/08/21		105	%	67 - 133
			Total Nickel (Ni)	2022/08/21		108	%	79 - 121
			Total Silver (Ag)	2022/08/21		93	%	47 - 153
			Total Tin (Sn)	2022/08/21		100	%	67 - 133
			Total Uranium (U)	2022/08/21		86	%	77 - 123
			Total Vanadium (V)	2022/08/21		102	%	79 - 121
			Total Zinc (Zn)	2022/08/21		103	%	79 - 121
A688596	KGR	Spiked Blank	Total Antimony (Sb)	2022/08/21		104	%	80 - 120
			Total Arsenic (As)	2022/08/21		96	%	80 - 120
			Total Barium (Ba)	2022/08/21		99	%	80 - 120
			Total Beryllium (Be)	2022/08/21		98	%	80 - 120
			Total Cadmium (Cd)	2022/08/21		96	%	80 - 120
			Total Chromium (Cr)	2022/08/21		100	%	80 - 120
			Total Cobalt (Co)	2022/08/21		101	%	80 - 120
			Total Copper (Cu)	2022/08/21		100	%	80 - 120
			Total Lead (Pb)	2022/08/21		100	%	80 - 120
			Total Mercury (Hg)	2022/08/21		100	%	80 - 120
			Total Molybdenum (Mo)	2022/08/21		99	%	80 - 120
			Total Nickel (Ni)	2022/08/21		100	%	80 - 120
			Total Selenium (Se)	2022/08/21		101	%	80 - 120
			Total Silver (Ag)	2022/08/21		98	%	80 - 120
			Total Thallium (Tl)	2022/08/21		99	%	80 - 120

 Page 13 of 35

 Bureau Veritas
 Edmonton: 9331 - 48th Street T6B 2R4
 Telephone (780)577-7100
 Fax (780)450-4187

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		· //	Total Tin (Sn)	2022/08/21		98	%	80 - 120
			Total Uranium (U)	2022/08/21		99	%	80 - 120
			Total Vanadium (V)	2022/08/21		100	%	80 - 120
			Total Zinc (Zn)	2022/08/21		97	%	80 - 120
A688596	KGR	Method Blank	Total Antimony (Sb)	2022/08/21	<0.50		mg/kg	
			Total Arsenic (As)	2022/08/21	<1.0		mg/kg	
			Total Barium (Ba)	2022/08/21	<1.0		mg/kg	
			Total Beryllium (Be)	2022/08/21	<0.40		mg/kg	
			Total Cadmium (Cd)	2022/08/21	<0.050		mg/kg	
			Total Chromium (Cr)	2022/08/21	<1.0		mg/kg	
			Total Cobalt (Co)	2022/08/21	<0.50		mg/kg	
			Total Copper (Cu)	2022/08/21	<1.0		mg/kg	
			Total Lead (Pb)	2022/08/21	<0.50		mg/kg	
			Total Mercury (Hg)	2022/08/21	<0.050		mg/kg	
			Total Molybdenum (Mo)	2022/08/21	<0.40		mg/kg	
			Total Nickel (Ni)	2022/08/21	<1.0		mg/kg	
			Total Selenium (Se)	2022/08/21	<0.50		mg/kg	
			Total Silver (Ag)	2022/08/21	<0.20		mg/kg	
			Total Thallium (TI)	2022/08/21	<0.10		mg/kg	
			Total Tin (Sn)	2022/08/21	<1.0		mg/kg	
			Total Uranium (U)	2022/08/21	<0.20		mg/kg	
			Total Vanadium (V)	2022/08/21	<1.0		mg/kg	
			Total Zinc (Zn)	2022/08/21	<10		mg/kg	
A688596	KGR	RPD	Total Antimony (Sb)	2022/08/21	NC		%	30
			Total Arsenic (As)	2022/08/21	15		%	30
			Total Barium (Ba)	2022/08/21	23		%	35
			Total Beryllium (Be)	2022/08/21	6.2		%	30
			Total Cadmium (Cd)	2022/08/21	8.6		%	30
			Total Chromium (Cr)	2022/08/21	3.3		%	30
			Total Cobalt (Co)	2022/08/21	17		%	30
			Total Copper (Cu)	2022/08/21	1.6		%	30
			Total Lead (Pb)	2022/08/21	4.2		%	35
			Total Molybdenum (Mo)	2022/08/21	6.4		%	35
			Total Nickel (Ni)	2022/08/21	20		%	30
			Total Selenium (Se)	2022/08/21	NC		%	30
			Total Silver (Ag)	2022/08/21	NC		%	35
			Total Thallium (Tl)	2022/08/21	10		%	30
			Total Tin (Sn)	2022/08/21	NC		%	35
			Total Uranium (U)	2022/08/21	3.9		%	30
			Total Vanadium (V)	2022/08/21	0.029		%	30
			Total Zinc (Zn)	2022/08/21	0.19		%	30
A689486	WPK	Matrix Spike [AZY347-02]	1,4-Difluorobenzene (sur.)	2022/08/22		91	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/22		104	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/22		100	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/22		104	%	50 - 140
			Benzene	2022/08/22		94	%	50 - 140
			Toluene	2022/08/22		89	%	50 - 140
			Ethylbenzene	2022/08/22		94	%	50 - 140
			m & p-Xylene	2022/08/22		95	%	50 - 140
			o-Xylene	2022/08/22		97	%	50 - 140
			F1 (C6-C10)	2022/08/22		101	%	60 - 140
A689486	///DK	Spiked Blank	1,4-Difluorobenzene (sur.)	2022/08/22		94	%	50 - 140

 Page 14 of 35

 Bureau Veritas
 Edmonton: 9331 - 48th Street T6B 2R4
 Telephone (780)577-7100
 Fax (780)450-4187

٦

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			4-Bromofluorobenzene (sur.)	2022/08/22		104	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/22		118	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/22		105	%	50 - 140
			Benzene	2022/08/22		122	%	60 - 130
			Toluene	2022/08/22		116	%	60 - 130
			Ethylbenzene	2022/08/22		119	%	60 - 130
			m & p-Xylene	2022/08/22		118	%	60 - 130
			o-Xylene	2022/08/22		120	%	60 - 130
			F1 (C6-C10)	2022/08/22		126	%	60 - 140
A689486	WPK	Method Blank	1,4-Difluorobenzene (sur.)	2022/08/22		95	%	50 - 140
			4-Bromofluorobenzene (sur.)	2022/08/22		102	%	50 - 140
			D10-o-Xylene (sur.)	2022/08/22		112	%	50 - 140
			D4-1,2-Dichloroethane (sur.)	2022/08/22		105	%	50 - 140
			Benzene	2022/08/22	<0.0050		mg/kg	
			Toluene	2022/08/22	<0.050		mg/kg	
			Ethylbenzene	2022/08/22	<0.010		mg/kg	
			m & p-Xylene	2022/08/22	<0.040		mg/kg	
			o-Xylene	2022/08/22	<0.020		mg/kg	
			F1 (C6-C10)	2022/08/22	<10		mg/kg	
A689486	WPK	RPD [AZY347-02]	Benzene	2022/08/22	NC		%	50
			Toluene	2022/08/22	NC		%	50
			Ethylbenzene	2022/08/22	NC		%	50
			m & p-Xylene	2022/08/22	NC		%	50
			o-Xylene	2022/08/22	NC		%	50
			F1 (C6-C10)	2022/08/22	NC		%	30
A689719	SKM	Matrix Spike	Hex. Chromium (Cr 6+)	2022/08/22		86	%	75 - 125
A689719	SKM	Spiked Blank	Hex. Chromium (Cr 6+)	2022/08/22		97	%	80 - 120
A689719	SKM	Method Blank	Hex. Chromium (Cr 6+)	2022/08/22	<0.080		mg/kg	
A689719	SKM	RPD	Hex. Chromium (Cr 6+)	2022/08/22	NC		%	35
A689763	JU2	Matrix Spike	D10-ANTHRACENE (sur.)	2022/08/22		104	%	50 - 130
			D8-ACENAPHTHYLENE (sur.)	2022/08/22		94	%	50 - 130
			D8-NAPHTHALENE (sur.)	2022/08/22		93	%	50 - 130
			TERPHENYL-D14 (sur.)	2022/08/22		110	%	50 - 130
			Acenaphthene	2022/08/22		97	%	50 - 130
			Acenaphthylene	2022/08/22		96	%	50 - 130
			Acridine	2022/08/22		75	%	50 - 130
			Anthracene	2022/08/22		94	%	50 - 130
			Benzo(a)anthracene	2022/08/22		95	%	50 - 130
			Benzo(b&j)fluoranthene	2022/08/22		91	%	50 - 130
			Benzo(k)fluoranthene	2022/08/22		92	%	50 - 130
			Benzo(g,h,i)perylene	2022/08/22		101	%	50 - 130
			Benzo(c)phenanthrene	2022/08/22		94	%	50 - 130
			Benzo(a)pyrene	2022/08/22		102	%	50 - 130
			Benzo(e)pyrene	2022/08/22		85	%	50 - 130
			Chrysene	2022/08/22		92	%	50 - 130
			Dibenz(a,h)anthracene	2022/08/22		98	%	50 - 130
			Fluoranthene	2022/08/22		96	%	50 - 130
			Fluorene	2022/08/22		98	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2022/08/22		108	%	50 - 130
			1-Methylnaphthalene	2022/08/22		81	%	50 - 130
			2-Methylnaphthalene	2022/08/22		103	%	50 - 130
			Naphthalene	2022/08/22		98	%	50 - 130

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	-		Phenanthrene	2022/08/22		96	%	50 - 130
			Perylene	2022/08/22		89	%	50 - 130
			Pyrene	2022/08/22		94	%	50 - 130
			Quinoline	2022/08/22		90	%	50 - 130
A689763	JU2	Spiked Blank	D10-ANTHRACENE (sur.)	2022/08/22		105	%	50 - 130
			D8-ACENAPHTHYLENE (sur.)	2022/08/22		95	%	50 - 130
			D8-NAPHTHALENE (sur.)	2022/08/22		96	%	50 - 130
			TERPHENYL-D14 (sur.)	2022/08/22		130	%	50 - 130
			Acenaphthene	2022/08/22		97	%	50 - 130
			Acenaphthylene	2022/08/22		94	%	50 - 130
			Acridine	2022/08/22		64	%	50 - 130
			Anthracene	2022/08/22		91	%	50 - 130
			Benzo(a)anthracene	2022/08/22		104	%	50 - 130
			Benzo(b&j)fluoranthene	2022/08/22		99	%	50 - 130
			Benzo(k)fluoranthene	2022/08/22		115	%	50 - 130
			Benzo(g,h,i)perylene	2022/08/22		106	%	50 - 130
			Benzo(c)phenanthrene	2022/08/22		112	%	50 - 130
			Benzo(a)pyrene	2022/08/22		94	%	50 - 130
			Benzo(e)pyrene	2022/08/22		97	%	50 - 130
			Chrysene	2022/08/22		109	%	50 - 130
			Dibenz(a,h)anthracene	2022/08/22		103	%	50 - 130
			Fluoranthene	2022/08/22		94	%	50 - 130
			Fluorene	2022/08/22		96	%	50 - 130
			Indeno(1,2,3-cd)pyrene	2022/08/22		97	%	50 - 130
			1-Methylnaphthalene	2022/08/22		81	%	50 - 130
			2-Methylnaphthalene	2022/08/22		102	%	50 - 130
			Naphthalene	2022/08/22		99	%	50 - 130
			Phenanthrene	2022/08/22		91	%	50 - 130
			Perylene	2022/08/22		90	%	50 - 130
			Pyrene	2022/08/22		93	%	50 - 130
			Quinoline	2022/08/22		91	%	50 - 130
A689763	JU2	Method Blank	D10-ANTHRACENE (sur.)	2022/08/22		97	%	50 - 130
			D8-ACENAPHTHYLENE (sur.)	2022/08/22		89	%	50 - 130
			D8-NAPHTHALENE (sur.)	2022/08/22		91	%	50 - 130
			TERPHENYL-D14 (sur.)	2022/08/22		127	%	50 - 130
			Acenaphthene	2022/08/22	<0.0050		mg/kg	
			Acenaphthylene	2022/08/22	<0.0050		mg/kg	
			Acridine	2022/08/22	<0.010		mg/kg	
			Anthracene	2022/08/22	< 0.0040		mg/kg	
			Benzo(a)anthracene	2022/08/22	<0.0050		mg/kg	
			Benzo(b&j)fluoranthene	2022/08/22	< 0.0050		mg/kg	
			Benzo(k)fluoranthene	2022/08/22	<0.0050		mg/kg	
			Benzo(g,h,i)perylene	2022/08/22	<0.0050		mg/kg	
			Benzo(c)phenanthrene	2022/08/22	<0.0050		mg/kg	
			Benzo(a)pyrene	2022/08/22	<0.0050		mg/kg	
			Benzo(e)pyrene	2022/08/22	<0.0050		mg/kg	
			Chrysene	2022/08/22	<0.0050		mg/kg	
			Dibenz(a,h)anthracene	2022/08/22	<0.0050		mg/kg	
			Fluoranthene	2022/08/22	<0.0050		mg/kg	
			Fluorene	2022/08/22	< 0.0050		mg/kg	
			Indeno(1,2,3-cd)pyrene	2022/08/22	<0.0050		mg/kg	
			1-Methylnaphthalene	2022/08/22	< 0.0050		mg/kg	

٦

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			2-Methylnaphthalene	2022/08/22	<0.0050		mg/kg	
			Naphthalene	2022/08/22	<0.0050		mg/kg	
			Phenanthrene	2022/08/22	<0.0050		mg/kg	
			Perylene	2022/08/22	<0.0050		mg/kg	
			Pyrene	2022/08/22	<0.0050		mg/kg	
			Quinoline	2022/08/22	<0.010		mg/kg	
A689763	JU2	RPD	Acenaphthene	2022/08/22	NC		%	50
			Acenaphthylene	2022/08/22	NC		%	50
			Acridine	2022/08/22	NC		%	50
			Anthracene	2022/08/22	NC		%	50
			Benzo(a)anthracene	2022/08/22	NC		%	50
			Benzo(b&j)fluoranthene	2022/08/22	34		%	50
			Benzo(k)fluoranthene	2022/08/22	NC		%	50
			Benzo(g,h,i)perylene	2022/08/22	15		%	50
			Benzo(c)phenanthrene	2022/08/22	NC		%	50
			Benzo(a)pyrene	2022/08/22	NC		%	50
			Benzo(e)pyrene	2022/08/22	13		%	50
			Chrysene	2022/08/22	NC		%	50
			Dibenz(a,h)anthracene	2022/08/22	NC		%	50
			Fluoranthene	2022/08/22	NC		%	50
			Fluorene	2022/08/22	NC		%	50
			Indeno(1,2,3-cd)pyrene	2022/08/22	21		%	50
			1-Methylnaphthalene	2022/08/22	NC		%	50
			2-Methylnaphthalene	2022/08/22	NC		%	50
			Naphthalene	2022/08/22	NC		%	50
			Phenanthrene	2022/08/22	NC		%	50
			Perylene	2022/08/22	11		%	50
			Pyrene	2022/08/22	11		%	50
			Quinoline	2022/08/22	NC		%	50
A689874	MPU	Matrix Spike	Soluble (Hot water) Boron (B)	2022/08/24		91	%	75 - 125
A689874	MPU	Spiked Blank	Soluble (Hot water) Boron (B)	2022/08/24		98	%	80 - 120
A689874	MPU	Method Blank	Soluble (Hot water) Boron (B)	2022/08/24	<0.10		mg/kg	
A689874	MPU	RPD	Soluble (Hot water) Boron (B)	2022/08/24	17		%	35
A690209	GG3	Matrix Spike	O-TERPHENYL (sur.)	2022/08/23		90	%	60 - 140
		·	F2 (C10-C16 Hydrocarbons)	2022/08/23		82	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/23		89	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/23		87	%	60 - 140
A690209	GG3	Spiked Blank	O-TERPHENYL (sur.)	2022/08/23		107	%	60 - 140
		•	F2 (C10-C16 Hydrocarbons)	2022/08/23		86	%	60 - 140
			F3 (C16-C34 Hydrocarbons)	2022/08/23		94	%	60 - 140
			F4 (C34-C50 Hydrocarbons)	2022/08/23		92	%	60 - 140
A690209	GG3	Method Blank	O-TERPHENYL (sur.)	2022/08/23		101	%	60 - 140
			F2 (C10-C16 Hydrocarbons)	2022/08/23	<10		mg/kg	
			F3 (C16-C34 Hydrocarbons)	2022/08/23	<50		mg/kg	
			F4 (C34-C50 Hydrocarbons)	2022/08/23	<50		mg/kg	
A690209	GG3	RPD	F2 (C10-C16 Hydrocarbons)	2022/08/23	2.3		%	40
			F3 (C16-C34 Hydrocarbons)	2022/08/23	0.67		%	40
			F4 (C34-C50 Hydrocarbons)	2022/08/23	NC		%	40
A690241	JKV	QC Standard	Saturation %	2022/08/23		98	%	75 - 125
A690241	JKV	RPD	Saturation %	2022/08/23	2.0	50	%	12
A690290	A1H	Method Blank	Moisture	2022/08/23	<0.30		%	14
	· · ± · ·		molocure	2022/00/20	-0.50		70	

 Page 17 of 35

 Bureau Veritas
 Edmonton: 9331 - 48th Street T6B 2R4
 Telephone (780)577-7100
 Fax (780)450-4187

01/00

GOLDER ASSOCIATES LTD Client Project #: 22525414-1000 Site Location: CAMPFUR WELL Your P.O. #: 22525414-1000-1104 Sampler Initials: JP

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A692392	AFI	Matrix Spike	Soluble Chloride (Cl)	2022/08/24		107	%	75 - 125
A692392	AFI	QC Standard	Soluble Chloride (Cl)	2022/08/24		96	%	75 - 125
A692392	AFI	Spiked Blank	Soluble Chloride (Cl)	2022/08/24		106	%	80 - 120
A692392	AFI	Method Blank	Soluble Chloride (Cl)	2022/08/24	<10		mg/L	
A692392	AFI	RPD	Soluble Chloride (Cl)	2022/08/24	NC		%	30
A692710	EH2	QC Standard	Soluble Conductivity	2022/08/24		101	%	75 - 125
A692710	EH2	Spiked Blank	Soluble Conductivity	2022/08/24		98	%	90 - 110
A692710	EH2	Method Blank	Soluble Conductivity	2022/08/24	<0.020		dS/m	
A692710	EH2	RPD	Soluble Conductivity	2022/08/24	5.5		%	20
A692713 MB5 Matrix	Matrix Spike	Soluble Calcium (Ca)	2022/08/24		94	%	75 - 125	
l			Soluble Magnesium (Mg)	2022/08/24		101	%	75 - 125
			Soluble Sodium (Na)	2022/08/24		91	%	75 - 125
		Soluble Potassium (K)	2022/08/24		98	%	75 - 125	
A692713 MB5	MB5	QC Standard	Soluble Calcium (Ca)	2022/08/24		102	%	75 - 125
			Soluble Magnesium (Mg)	2022/08/24		107	%	75 - 125
			Soluble Sodium (Na)	2022/08/24		97	%	75 - 125
			Soluble Potassium (K)	2022/08/24		85	%	75 - 125
			Soluble Sulphate (SO4)	2022/08/24		103	%	75 - 125
A692713	2713 MB5 S	Spiked Blank	Soluble Calcium (Ca)	2022/08/24		95	%	80 - 120
			Soluble Magnesium (Mg)	2022/08/24		103	%	80 - 120
			Soluble Sodium (Na)	2022/08/24		94	%	80 - 120
			Soluble Potassium (K)	2022/08/24		98	%	80 - 120
A692713	MB5	Method Blank	Soluble Calcium (Ca)	2022/08/24	<1.5		mg/L	
			Soluble Magnesium (Mg)	2022/08/24	<1.0		mg/L	
			Soluble Sodium (Na)	2022/08/24	<2.5		mg/L	
			Soluble Potassium (K)	2022/08/24	<1.3		mg/L	
		Soluble Sulphate (SO4)	2022/08/24	<5.0		mg/L		
A692713	A692713 MB5	RPD	Soluble Calcium (Ca)	2022/08/25	66 (1)		%	30
			Soluble Magnesium (Mg)	2022/08/25	NC		%	30
			Soluble Sodium (Na)	2022/08/25	3.9		%	30
			Soluble Potassium (K)	2022/08/25	NC		%	30
1			Soluble Sulphate (SO4)	2022/08/25	NC		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Gita Pokhrel, Laboratory Supervisor

Junzhi Gras

Janet Gao, B.Sc., QP, Supervisor, Organics

Jing yuan Son

Jingyuan Song, QP, Organics - Senior Analyst

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Automated Statchk

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

4		1						TAT)	ΛE	4 T)			M DD			30.00W	Jusp. Com	cede		contain							ONS WHICH	Temperature reading by:																	
Page 1 of			LAB USE ONLY - PLACE STICKER HERE		Rush Confirmation #:			Regular Turnaround Time (TAT)	5 to 7 Day	Rush Turnaround Time (TAT) Surcharges annlv	Same D		27	Required: Comments	also email repart	Sid. Shellday Buspice	ald ist - Chus Ousp.	Upload to facility	41259544	Samples may co	head space	1					IS SUBJECT TO BUREAU VERITAS STANDARD TERMS AND CONDITIONS. SIGNING OF THIS CHAIN OF CUSTODY DOCUMENT IS ACKNOWEEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH R VIEWING AT VVVV.BVVA.COM/TERMS-AND-CONDITIONS OR BY CALLING THE LABORATORY LISTED ABOVE TO OBTAIN A COPY	<u> </u>	1 2 3	Special instructions	してくていてい														
			LAB					21 22		a	181	Sea an ann an		HOLD - D # OF COM	m	3	m	5	5	3	3	M	m	m	5	3	AND ACCE	ç	Т	MM	10														
								19 20		E			LIMITED SAMPLE		}	-		×	×		1		2	ð	-		DGMENT A	N		Time HH	12 1														
								17 18												nife		5	100	-	-		KNOWLED PY	Yes		+	~	_													
CHAIN OF CUSTODY RECORD ENV COC - 00013v3			14				1		62/			11-	18 1007	-	selo oise8						Yellowki	9	2100	77N	2	٩		ient is ac 'ain a cof			90	18	_												
N OF CUSTODY REC ENV COC - 00013v3		Shell	22525414-\$100-\$104	000€-		-\$000		22525414-\$000	525414-3000	525414-\$000	nnnt-					ากกลั	nnn≹-1	WEST-CHANNEL, NT		1 24 25 22			Ive	and a contract of the		Sieve (75 Texture	-						500	2	101	5	e		NY DOCUN VE TO OB1	AINO	ant	Date MM	08		
of cus	ormation			5414-81	525414	525414	525414				525414	Camp Four well NA	T-CHAN	NT	12 13				pəvi		Mercury Salinity 4				×	×	ed in	2		BD	100	ä.		IF CUSTOE	LAB USE ONLY at	edia prese									
CHAIN	Project Information		2252	22		WES	-WES	WES						11 01 11			panjo	lated metals - dissolv		2.00 00000000	-					aceive)	P.		Tem		S CHAIN OF	1 Seal present	Seal intact Cooling media present	¥	22								
	•				A MID F	5		5.14ec					letot - ele bevlossib - ele				lətelugəA				X	×	ď	B			C.		IG OF THIS	NG OF THI HE LABOR	01	0/10		(
		#	:#3		C		Site Location Province:	2				JATO1		MUIAA8													S. SIGNI		m		311														
		Quotation #:	P.O. #/ AFE#:	Project #:	Site #:			te Locatic	te Locatio	te Locatio	te Locatic ovince:	Sampled By: 5 6					7:	PAHS PLTA KITA		1		×	X								NDITION OR BY C		2	e/ Print)	ASON B										
		a	a.	ä	T2P 4K3 si	Sit				-									127		BTEX F1-	×	×	X	×	X	×	X	X	×	X	×	×	S AND CO		H	(Signature/ Print)	J.							
					Postal T2F Code: T2F		a) h.g. com	77.23			3ED			ING CLER								_		_			RD TERM	ç		Repeived by:	K	11													
	nvoice)	es	ac						c. bellavancel	e bellavancel	e bellavancel	e bellavancel	lavancellavancel	avancel	DUDC-CC2-	0	0					_	c	озяэтлія	נונרס צור												1	STANDA M/TERM	No		Reg	1			
-7247 247 0-6208	Report Information (If differs from invoice)	Golder Associates	3¢llavar	-		403-299-5600	bell	1420														Matrix	Soil	-				_	_		_	_		3	U VERITAS BVNA.CO	Yes		1							
P8 Toll Free (800) 386-7247 Toll Free (800) 386-7247 1A7 Toll Free (866) 800-6208	on (if diff	solder /	Aurelie Bellavance		AB			C								ba	eqc		TO BUREAU VERITAS	24hr)	WW	00 5	5	30	45	50	15	30	45	45	00	15	30	O BUREA			5		2						
Toll Free (Il Free (80 7 Toll Free	Informati			A				4						1-	a Manufa	ater - Manitoba		I BUREAU	Time (24hr)	Ŧ	68	80	80	1 80	202	1 60	64 3	69	60	0)	0/	0	UBJECT T	USE ONLY	Seal intact Cooling media present	Time	15								
	Report li				Calgary			Peter		3			pled	8	12	-										->1	TODY IS S ME FOR V	LAB US present	intact Ing media	풒	60														
th St. NE, 48 St. T6 6 Berry St		:VI	1051								Other	INTIL DEL	Date Sampled	MM	2 08	-		_								1	N OF CUS	Seal	Cool	8	14														
Choose Location: Calgary, AB: 4000 13th St. NE, 12E 6P8 Toll Free (800) 386-7247 Edmonton, AB: 9331-48 St. T6B 2P4 Toll Free (800) 386-7247 Winnipeg, MB: D-675 Berry St. R3H 1A7 Toll Free (866) 800-620		Company:	Contact Name:	Street Address:	City:	Phone:	Email:	Coples:				NPLING U		۶	2022	1										->/	THIS CHAIL	2		ate															
		S								Canada	Alberta	AE OF SAI															ITED ON 1	-0))	- L	2022														
	port)	ssociate	e 3300		Postal Code:	-	ayable		ungau	g Water -	g Water -	FROM TIN															RK SUBMI	A			ñ														
	Invoice to (requires report)	Client #254, Golder Associates	237 - 4 Ave SW Suite 3300		AB	2	ount Par	Canada Account Payable		Drinking Water - Canada	Drinkin	Drinking Water - Alberta	ıl (<10°C)		cation					1					-	2	10	ring, wor	No	П	int)	Phar													
	oice to (r	254, G	4 Ave				ida Acc					ε Ρ Τ COO		Sample Identification	-07	20.		10-	07	10-	50	63		-16-61-	-16-02	7-0	D IN WRIT	Yes N		nature/ Pr	3. Machar	0													
A.com	Inv	Client #	237 -		Prov:		Cana			CCME		IUST BE K		Sample		1-1-	14-	13	- 61	5	15-0	15-03		1	T	1	GREED TO			by: (Sigr	S														
www.BVNA.com	tion				Calgary	1					chewan	SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY			BH22-14	- X	2H22-14	-12	-22	- 22	d		10	MW 22	22 MMI	BH22-12-01	ERWISE A	LAB USE ONLY esent	nrecent	Relinquished by: (Signature/ Print)	L														
	Invoice Information	Company :	act .					isi		AT1	Saskatchewan	SA			BH	RHZN	SHC	NW	CT MW	BHZ	BHZ	BH22-	Derot			BH	•UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON THIS CHAIN OF CUSTODY I ARE ∱VAILABLE FOI	LAB US Seal present	Seal Intact Cooling media present	Reli	14														
	Involu	Comp	Contact	Street	City:	Phone:	Email:	Copies:							ж	2	m	4	'n	ø	7	œ	6	9	1	12	in.	Seal	Sea	š.	-	NN													

ş.

Page 20 of 35

0 R 6262079 of Same as above Comments N JASON SIL 2022/05/18 15:10 Page 22 **JOLD - DO NOT ANALYZE** # ОF СОИТАІИЕRS SUBMITTED mm 20 16 17 18 19 CHAIN OF CUSTODY RECORD llifbnel II zzelo oize8 ENV COC - 00013v3 4 5 6 7 8 9 10 11 12 13 14 15 (Vela, silt, clay) exture (notoim ZV) svaid 4 yainile2 Wercury - dissolved 1 K BI. Mercury - total bevlozzib - zlatem betalugeß letot - sletem beteluges Youtine water 8TEX F1-F4 × × BTEX F1-F2 SOON CONTINUED BTEX F1 8 **ОЗЯІ ПОЗЯ ИОІТАЯТІ І ВАІ** 1 2 него рясскуер **ГІЕГО FILTERED** Matrix Calgary, AB: 4000 19th St. NE, TZE 6P8 Toll Free (800) 386-7247 Edmonton, AB: 9331-48 St. T6B 2R4 Toll Free (800) 386-7247 Winnipeg, MB: D-675 Berry St. R3H 1A7 Toll Free (866) 800-6208 ie. K SAMPLES MUST BE KEPT COOL (<10°C) FROM TIME OF SAMPLING UNTIL DELIVERY TO BUREAU VERITAS MM 00 Time (24hr) 45 Ħ 0 11 ユー DO **Date Sampled** 08 MM ->1 2622 ¥ K [PAGE 1 REFERENCE] Client #254, Golder Associates 237 - 4 Ave SW Suite 3300 22525414-3000

 13
 BHZZ-12-02

 15
 BHZZ-12-03

 15
 11

 16
 12

 17
 12

 18
 12

 19
 12

 10
 12

 11
 12

 12
 12

 13
 12

 14
 12

 15
 12

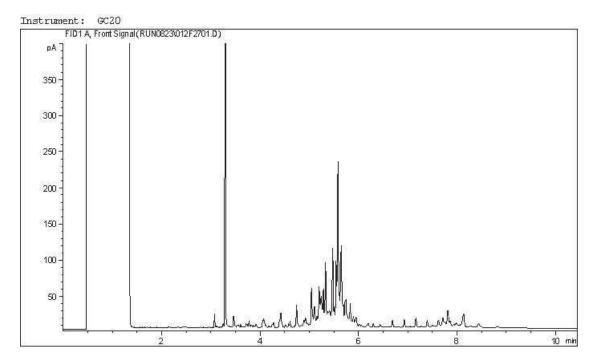
 16
 12

 17
 12

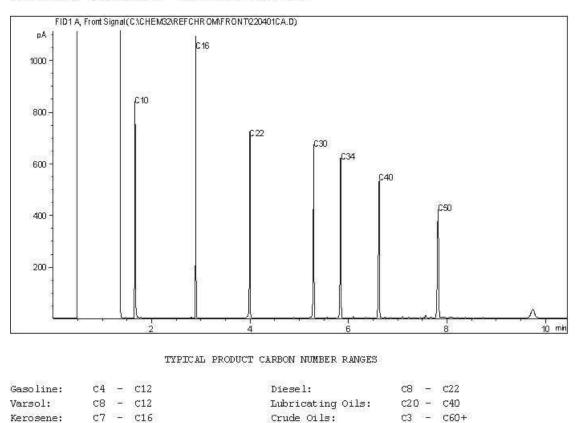
 18
 12

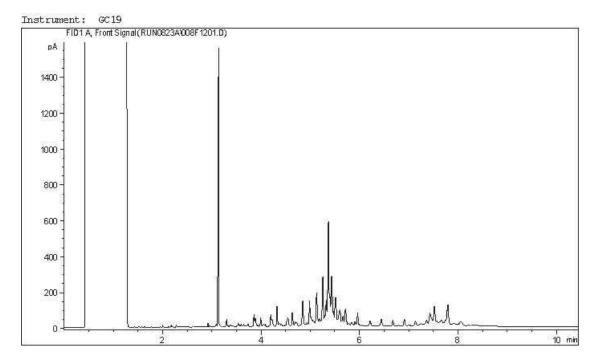
 19
 13

 11
 13

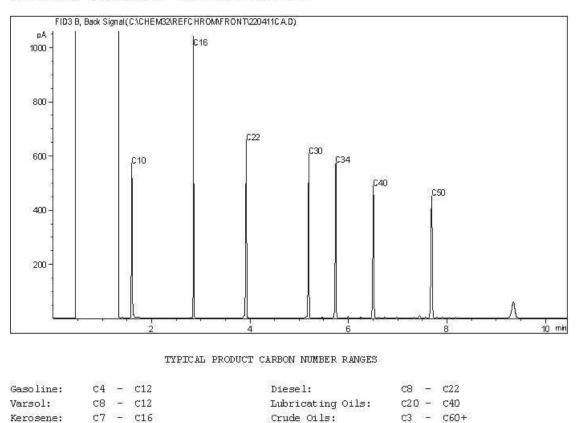

 12
 13

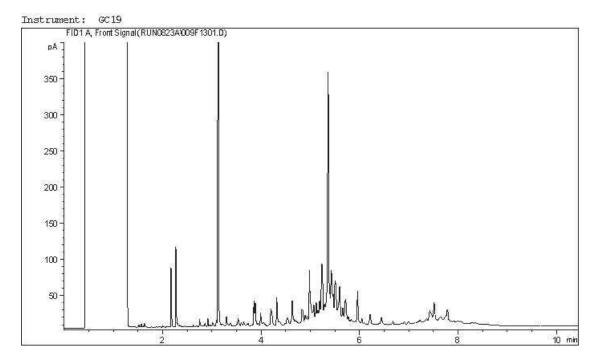
 13
 14

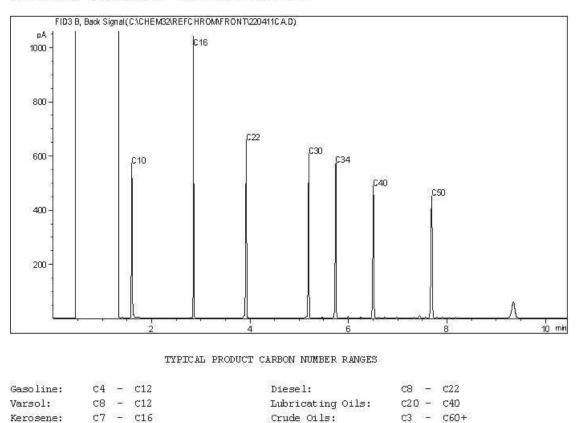

 14
 14


 14
 14

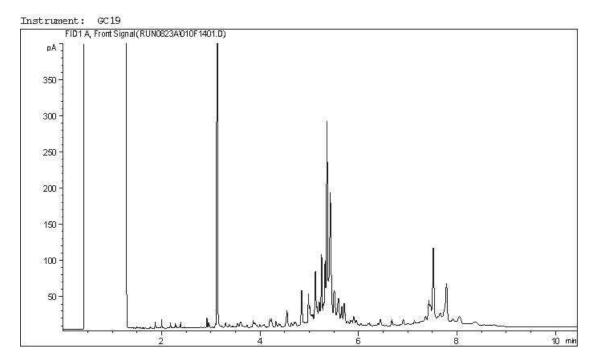
 Sample Identification www.BVNA.com Company: Contact Name: Project #:



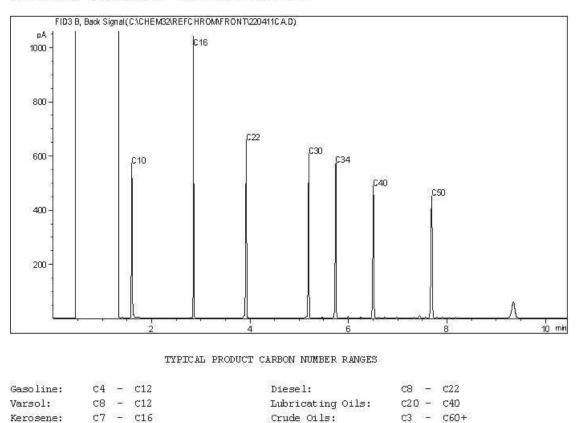

Carbon Range Distribution - Reference Chromatogram



Carbon Range Distribution - Reference Chromatogram

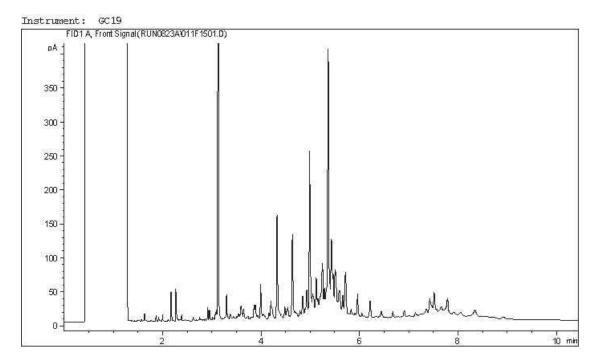


Carbon Range Distribution - Reference Chromatogram

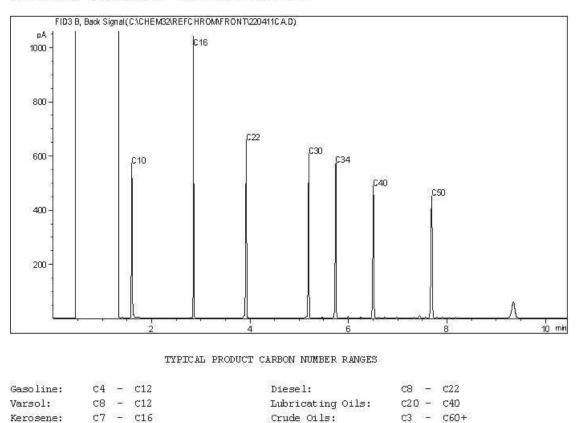


GOLDER ASSOCIATES LTD Client Project #: 22525414-1000 Site Reference: CAMPFUR WELL Client ID: MW22-13-01

CCME Hydrocarbons (F2-F4 in soil) Chromatogram



Carbon Range Distribution - Reference Chromatogram



GOLDER ASSOCIATES LTD Client Project #: 22525414-1000 Site Reference: CAMPFUR WELL Client ID: MW22-13-02

CCME Hydrocarbons (F2-F4 in soil) Chromatogram

Carbon Range Distribution - Reference Chromatogram

